
UC San Diego
Technical Reports

Title
Teaching Software Engineering in a Compiler Project Course

Permalink
https://escholarship.org/uc/item/4kc9h20g

Author
Griswold, William G

Publication Date
2000-09-12

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4kc9h20g
https://escholarship.org
http://www.cdlib.org/

Teaching Software Engineering in a Compiler Project Course�

William G. Griswold

Department of Computer Science and Engineering, 0114

University of California, San Diego

La Jolla, CA 92093-0114

wgg@cs.ucsd.edu

Abstract

A compiler course with a term-long project is a staple of

many undergraduate computer science curricula and often

a cornerstone a program’s applied-engineering component.

Software engineering expertise can help a student complete

such a course, yet that expertise is often lacking. This prob-

lem can be addressed without detracting from the core class

material by integrating a few simple software engineering

practices into the course. A domain-specific, risk-driven

approach minimizes overhead and keeps the compiler ma-

terial in focus, while treating the project as a “real world”

enterprise reinforces key engineering lessons. The method

might be called “syntax-directed software engineering”, be-

ing driven by a specification centered around a BNF-style

grammar. Engineering lessons are reinforced with general

engineering principles and contextualization of the subject

matter. The approach can be taught without substantial soft-

ware engineering background. The approach of domain-

specific risk-driven software engineering can be applied in

courses such as operating systems by redesigning the prac-

tices around the its domain.

1 Introduction

With a plethora of exciting topics emerging on the computer

science scene—computer security and the internet, to name

two—it is becoming increasingly difficult to ensure that un-

dergraduates obtain adequate exposure to every topic that

their professors hope, at least in the desired order. Moreover,

the software projects that professors would like to assign—

and the students would like to implement—are becoming in-

creasingly complex and would be much easier if the students

had software engineering expertise. Yet it is just as likely as

not that such a project would be assigned before a student

has taken a software engineering course.1

This is the circumstance at UCSD, where software engineer-

ing is a senior elective that often comes too late if at all for

undergraduates who face a demanding two quarter compilers

project course (CSE 131 A-B) in their junior year. Students

�This paper was written while on sabbatical with the AOP group at Xe-

rox PARC.
1The exact reasons for the uneven penetration of software engineering

into the core of undergraduate computer science curricula are a matter of

continuing debate and beyond the scope of this paper. It suffices for this

paper that it is indeed a problem.

in this course find—particularly in the second “B” quarter

of the course—that they are ill-prepared to design a com-

plex software system, rigorously test it, work productively

in teams, and organize their time for a project deadline that

is five weeks away. Although students are well-versed in de-

signing, implementing, and testing small programs, few have

worked on a system that required the skills, teamwork, and

discipline to build a quality software system on a schedule.

Even if they have taken the software engineering course and

have experience in building large systems, the unique proper-

ties of the topic and the short quarter demand a lean software

engineering process that is customized to the domain, which

the students may be ill-prepared to design for themselves.

Consequently, the lessons of compiler design and algorithms

can be lost in a mass of software chaos.

To ameliorate these problems, I integrated basic software en-

gineering techniques and principles into UCSD’s compiler

construction course. The main challenge was that there is

plenty of compiler material to teach as it is, which I overcame

in a number of ways. First, I introduced software engineering

material only when relevant to problems that many students

had encountered in the past. Second, I focused on limited

techniques, not methodologies, counting on the intelligence

of the students to use the principles to inform their broader

activities. Third, the techniques are customized to the do-

main (i.e., compiler construction) and to the scale of the

project. In particular, the approach centers on the project’s

syntax-directed specification. Finally, the engineering and

compilers material is situated in the broader context of the

software industry and society, motivating the subject matter

and rationalizing the organization of the course. If the stu-

dents should never take a software engineering course, stu-

dents may have an incomplete software engineering educa-

tion, but it is useful and hence appreciated. For impression-

able students building their first complex system, apprecia-

tion imbued with experience and a few principles prepares

their minds for further learning on their next system.

The remainder of this paper describes the original design of

CSE 131B (which remains largely intact) and the problems

that students encountered, details how software engineering

was introduced into the course, explains why these partic-

ular choices were made, discusses the impact it has had on

1

the course and the students, and compares my method to a

previous approach. The paper concludes with a brief dis-

cussion about how software engineering might be introduced

into other project courses using a similar approach.

