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ABSTRACT
In this paper, several enhanced sufficient conditions are
given for minimal routing in 2-dimensional (2-D) meshes
with faulty nodes contained in a set of disjoint faulty blocks.
It is based on an early work of Wu’s minimal routing in 2-
D meshes. Fault information is coded in a 4-tuple called
extended safety level associated with each node to deter-
mine the feasibility of minimal routing. Specifically, we
study the existence of minimal route at a given source node
based on the associated extended safety level, limited dis-
tribution of faulty block information, and minimal routing.
An analytical model for the number of rows and columns
that receive faulty block information is also given. Exten-
sions to Wang’s minimal-connected-components (MCCs)
fault model are also considered. Simulation results show
substantial improvement in terms of higher percentage of
minimal routing in 2-D meshes under both fault models.

1 Introduction

The performance of a multicomputer system depends on
the end-to-end cost of communication mechanisms. Rout-
ing time of packets is one of the key factors that are criti-
cal to the performance of multicomputers. We study fault-
tolerant routing in the 2-dimensional (2-D) mesh and focus
on achieving fault tolerance using the inherent redundancy
present in 2-D meshes, without adding spare nodes and/or
links. To this end, fault model and information model are
the two keys to successfully extend the existing approaches.

Many studies have been done on routing in 2-D meshes
based on the faulty block model [1, 2, 3]. Most approaches
try to reduce either the number of nonfaulty nodes in a
faulty block by considering different types of fault regions
or the number of virtual channels to support deadlock-free
routing. Relatively few work has been done in minimal
routing in 2-D meshes with faulty blocks. In [6], Wu in-
troduced the concept of extended safety level with its use
in achieving minimal routing in 2-D meshes with faulty
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nodes contained in a set of faulty blocks. This work is based
on an early work on safety-level-based routing [5]. Unlike
many existing information models that require each node
to have knowledge of the entire network, extended safety
level as coded fault information associated with each node
represents limited global information by exploring locality
of disturbances in the network. Basically, extended safety
level associated with each node contains distances to clos-
est faulty blocks in four directions (East, South, West, and
North). When the extended safety level of the source meets
a safety requirement (also called sufficient safe condition)
with respect to its distance to the destination, minimal rout-
ing is guaranteed. Extended safety level only guarantees
the existence of a minimal route. To facilitate the minimal
routing, faulty block information is also distributed to nodes
along four boundary lines of each faulty block.

However, the sufficient safe condition in [6] is overly
conservative. In addition, only minimal routing is consid-
ered. In this paper, we provide several extended sufficient
safe conditions without adding routing complexity. The no-
tion of sub-minimal routing is also introduced together with
a sufficient condition. Specifically, we address the existence
of a minimal path at a given source node based on the as-
sociated extended safety level, limited distribution of faulty
block information, and minimal and sub-minimal routing
in these extensions. An analytical model for the number
of rows and columns that receive faulty block information
is also given. Extensions to Wang’s minimal-connected-
components (MCCs) fault model [4] are also considered.
MMCs are rectilinear-monotone polygonal fault blocks of
the polygonal shape and are refinement of faulty blocks.
The size of faulty blocks is reduced by considering the rel-
ative locations of source and destination nodes during the
block formation process.

2 Preliminaries

2-D meshes. Each node u in an n � n 2-D mesh has an
address (xu; yu), where 0 � xu; yu < n. Two nodes
u : (xu; yu) and v : (xv ; yv) are connected if their addresses
differ by one in one and only one dimension and their dis-
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Figure 1. (a) A faulty block consisting of faulty
and disabled nodes. The corresponding type-
one MCC (b) and type-two MCC (c).

tance,D(u; v), is equal to j xu�xv j + j yu�yv j. Assume
that node u is the current node, d is the destination node,
and v is a neighbor of node u. v is called a preferred neigh-
bor with respect to destination d if D(v; d) < D(u; d);
otherwise, it is called a spare neighbor. Respectively, the
corresponding directions are called preferred direction and
spare direction. A minimal routing always selects a pre-
ferred neighbor at each hop towards the destination.

Block fault model. Most existing literatures on fault-
tolerant routing use disjoint rectangular blocks to model
node faults and to avoid routing difficulties. A node-
labeling scheme that identifies nodes is defined as follows:
A non-faulty node is initially labeled enabled; however,
its status is changed to disabled if there are two or more
disabled or faulty neighbors in different dimensions. Con-
nected disabled and faulty nodes form a faulty block.

