2018 Volume E101.C Issue 1 Pages 82-90
A wideband CMOS common-gate low-noise amplifier (LNA) with high linearity is proposed. The linearity is improved by dual cross-coupled feedback technique. A passive cross-coupled feedback removes the second-order harmonic feedback effect to the input-referred third-order intercept point (IIP3), which is known as one of the limitations for linearity enhancement using feedback. An active cross-coupled feedback, constituted by a voltage combiner and a feedback capacitor is employed to enhance loop gain, and acquire further linearity improvement. An enhanced LC-match input network and forward isolation of active cross-coupled feedback enable the proposed LNA with wideband input matching and flat gain performance. Fabricated in a 0.13 µm RF CMOS process, the LNA achieves a flat voltage gain of 13 dB, an NF of 2.6∼3.8 dB, and an IIP3 of 3.6∼4.9 dBm over a 3 dB bandwidth of 0.1∼1.3 GHz. It consumes only 3.2 mA from a 1.2 V supply and occupies an area of 480×418 um2. In contrast to those of reported wideband LNAs, the proposed LNA has the merit of low power consumption and high linearity.