2 Compiler Construction CSE 131B
Compiler construction is taught over two 10-week terms in

the standard “phase order” of the compilation pipeline seen

in so many compilers texts. The first quarter, 131A, covers

front-end issues such as lexical analysis, parsing, and scope-

checking of identifiers. The second quarter, 131B, covers

static semantic checking (primarily type checking) and code

generation. Grading is divided equally between exams and

the compiler construction project.

The project assignment is for a pair of students (a team) to

progressively define and construct a compiler.2 Every few

weeks the students are given a project assignment that adds

a useful capability to their compiler. Although the final com-

piler is not complete until the final week of 131B, at each

major phase a useful program is delivered: a lexical checker,

a syntax checker, a scoping checker, a type checker, and fi-

nally the working compiler. The most demanding parts of

the project come in 131B, in part because the formalisms

for type checking and code generation are not as readily au-

tomatable. (The approach described in this paper is, in a

sense, a method initially inspired by Johnson [6] for apply-

ing these formalisms through software engineering.)

In order to reinforce concepts from programming languages

and computer architecture, a real programming language and

target assembly language are used as the source and target

of the compiler. Due to time constraints, the students con-

struct a non-optimizing compiler for a useful subset of a

“lean and clean” language is used. The language in current

use is Oberon-2, as it embodies modern language concepts

such as object orientation with few complex features. Even

with simplifications, the resulting compiler will usually be

on the order of 5,000 lines of code, virtually ensuring that a

team will have to share the workload in order to finish the

project.

In addition to the Oberon-2 language manual, the project

assignments provide more precise (and formal) specifica-

tions that resolve ambiguities, refine requirements, and clar-

ify which features must be handled. In keeping with standard

compiler construction practice, the specifications are usually

in the form of a language (automaton) description such as

a BNF-style context-free grammar in which each grammar

rule is associated with structured English specification of the

required behavior.

The project is progressive not only in that each phase builds

on the next, but the students must build on their own previous

work. The only exception is when students move on from

131A to 131B, at which point we will provide a compiler on

2Three students are allowed in a group if there are an odd number of

students in the class or someone drops out of the course during the term.

request, albeit with no guarantees about its quality (it tends

to be very good, but certainly not perfect).

Grading of the project at each phase of delivery is designed

to be straightforward: the project is run on a wide-ranging

set of test cases. The grade assigned is roughly the number

of test cases that succeed. Success is determined by cor-

rect behavior in two dimensions: correct behavior and user-

friendliness. The latter is largely determined by the helpful-

ness of error messages; for example, “type error” is a bad

message because it does not report the line number or the

kind of error detected. Partial credit may be assigned if,

for example, an error message is reported at the appropriate

point in the parse but the message is not helpful. No credit

is given for coding style or other “non-functional” properties

of the software. Although this choice was originally dictated

by a lack of resources, as discussed later it turns out that this

policy embodies a number of key engineering lessons if han-

dled properly. The test cases are released immediately so

that students can perform their own “grading” and undertake

any necessary repairs for the next phase or make an informed

decision to drop the course.

3 Critique
The compiler milieu and the basic project organization pro-

vide an excellent basis for learning a number of key engi-

neering lessons. For example, use of the parser generator

yacc teaches the engineering value of tools (or components,

depending the perspective) in software development. Be-

yond tools, knowledge about how to design a compiler is in

a relatively advanced state, with plenty of guidance available

in the form of software architectures (e.g., the pipeline de-

sign), symbol table design, type representation, and so forth.

The project organization also provides valuable experience

with development in a team and phased system development.

Although these lessons and experiences are a vital part of a

computer science education, the students are relatively un-

prepared for them and the course as designed did not ad-

dress this lack: little guidance was given about how to work

in a team or how to define a large system (incrementally or

otherwise). In particular, classroom time was largely dedi-

cated to the algorithms, data structures, and theory germane

to compiler construction, and textbooks adopt a similar fo-

cus. The standard compiler architecture as presented in most

texts provides little guidance (or even misguidance) on these

matters: An inexperienced programmer might suppose that

the four major phases of compilation will be linked in data-

transforming chains mediated through a symbol table. Thus,

a first cut at a division of labor might be to define a system

of five components and to have each member of the team

in charge of one or more phases. Of course, such compo-

nents are too large a unit of modularization (but perhaps a

fine unit of code ownership), and the division of labor is un-

suited to timely phased delivery since only one programmer

would be coding for any particular phase (and not all phases

are equally difficult).