A faulty block consists of faulty and disabled nodes. An
enabled node is an adjacent node of a faulty block if it has
one faulty or disabled neighbor in that faulty block. A cor-
ner of a faulty block is defined as an enabled node with two
adjacent nodes of that faulty block in different dimensions.
In Figure 1 (a), eight faults (black nodes) form a rectangle
[2:6, 3:6].

Minimal-connected-components (MCCs). MCCs fault
model [4] was proposed to reduce the size of a faulty block
by “removing” four “corner sections” of the block based on
the relative location of the source and destination. If the
destination is at the first or third quadrant of the source, the
NW and SE corner sections of a faulty block are removed
and the resultant block is called type-one MCC; otherwise,
the SW and NE corner sections are removed and the resul-
tant block is called type-two MCC.

Initially, all faulty nodes are labeled as faulty and all non-
faulty nodes as fault-free. If node u is fault-free, but its
North and East neighbors or South and West neighbors are
faulty or disabled, u is labeled disabled. Connected faulty
and disabled nodes form a type-one MCC. Type-two MCC
can be defined in a similar way by exchanging the role of N
(North), E, S, W by E, S, W, N, respectively. Figure 1 (b)

x

y

(0,0)

(xd, yd)

(a) (b)

Figure 2. (a) Constructing minimal paths from
the destination. (b) Distribution of faulty-
block-information (lines) and extended-
safety-level-information (shadowed regions).

and (c) show two sample MCCs.
Each node carries two status: (status1; status2) where

status1 is for quadrant I/III routing and status2 is for quad-
rant II/IV routing. In Figures 1 (b) and (c), the status of node
(4,3) is (fault-free, fault-free) and one for (2,6) is (fault-free,
disabled). It is assumed that source and destination nodes
both have (fault-free, fault-free) status.

Extended safety level. The extended safety level [6] of
a node in a given 2-D mesh is a 4-tuple: (E, S, W, N),
where E stands for the distance from this node to the
closet faulty block to its East. S, W, and N are defined
in a similar way. To ensure a minimal path from source
node, Wu [6] provided the following safe node definition:
Assume that source node s:(0; 0) has an extended safety
level (E; S;W;N) and destination node is d:(xd; yd), with
xd; yd � 0. The source node is safe with respect to d if
xd � E and yd � N ; otherwise, it is unsafe.
Theorem 1 [6]: If the source node is safe with respect to the
destination node, a minimal path is guaranteed from source
to destination.

The proof of Theorem 1 can be done constructively start-
ing from the destination. A west-bound message from the
destination is sent from the destination until reaching the y
axis. Then, the message follows the y axis to reach the ori-
gin (source). If the message hits a faulty block before reach-
ing the y axis, it routes around the block by going south to
reach the SE corner of the block, and then it continues west-
bound. Similarly, another minimal path can be constructed
by a south-bound message initiated from the destination.
Wu [6] has shown that the region enclosed by the west-
bound and south-bound paths includes intermediate nodes
and only intermediate nodes of all minimal paths between
the source and destination (see Figure 2 (a)).

A node at source (0,0) is safe if section [0; xd] of the x
axis and section [0; yd] of the y axis are both clear of any
faulty block. Clearly, the above safety level model and the
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Figure 3. (a) Boundaries of a faulty block. (b)
Boundaries of multiple faulty blocks.

corresponding result are still applicable to 2-D meshes with
MCCs.

Faulty-block-information used in minimal routing. The
extended safety level associated with the source is used only
to ensure the existence of a minimal route from the source
to a given destination. However, extended safety level in-
formation only is not sufficient to support minimal routing.
In the example of Figure 3 (a), source (0,0) is safe with re-
spect to a destination in region R4. A minimal route may
not be guaranteed even if a preferred neighbor is selected
at each hop towards the destination. For example, once the
packet enters region R8, no more minimal route is possible
(all such routes are blocked by the faulty block).