2

As a consequence, students often complained that the project

was unfairly difficult (despite many quarters of simplifica-

tion), yet trivialized the project as “just a lot of coding”. On

the other hand, the class material seemed straightforward to

them, at least in comparison. Likewise, many students felt

the project or its grading was unfair for a number of reasons.

Many a student objected that his or her grade depended on

another student’s performance. Others complained that they

had to continue building on their previous flawed code (or

drop out), since it put them at a disadvantage to students who

had done well. Others begged to be allowed to fix just one

line of code after a phase deadline because their compiler

crashed on a vast number of our test cases because of a “mi-

nor” oversight. Essentially, the students saw little connection

to “compiler construction” and the causes of their troubles,

and hence felt their grade did not reflect their knowledge.

For students who did poorly in the course, these complaints

were often complemented by revealing excuses:

� Getting integers to work was easy, but we couldn’t get

it to work for user-defined types.

� We ran the compiler on all your test cases, so we figured

it was OK.

� Our compiler core dumps and we couldn’t figure out

why.

� I had to wait for my partner to finish before I could start.

� My partner didn’t finish his part.

� The lab’s computers were too overloaded, so we

couldn’t finish in time.

� We worked on it all week but we couldn’t finish in time.

� My partner and I tried to integrate our code the day be-

fore the deadline, but we couldn’t get it to work in time.

� I did the first project so it was my partner’s turn to do

the second project.

� I thought my partner was working on the project, but I

found out last night that my partner dropped the course.

These reasons are largely unrelated to compiler design per se

or the students’ understanding of it. Indeed, each reason falls

into one or more classic causes of software project failure:

� Software Design. Students were incapable of examin-

ing the software requirements, team strengths, project

deadline, and other factors to guide their design efforts.

Such low-level problems later led to failures in commu-

nication, schedule, etc.

� Testing. Students did not have a clear idea of what it

meant for their systems to be reliable, did not know if

their software was reliable, and did not know how to

test their software in a systematic fashion.

� Use of Tools. The students did not know how to use

debuggers, compilers, configuration management tools,

etc., to manage the software and their project.

� Scheduling. Students were failing to allocate enough

time for the project, presumably because of competing

demands on their time, ignorance about compiler con-

struction, and lack of experience in building a system

that took more than a couple of weeks to build.

� Teamwork and Communication. Students were failing

to work effectively with their partners, presumably be-

cause they were unaccustomed to team projects of any

length. Responsibilities outside the class were likely a

contributing factor as well.

These are classic failure modes for commercial projects,

but the underlying causes here are different, with a lack

of background and wide-ranging commitments outside the

class (e.g., other classes, a job) dominating.

To both eliminate the failure modes and address the stu-

dents’ feelings that the course was unfair, I refocused the

course’s theme around compiler construction as an exem-

plar of complex system construction. Since mature domain

knowledge is a vital prerequisite to successful system con-

struction, the traditional compilers material would not be re-

placed, only augmented and enriched, by more general engi-

neering knowledge.

4 Weaving Software Engineering into Compilers
Given that limited course time was available, and operating

on the principle that formal education is only a springboard

for a lifetime of learning, I chose to address these specific

failure with a narrow, domain-specific approach to software

engineering that could be seamlessly integrated into the basic

compilers material.

One of the key concepts in compiler-design is syntax-

directed translation (from one language into another), which

has a rule-based flavor: as the compiler reads each fragment

of the program, it recognizes its syntax (if-statement, addi-

tion expression, etc.) and performs a translation of the frag-

ment according to the prescribed semantics of that syntactic

category. In fact, programming languages are often speci-

fied as a set of syntactic constructs (i.e., a grammar) with

a specification for each construct. The specification for a

piece of syntax typically consists of two parts: a set of addi-

tional integrity constraints (e.g., required types of operands)

and a specified behavior. Such a specification can serve as

the driver for a compilers-specific software engineering ap-

proach to avoiding project failure.

The classic method for failure-avoidance in engineering is

to use a risk-driven process [2, 9]. This approach has the

added advantage that the general idea—iteratively identify

your biggest risks and work to resolve them—can be spe-

cialized to any software project, not just a compiler. With

this approach, students have a better chance of taking their

experience from the compiler course and applying it to other

projects in the future. Moreover, with a streamlined process,

students are less likely to be frustrated by being taught “ir-

3

relevant” software engineering material whose application is

unclear, thus increasing the chance that lifetime learning in

software engineering is encouraged.

Each team’s measure of success is operationalized as their

grade. In terms that the students can readily understand,

then, their primary risks are schedule and correctness: If the

compiler is turned in late or is buggy, the team’s grade will

suffer. All other risks ultimately transmute into schedule or

correctness risks. Meeting both schedule and correctness re-

quirements is best met by incrementalizing the software de-

velopment process: precious time is spent on new features

only if earlier ones (which the new features depend on) are

finished and known to work.

A software process designed around a syntax-directed spec-

ification can be incrementalized to reduce risk in a number

of dimensions: design, development, testing, and delivery

of the product can be staged in terms of the language’s syn-

tax. Moreover, the process can be further staged according

to specification of static qualities (syntactic correctness itself

and the integrity constraints) and dynamic qualities (the exe-

cutable behavior).

This risk-driven approach is introduced into the course in

three ways ways, described in the next three sections: sensi-

tization and contextualization, techniques, and principles.

5 Sensitization and Contextualization
Many students entering CSE 131B lack appreciation for the

problems they are about to encounter—and in ten weeks

it will be too late. Consequently, the course introduction

presents the particular challenges the students will face in

their project, conveyed both as stories about prior projects

and the specific failure modes listed in Section 3.

Many students seem immune to these warnings, perhaps due

to over-confidence or handholding in previous courses. To

lay out the consequences of failure in graphic terms, the stu-

dents are told that: their project will be graded solely on how

well it performs on our rigorous test cases, late projects will

be severely penalized (5 minute grace period, then 1% per

minute late), and all members of the team receive the same

grade. This provides both an unambiguous and realistic con-

text for the application of software engineering.

Sensitization alone has proven inadequate. Many students

feel that hard work should be rewarded or exceptions al-

lowed. Many are used to being graded on programming style

as well as the reliability of their software. Consequently,

the introduction—complemented by digressions during the

course—also discusses the larger context of software in so-

ciety. The students are reminded that a software product’s

success is measured by the benefits it brings to its users (i.e.,

usefulness) and consequently to the company that developed

the software (e.g., profits from sales). An unreliable or late

product will be displacement in the marketplace by other

products.

Of course, engineering is not only about profit, but social

responsibility. I remind the students that software is every-

where, including life-critical systems such as nuclear pow-

erplants (one operates only 30 miles from San Diego), air-

planes, medical equipment, and banking.3 Consequently,

quality software is not an just a classroom topic, but a re-

sponsibility that they will carry with them daily as software

developers.

With this context, I explain that the rules established for the

class are no different than what is expected of them outside

the classroom, and that this is essential to providing a class-

room context suitable for learning software engineering, as

well as the design of a compiler, an instance of a software

system that must be useful to be successful.

6 Techniques
For a 10-week project involving two team members,

lightweight methods are the most appropriate. With sched-

ule being the overriding concern, any effort detracting from

meeting the schedule is to be avoided. For example, although

communication is a risk-factor for the busy students, an em-

phasis on documentation is unwarranted given the small size

of the project. Communication risks are better overcome by

clear separation of responsibilities and low barriers to com-

munication (e.g., e-mail, meeting after class, and intuitive

software interfaces).

Specification. Because of time-constraints, it is not feasi-

ble to teach students how to write specifications, especially

since they are likely to have little experience, unlike with

programming. The focus here is on the first step, learning to

use a specification.

The students are given a syntax-based specification that is

intended to drive the entire software process (See Figure 1).

Although based on the actual grammar, it is more succinct,

ignoring precedence issues and the like since these were re-

solved earlier. The domain-specific, semi-formal document

is novel to the students compared to low-level interface spec-

ifications that they typically see in lower-division courses.

Not being an interface specification, there are a number of

potential ambiguities (a classic issue with specifications) that

the students must appreciate and overcome. Moreover, de-

spite years of refinement by two professors, students still un-

cover errors in it. (This frustrating fact further supports our

decision to shield students from writing the specification).

The students are also given some “non-functional” require-

ments to work out, such as “Error messages should be in-

formative and include an accurate line number,” with only

examples to clarify the requirement.

Design. A modern software engineering course will likely

teach some form of object-oriented design (OOD). I have

found that although OOD results in effective designs, it is too

abstract for most college juniors and seniors. With a design

space that is initially constrained only by the specification,

3Examples with detail are hard to come by, but a couple suffice [7, 5].