In [6], Wu presented a faulty-block-information model to
facilitate a minimal route. Faulty block information of each
block (i.e., xmin, ymin, xmax, ymax in block [xmin : xmax,
ymin : ymax]) is distributed to all nodes in the adjacent
lines of the block (see in Figure 2 (b)). These lines (L1,
L2, L3, and L4 in Figure 3 (a)) are called boundaries
of that faulty block. Figure 3 (b) shows an example of
boundaries of multiple faulty blocks for quadrant I desti-
nations (i.e., xd; yd � 1). The boundaries start from two
corners (NE-corner (xmax + 1; ymax + 1) and SW-corner
(xmin � 1; ymin � 1)) of each faulty block and go forward
along with each direction of X and Y dimensions. Without
any other faulty block, the propagation of boundary infor-
mation is forwarded node by node in each direction until it
reaches an edge of the mesh. If a boundary Li intersects
with another faulty block, a turn is made towards Li of the
encountered faulty block. Another turn is made at the cor-
ner of the second faulty block to join Li (see Figure 3 (b)
where L3 of block i joins L3 of block j).

In [6], Wu proposed a routing algorithm based on the
faulty block information for any routing from safe source
s:(0; 0) to destination d:(xd; yd), with xd; yd � 0. The
safety status of the source is determined from the extended
safety level associated with the source. The routing starts
from a safe source and uses any adaptive minimal routing
until the boundary of any faulty block is met. If the selec-

tion of any preferred neighbor does not affect the minimal
routing, the path is non-critical; otherwise, it is critical. In
case of a critical path, one of preferred directions cannot
be selected in a minimal routing due to the effect of faulty
blocks. Such a direction is called preferred but detour direc-
tion. The selection should be done at current node u based
on the relative location of the destination.

WU’S PROTOCOL [6]:
case current node u

On the left section of L1 of any faulty block:
If the destination is in the area of R6 divided by the boun-
daries of that faulty block, the routing packet should stay
on L1 until reaching the intersection of L1 and L4; other-
wise, the next hop can be any preferred direction.

On the lower section of L3 of any faulty block:
If the destination is in the area of R4 divided by the boun-
daries of that faulty block, the routing packet should stay
on L3 until reaching the intersection of L3 and L2; other-
wise, the next hop can be any preferred direction.

Otherwise:
Select any preferred direction.

end case

In Figure 3 (b), when the routing packet from (0; 0)
meets the lower section ofL3 of faulty block j, it also meets
L3 of faulty block i. If the destination is not inR4 of block i
or R4 of block j, the routing process is still non-critical and
any of two preferred directions (positive X and positive Y )
can be selected; otherwise, the routing is critical and the
packet cannot be forwarded to positive X . Positive X is the
preferred but detour direction and positive Y is the only pre-
ferred direction that can be selected to construct a minimal
path. Faulty-block-information used in minimal routing is
the same under the MCC model.

Necessary and sufficient conditions. Wang [4] gave a nec-
essary and sufficient condition for the existence of a mini-
mal path in 2-D meshes with either faulty blocks or MCCs.
We use faulty blocks to illustrate, assuming that the des-
tination is in the first quadrant. Block i is represented as
[x(i)min : x(i)max; y(i)min : y(i)max]. Block i cov-
ers block j on y if y(i)min > y(j)max and x(i)min �
x(j)max � x(i)max. A sequence of blocks 1; 2; :::; k cover
source s : (0; 0) and destination d : (xd; yd) on y if (a)
block i + 1 covers block i on y, for i = 1; 2; :::; k � 1,
(b) x(1)min � 0 � x(1)max and y(1)min � 0, and (c)
x(k)min � xd � x(k)max and y(k)max � yd. The no-
tions of block i covers block j on y and a sequence of
blocks 1; 2; :::; k cover source s : (0; 0) and destination
d : (xd; yd) on x are defined in a similar way by exchang-
ing the role of x and y. Wang’s necessary and sufficient
condition can be stated as follows: A minimal route from s
to d exists if and only if no sequence of blocks exists that
covers s and d on x and no sequence of blocks exists that
covers s and d on y. However, global information of fault
distribution is needed to apply this necessary and sufficient
condition.
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3 Extended Sufficient Conditions

Assume that source node s:(0; 0) has an extended safety
level (E; S;W;N) and destination node is d:(xd; yd), with
xd; yd � 0, we have the following three extensions.