4

Expr -> Expr1 AddMulOp Expr2
AddMulOp -> - | + | *

if type of Expr1 and Expr2 is numeric then
type of Expr is smallest numeric type

including the types of both operands
else error

Expr -> Expr1 / Expr2
if type of Expr2 or Expr2 are both numeric then

type of Expr is REAL
else error

Expr -> Expr1 MulOp Expr2
MulOp -> DIV | MOD

if types of Expr1 and Expr2 are INTEGER then
type of Expr is INTEGER

else error

(a)

EXPRESSION COMPATIBILITY

operator 1st operand 2nd operand result type

+ - * numeric numeric smallest numeric

type including both

operands

/ numeric numeric REAL

DIV MOD INTEGER INTEGER INTEGER

(b)

Figure 1: An excerpt from (a) the compiler specification for

the type checking project and (b) the typing rules from the

language specification.

students can become overwhelmed. Although the lectures

and discussion sections spend ample time on design issues,

we cannot speak to every detail. Moreover, our goal is to

teach design, not dictate a design.

To help students make the transition from specifications to

design, the students are encouraged to “code to the specifi-

cation” in a syntax-directed fashion. In particular, the stu-

dents are advised first to write code that reads like the spec-

ification, without much thought for the classes or algorithms

that will be required to make the code runnable. Then they

are to write the class definition(s) and the methods (function

members) used in the specification-like code. For example,

Figure 2 contains code derived from the compiler and lan-

guage specification fragments shown in Figure 1. First the

code fragment at the top of the figure is written, using the

compiler specification’s structure and the language specifica-

tion’s terminology. Then the two methods below are written.

From these two methods, it is apparent that the symbol table

entries need type tests such as isNumeric. Thus the design

of the symbol table entries (and then type objects) are driven

top-down from the specification, rather than considered in

the abstract.4

4Note that this is not a violation of the dictum to specification writers

that the contents of a specification should not intrude on the realm of design

and implementation. I am advising programmers that the design should

mirror the structure of the specification.

...
if (procobj->compatible(Expr1, Expr2))
return procobj->resultType(Expr1, Expr2);

else // error
...

bool ArithOp::compatible(STE *Expr1, STE *Expr2) {
return (Expr1->isNumeric() && Expr2->isNumeric());
}

Type *ArithOp::resultType(STE *Expr1, STE *Expr2) {
return Expr1->type(); // extend for coercions
}

Figure 2: Design example from the class lecture notes that

demonstrates how to design from the specification. The code

fragment at the top is written first, and then the bodies are

written later. Note the use of structure and terminology from

the specification to guide the design. The code bodies are

only enough to implement exact type match, demonstrating

incremental implementation.

This approach has two orthogonal benefits. First, it frees stu-

dents from the blank-page design problem of trying to figure

out what classes to introduce, what their interfaces should

be, and how they should be implemented. A class’s design

is determined bottom-up from the ways that its clients use it.

The design is also, paradoxically, determined top-down from

the specification, leading to the second benefit: coding to the

interface means that the compiler’s code structure and termi-

nology will mirror the specification structure and terminol-

ogy as much as reasonable. Structural congruence provides

traceability between the specification and the implementa-

tion, enabling easy assessment of project status (which fea-

tures are done and which are not) and testing and debugging

(what code is broken when a test does not work). This also

minimizes the number of concepts the students have to keep

track of, and yields a reasonable object-oriented design.

Although this approach is not the latest-and-greatest in soft-

ware design methodologies, it is simple, concrete, and yields

intuitive code. The students are advised that the approach

does not work in every case, but that they should have a good

reason for abandoning the approach and the benefits it offers.

Examples come later in the course that show the need to de-

sign for change, not just intuitiveness.

Implementation. Most students, given a design, are rea-

sonably good at implementing it. However, students have a

tendency to write their entire compiler and then try to com-

pile it. This approach maybe worked for them on smaller

programs, but is a common cause of failure on the compiler

project. Consequently, students are advised that their com-

piler should be “always runnable”. As a consequence, their

systems (or portions thereof) are “always testable”, “always

usable by your team”, and “always deliverable”, both mini-

mizing delays on other efforts and ensuring that completed

features can be graded even if a milestone is missed.

5

The design approach helps incrementalize implementation.

Given reasonable abstractions that match the specification,

simple implementations that quickly implement a subset of

the functionality are possible. For example, the method body

for resultType in Figure 2 works only for extact type

matches, but can be extended later to handle coercion with-

out disturbing the design. Consequently, compilation and

testing can happen earlier in the design process.

Testing. In a typical software engineering course testing

might encompass the varied kinds of testing and test-suite

design, including issues such as adequacy, minimality, and

coverage. Although past experience suggests that this time

would be well-spent, the primary problem is that the students

simply test far too little and haphazardly.

Since any technique would remedy the problem and demon-

strate the value of planned testing, it is most natural to em-

ploy a specification-based “black box” method in the form

of syntax-directed testing. The students are advised to derive

their tests directly from the specification in a syntax-directed

fashion. In particular, for each grammar rule, they should

write a test case for each integrity constraint and behavior

in the rule’s specification, plus important combinations (See

Figure 3). The students are advised that they should also do

stress testing; that is, write big programs, weird programs,

etc., to catch implementation errors. Finally, the students

are reminded that testing finds bugs, it does not prove cor-

rectness, and hence testing requires pessimism about what

testing has actually achieved.

approach provides three benefits. First, all the benefits of

specification-based testing accrue: a concrete user-oriented

perspective on expected behavior and a clear concept of ad-

equate coverage of the test cases (e.g., code-based coverage

does not guarantee that all behaviors have been tested). Sec-

ond, the traceability between the specification, design, and

test cases helps in debugging since erroneous behaviors can

be traced straightforwardly to the code. Finally, traceabil-

ity provides a concrete measure of progress: a grammar rule

doesn’t “work” until it passes its test cases.

Scheduling. Because of the project’s short duration and

focused functionality, the simplist scheduling methods are

adequate. However, the short duration with strict deadlines

dictates scheduling that tolerates feature omission in favor

of meeting schedule. Consequently, the schedule is man-

aged around milestones at which a key subset of function-

ality has been both implemented and tested. If a team falls

behind, they can at least turn in a gradable subset of the sys-

tem. The organization of the specification, design, and test-

ing around the language grammar makes the project’s status

visible, hence easing scheduling based on subsets of gram-

mar rules. This schedule, like the specification, is provided

to the students, but except for the two graded project dead-

lines, it can be customized to their needs.

Consistent with this incremental approach, the simplist, ba-

(* RULE:
* Expr -> Expr1 AddMulOp Expr2
* AddMulOp -> - | + | *
* if type of Expr1 and Expr2 is numeric then
* type of Expr is smallest numeric type
* including the types of both operands
* else error
*
* The goal is to test ‘‘all possible’’
* combinations of the application of this
* rule and the associated check. If all the
* tests pass as expected, you should have
* high confidence in the result. There are 3
* operators appearing here (-, +, *), and 3
* types, INTEGER, REAL, and ‘‘error’’. There
* are also 2 operands (left and right) that
* permits try all pairs of types. One might
* also count ‘‘all’’ kinds of erroneous
* types: BOOLEAN, etc. You might even have
* an ERROR type. Unfortunately, there are
* an infinite number of user defined types,
* so we can’t do that. You might try one or
* two user-defined types, or verify by visual
* inspection of your code that user-defined
* types are handled here the same as BOOLEAN.
* ...
*)
VAR x, y : INTEGER;

r, s : REAL;
b, c : BOOLEAN;

BEGIN (* assigns here for syntax correctness *)

x := x + y; (* expr’n is type INTEGER *)
r := r + s; (* expr’n is type REAL *)

r := x + r; (* expr’n is type REAL *)
r := r + x; (* expr’n is type REAL *)

r := x + b; (* num. expected, got BOOLEAN *)
r := b + x; (* num. expected, got BOOLEAN *)
r := r + b; (* num. expected, got BOOLEAN *)
r := b + r; (* num. expected, got BOOLEAN *)

(* this might report two errors *)
x := b + c (* num. expected, got BOOLEAN *)

END.

Figure 3: Example test case given to students that demon-

strates syntax-directed testing.

sic features are scheduled in the first two milestones, and

more advanced (and often dependent) features are scheduled

in the last three. This not only gives the students something

on which to build in the latter milestones, but also helps the

students build some experience, confidence, and grade points

early on. In fact, the students are told that a higher percent-

age of the grade is assigned to the basic features and ad-

vanced features, making it clear to the students that a subset

of functionality is valuable, in particular basic functionality

is more valuable than the advanced functionality.

Team Management. Because of the small team size, ad

hoc management techniques could almost suffice. However,

students have historically shown bad judgment about divi-

6

sion of responsibilities, frequency of meetings, and the like.