Extension 1. The sufficient safe condition is enhanced by
taking into consideration of neighbors’ (preferred or spare)
safety status. Sub-minimal routing is a minimal routing with
one detour. A detour occurs when a spare neighbor is se-
lected once during a routing process. Clearly, the length of
a sub-minimal path is the length of the corresponding mini-
mal path plus two. In this extension, the additional informa-
tion stored at each node is constant (information collected
from four neighbors).
Theorem 1a: Minimal routing exists if the source node is
safe or one of the preferred neighbors is safe (with respect
to the destination); otherwise, sub-minimal routing exists if
one of the spare neighbors is safe.

When the source is unsafe, but one of its neighbors (pre-
ferred or spare) is safe, then the routing process consists of
two phases: send the routing packet from the source to the
selected neighbor, and then, apply Wu’s protocol with the
selected neighbor being the new source.

Extension 2. The sufficient condition is extended to cover
cases where either section [0; xd] of the x axis is clear of
faulty blocks or section [0; yd] of the y axis is clear of
faulty blocks, but not both. Suppose the extended safety
level of the source is (E; S;W;N ). Then it collects the
extended safety level of each node that is within E hops
in the East direction. Similarly, S, W, and N hops in the
South, West, and North directions, respectively. Specifi-
cally, suppose the source is (0,0), the extended safety level
of node (+k; 0) (k-hop neighbor in the East direction) is
(�; �; �; N+k), where � is a don’t care (similarly, the ex-
tended safety level of node (0;+k) (k-hop neighbor in the
North direction) is (E+k; �; �; �)), we have the following
extension.
Theorem 1b: (�; �; �; N+k) is the extended safety level of
node (+k; 0) and (E+k ; �; �; �) is the extended safety level
of node (0;+k). Minimal routing exists if (1) the source
node is safe; that is, xd � E and yd � N ; (2) xd � E and
node (+k; 0) with k � E is safe with respect to (xd; yd);
that is, yd � N+k; (3) yd � N and node (0;+k) with
k � N is safe with respect to (xd; yd); that is, xd � E+k.

Again a two-phase routing process is used in extension 2:
Wu’s protocol is applied from (0; 0) to (+k; 0) (or (0;+k))
and, then, from (+k; 0) (or (0;+k)) to (xd; yd). Figure 4
(a) shows an example of extension 2. In this extension, ad-
ditional information stored at each node is xd+ yd = O(n)
in an n� n 2-D mesh.

Extension 3. Extension 2 works when the relevant section
of one axis is clear of any faulty block. Extension 3 tries to
cover cases when both sections intersect with faulty blocks.

x

y
(xd, yd)

N

E
(+k,0)

N+k

(0,0)

(a)

x

y
(xd, yd)

N

E

Ni

Ei

(xi, yi)

(0,0)

(b)

Figure 4. A two-phase routing process in 2-
D meshes: (a) from (0; 0) to (+k; 0) and from
(+k; 0) to (xd; yd). (b) from (0; 0) to (xi; yi) and
from (xi; yi) to (xd; yd).

Theorem 1c: (Ei; Si;Wi; Ni) is the extended safety level
of node (xi; yj), where 0 � xi � xd and 0 � yi � yd.
Minimal routing exists if (a) the source node is safe; that is,
xd � E and yd � N ; or (b) (0; 0) is safe with respect to
(xi; yi) (i.e., xi � E and yi � N ) and (xi; yi) is safe with
respect to (xd; yd) (i.e., xd � xi � Ei and yd � yi � Ni).

A two-phase routing process is again used in extension
3: Wu’s protocol is applied from (0; 0) to (xi; yi) and,
then, from (xi; yi) to (xd; yd) as shown in Figure 4 (b). In
this extension, additional information stored at each node is
xd � yd = O(n2). In the next section, we discuss some vari-
ations of this extension by selectively choosing some pivot
nodes in region [0 : xd, 0 : yd]. Again, all results apply to
the MCC model where extensions 1, 2, and 3 are labeled as
extensions 1a, 2a, and 3a, respectively.

4 Implementation Issues

Faulty-block-information (two opposite corners of a
faulty block) needs to be distributed to boundary lines of
faulty blocks (see lines in Figure 2 (b)) and extended-safety-
level-information (distance to the faulty block along each
direction) needs to be distributed to only nodes between two
parallel boundary lines of each faulty block (see shadowed
regions in Figure 2 (b)). The same result also applies to the
MCC model.

In extension 1, each node exchanges its extended safety
level with its four neighbors. In extension 2, a row (and
column) is called an affected row (and affected column) if
the row (and column) intersects at least one faulty block.
Boundary lines are not affected rows or columns. The num-
ber of boundary lines is always four times the number of
faulty blocks. Note that each affected row (and affected
column) is partitioned into several disjoint regions by faulty
blocks and two edges of the 2-D mesh. Therefore, the ex-
change is within each region. In extensions 3, one or more
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nodes, called pivot nodes, are selected to distribute its ex-
tended safety level information to all nodes in the 2-D mesh
through broadcasting.

Several variations of extension 2 and extension 3 exist.
In extension 2, to reduce the amount of information ex-
change, each region is further partitioned into several seg-
ments. One extended safety level from each segment is se-
lected (typically the one with the highest safety level) to be
passed around. The size of segments is adjustable. Another
variation is to select up to four extended safety levels within
each region (each one corresponds to the highest safety level
along a particular direction within the region). In extension
3, the selection of pivot nodes can be done in a recursive
way. For example, the center node of the 2-D mesh is first
selected and, then, the mesh is partitioned into four sub-
meshes by the pivot node. Each pivot node is selected from
each of the four submeshes. This process continues until
each submesh is sufficiently small. Clearly, the number of
pivot nodes is

Pk

i=1 4
i�1, where k is the level of partition.

Another variation of extension 3 is to select pivot nodes in
such a way that not only they are evenly distributed but also
no two pivot nodes are on the same row or column.
Theorem 2: In an n � n 2-D mesh with k randomly gen-
erated faults. When k is relatively small with respect to
n, the expected number x of affected rows (and affected
columns) meets the following: minxfjk �

Px

i=1
n

n�i+1
jg:

In addition, this expected number remains the same under
the faulty block and MCC models.
Proof: Let us call a case in which a fault falls into a row
(column) that is clean (i.e., with no fault in the row (col-
umn) before the fault) a hit and the row (column) becomes
dirty. The hits can be used to partition k faults into stages.
The ith stage consists of the faults after the (i� 1)th hit un-
til the ith hit. The first stage consists of the first hit, since
we are guaranteed to have a hit when all rows (columns) are
clean. For each fault during the ith stage, there are i�1 rows
that contain faults and n� i+ 1 clean rows. Thus, for each
fault in the ith stage, probability of a hit is (n � i + 1)=n.
Note that fault selection is not random with respect to a row
(column). Because a dirty row (column) has fewer choices
(among unselected columns (row) within a row (column))
than a clean row (column), the probability of a hit (on a
clean row or column) is slightly higher than (n� i+ 1)=n.
Since k is relatively small with respect to n, the differ-
ence is negligible. Let ni denote the number of faults in
the ith stage. Thus, the number of stages x is minxfjk �Px

i=1 nijg: Each random variable ni has a geometric dis-
tribution, and then, E[ni] =

n
n�i+1

: By linearity of expec-
tations E[

Px

i=1 ni] =
Px

i=1E[ni] =
Px

i=1
n

n�i+1
: Since

E[k] = k, we have the expected number of stages E[x]
meet the following condition, minxfjk �

Px

i=1
n

n�i+1
jg:

Based on the definitions of disabled node under the
faulty block and MCC models. A node is labeled disabled if
there are two or more disabled or faulty neighbors in differ-
ent dimensions. That is, a disabled node will not generate a
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Figure 5. (a) The percentage of affected rows
(and columns) under the analytical and simu-
lated models for n = 200. (b) Average number
of disabled nodes in a faulty block.

new hit on row or column.
Figure 5 (a) shows the expected number of affected rows

(and columns) under the analytical and simulated models
for n = 200. The results for both analytical and experimen-
tal are very close, even when the number of faults reaches
200. Again, this is not surprising, when the number of dirty
rows (that cause hits) is 60% of 200 (i.e., 120), each dirty
row on the average has less than 2 hits. That is, when a new
fault is selected, a dirty row has over 198 free column slots
while a clean row has 200 free column slots. The difference
is less than 1%. From Figure 5 (a), we can see that about
20% percent of rows (columns) are affected when the num-
ber of faults reaches 50, 40% percent when the number of
faults reaches 100, and 60% percent when the number of
faults reaches 200. This confirms the effectiveness of lim-
ited global distribution of fault information.