Yet it is counterproductive for the instructor to dictate a man-

agement structure, both because each team has its special

needs and abilities, and because students will be inclined to

blame management problems on the instructor rather than

themselves. For similar reasons, teams are encouraged to

make important decisions by consensus rather than dictate.

The students are advised during sensitization that communi-

cation is a key risk because of the divergent responsibilities

that they face beyond this one class. They are advised to

work together on the project several times a week at a com-

mon location, minimizing communication lag and the prob-

lems that come with it. The students are also told that since

the project is too large to be completed by one person, each

member must contribute equally if the project is to succeed.

Furthermore, because each team member possesses special

skills, the teams full potential can only be realized by deter-

mining responsibilities according to those abilities. Students

are then told of two complementary ways that labor can be

divided effectively.

First, it is suggested that they each take responsibility for a

portion of the grammar rules (i.e., the specification). The

concreteness of this approach makes responsibilities clear:

if that part of the language is not processed properly by the

compiler, then the “owner” of those features is responsible.

This division also has the benefit that each team member can

concretely see the fruits of his or her labor. A downside of

this approach is that responsibility for crucial utilities such

as the symbol table are unclear. However, I have seen too

many projects fail with the excuse “I wrote all the grammar

code, but my partner couldn’t get the symbol table to work.”

Consequently, I recommend that such crucial portions of the

compiler be designed (and implemented) as a team using the

“look over the shoulder” approach [1]. The labor time ap-

parently lost is more than made up by discovering issues and

catching errors early, as well as achieving crucial “buy in” by

the entire team, preventing sore feelings and finger-pointing

later.

Second, labor may be divided by task specialization. A typ-

ical division is that one student designs and implements, the

other writes and performs tests. This is especially effective

for teams that possess a clearly superior designer/coder. Di-

vision of responsibility is likewise clear: the designer/coder

should be able to build the system and perform basic runs,

and the tester ensures that the compiler is ready for delivery

on the current milestone. Moreover, this approach eliminates

clashes on design, and eases code management and builds.

Tools. Many students have not thought about configuration

management, test harnesses, or system instrumentation, so

the class TA prepares a set of online notes regarding the use

of tools for their projects. The students are also advised to

implement their own instrumentation facilities for dumping

the symbol table and tracking key system events. Time is set

aside in the first discussion section to review these tools and

their importance.

7 Principles
Since the students have been given only one example of

the simplist techniques, they are best backed by overarch-

ing principles that can both guide the application of the tech-

niques and inform the solution to problems that fall outside

the scope of the techniques.

People seem to learn best through repetition and experience,

so these principles bear reviewing in the context of thorny

problems that arise in the project. The following time-tested

software engineering principles appear in CSE 131B as over-

arching themes for the course. Of course, students have seen

many of these principles in the small in earlier courses; re-

inforcement at this scale brings these principles to life in the

realm of engineering. Their use in a lecture is demonstrated

through an example at the end of this section.

Failure avoidance by risk reduction: Software projects

succeed by failing less than their competitors. By maintain-

ing a focus on the risk factors to the project and introducing

practices and technology to minimize these risks, the project

is much more likely to succeed [2, 9]. The students are pe-

riodically reminded that their overriding risks are schedule

(strict project deadlines), communication among busy team

members, and technology (e.g., unfamiliarity with assembly

language, network failures).

Divide and Conquer: Hard problems are best solved by

breaking them into intellectually manageable pieces. Risks

can be reduced by isolating them: intellectual complexity

can be reduced by breaking problems into manageable sub-

problems, project duties can be parallelized by cleanly divid-

ing activities, new software problems can be solved by old

solutions if packaged in good designs. Related principles are

the modularity principle, which guides the separation of im-

plementations from their uses, and the incrementality princi-

ple, which advises taking small steps because large ones too

often prove unmanageable.

Conceptual Integrity: Problems or entities that are simi-

lar should employ similar solutions, problems that are differ-

ent should employ different solutions. Or from a more meta-

physical, large-project perspective: a system should appear

to be the product of a single coherent mind [3].

Young engineers are prone to two kinds of mistakes when

encountering a new design problem: devising the “perfect”

special-case solution or reusing an ill-fitting solution. Both

can result in a fragile system that is difficult to understand.

Many special solutions can cost precious time in implement-

ing the new technique when an old one could have been used.