5 Simulation Results

A simulation has been conducted to test the effectiveness
of such a safe condition and its three extensions. We use a
200�200mesh with randomly generated faults. The source
is at the center of the mesh and is the origin of the coordi-
nator. We randomly pick a destination in the first quadrant
(in the 100 � 100 submesh) and show the percentage of
the existence of a minimal/sub-minimal path ensured at the
source. Figure 5(b) shows the average number of disabled
nodes in a faulty block under the regular faulty block model
and the MCC model. Although the MCC model generates
fewer disabled nodes than the faulty block does in terms of
percentage, the actual number of disabled nodes generated
are both very small. Therefore, in the simulations (shown
in Figure 6) the difference between the MCC model and the
faulty block model is insignificant in terms of percentage of
the existence of a minimal/sub-minimal path.

From the results of simulation, we conclude that in a
2-D mesh in which the number of faults is usually low,
the sufficient safe condition and its extensions can ensure a
minimal/sub-minimal path for most cases, especially exten-
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Figure 6. Percentage of a minimal/sub-
minimal path ensured at the source by the
sufficient safe condition and extensions 1
and 1a (first row), extensions 2 and 2a (sec-
ond row), and extensions 3 and 3a (third row).

sion 2 and extension 3, although the sufficient safe condition
and extension 1 can be implemented much easily. The per-
centage of a minimal/sub-minimal path does not go down
as much as the number of faults increases. Extension 2 and
extension 1 each can ensure more minimal paths than the
sufficient safe condition. Extension 3 can ensure more min-
imal paths than extension 2 (and extension 1). As the num-
ber of segments inside one region increases, extension 2 can
ensure more minimal paths. However, the difference is not
as significant as one when we increase the level of partition
in extension 3. Again, we can conclude the similar results
under the MCC model.

Figures 7 (a) and (b) show the percentages of the ex-
istence of a minimal path ensured by strategies generated
from different combinations of extensions. In routing strat-
egy 1, (1 + 2) means that extension 1 is first applied, and
then, extension 2 is applied if extension 1 cannot ensure a
minimal path. Other strategies we defined in a similar way.
Among all these four routing strategies, routing strategy 4
has the maximum percentage of the existence of a mini-
mal path ensured at the source. The result from strategy
3 stays relatively close to the one from strategy 4. In Fig-
ure 7, the difference in percentages between any two strate-
gies indicate the effectiveness of different combinations of
extensions. Again, all strategies can be applied to the MCC

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

0 50 100 150 200

p
er

ce
n
ta

g
e 

o
f 

m
in

im
al

/s
u
b
-m

in
im

al
 p

at
h
 

number of faults

Strategy 1 (1+2)
Strategy 2 (1+3)
Strategy 3 (2+3)

Strategy 4 (1+2+3)
existence of a minimal path

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

0 50 100 150 200

p
er

ce
n
ta

g
e 

o
f 

m
in

im
al

/s
u
b
-m

in
im

al
 p

at
h
 

number of faults

Strategy 1a (1a+2a)
Strategy 2a (1a+3a)
Strategy 3a (2a+3a)

Strategy 4a (1a+2a+3a)
existence of a minimal path

(b)(a)

Figure 7. Percentage of a minimal path en-
sured at the source by combinations of dif-
ferent extensions: (a) Strategies 1, 2, 3 and 4.
(b) Strategies 1a, 2a, 3a and 4a.

model. In order to distinguish two models, strategies 1, 2,
3, and 4 are labeled as strategies 1a, 2a, 3a, and 4a, respec-
tively under the MCC model.

6 Conclusions

In this paper, we have given three extensions to a suf-
ficient condition for the existence of a minimal path in a
2-D mesh with faulty blocks. Extensions have also been ap-
plied to 2-D meshes with the MCC model which is based
on the faulty block model by activating some disabled (but
healthy) nodes. Simulation results have confirmed the ef-
fectiveness of these extensions and their combinations. Re-
sults also show that the percentages of minimal routing un-
der extensions are very close to the optimal case with global
information. Our future work will focus on trade-offs be-
tween cost and effectiveness. Possible extensions to 3-D
meshes and other high-dimensional mesh networks will be
another focus.
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