It can result in a system that is a mass of incompatible con-

cepts, requiring extra intellectual effort to grasp an unfamil-

iar part of the system, and causing conflicts when new code

is introduced that must work with more than one of these

solutions. Reusing ill-fitting solutions costs much time in

getting the old solution to work (students all-too-often dis-

7

cover this first-hand by trying to reuse a “dictionary” class

from their data structures class for their symbol table), and

can create the false appearance that an entity is less (or much

more) than it really is (e.g., the dictionary implies stability,

whereas a symbol table is constantly elaborated).

Structural Congruence: A solution should reflect the

structure of the problem it solves. This is a corollary of the

conceptual integrity principle (and is also a tenet of object-

oriented design, which uses the problem domain as a starting

point in design), but is stated separately because of its special

importance to compiler construction. In particular, students

are repeatedly shown how the nested structure of the pro-

gramming language is reflected in a stack-based bottom-up

parser, the symbol table, all the way to the assembly lan-

guage. Without such intellectual control, implementing and

debugging compilers would be virtually impossible. The stu-

dents are also discover towards the end of the course that

structural congruence has its limits; a concise, efficient, or

flexible design may combine or generalize structures in a

way that compromises congruence. Yet it is a valuable start-

ing point in design, because all things being equal, simpler

is better.

Application. Principles are effectively conveyed through

examples. One situation that applies several principles arises

in the handling of inherited attributes (program properties

that are passed from earlier in the parse to later in the parse),

which are not handled automatically by the parser because

it operates in a bottom-up rather than a top-down fashion.

I ask students to suggest solutions to implementing inher-

ited attributes in the context of the exit statement (like C’s

break). Students typically suggest using a global variable

or a counter (to count loop nesting depth). After some dis-

cussion, I guide students to consider a solution that uses a

stack (noted to be a generalization of the counter). The stack

reflects the nesting structure that must be tracked, and is not

only capable of tracking the level of nesting (to check if the

exit appears in a loop at all), but also the goto label that

must be generated in the assembler output in a later project

phase.

I then observe that a generic stack implementation would be

suitable to solving the many inherited attribute problems that

lie ahead, and that in fact their symbol table is one such (gi-

ant) inherited attribute. At this point a review of the lessons

of this exercise is possible: Splitting off and solving the in-

herited attribute problem once and for all (e.g., divide and

conquer) means that it will not have to be solved again, sav-

ing considerable labor. Likewise, failures with inherited at-

tributes have been isolated to a single piece of code. The

structural congruence of this solution is attractive because it

makes the solution easy to understand in terms of the prob-

lem it is solving, and it is more likely to be resilient to change

because it is an accurate model of the domain. The concep-

tual integrity (consistency) achieved by reusing this solution

over and over again is attractive because team members are

struggling less with peculiarities of their teammates’ code.

8 Discussion
Sensitization and contextualization places compiler con-

struction in the engineering context, not only broadening the

apparently narrow lessons of the course but also rationaliz-

ing the course structure. Syntax-directed software engineer-

ing techniques seamlessly integrate engineering practice into

compiler design, maximizing their benefits while at the same

time minimizing the introduction of new concepts. Engi-

neering principles serve to reinforce the specific lessons of

the course in a context that goes well beyond the confines

of compiler construction. Collectively, then, these three ele-

ments serve to reinforce each other as well as the relevance

and richness of the compiler construction material itself.

Although there was little change to the essential class or

project structure, introducing this approach was non-trivial

in two ways. First, it requires a careful customization of soft-

ware engineering practices to fit the domain. Second, this

material must be integrated seamlessly into the class. Cus-

tomization took quite some time, requiring two rewrites of

my notes, although this is in part because I didn’t fully appre-

ciate the problems that students were facing on the project.

Integrating the material led me to write a complete set of co-

herent notes for the students. The classical organization of

most compiler texts almost precludes following one closely,

as they emphasize algorithms and data structures rather than

the design issues that most trouble the students. Although

many examples are borrowed from the text, working out the

software engineering implications requires additional work.

On the other hand, the notes are very popular, as the text is

viewed by most students to be unnecessarily complex. Read-

ings are still assigned from the text, although most students

seems to use the book as a reference only, preferring to read

my notes.

Evaluation

Quantitative assessment of trends in this context is fraught

with difficulty. This approach was introduced gradually over

seven years in response to difficulties as soon as they became

apparent. In that time, the computer science student body

changed significantly. Growing interest in computer science

has dramatically increased class sizes, and many of these stu-

dents are now in computer science because it is a good ca-

reer move rather than an intellectual interest. The majority

of these students now hold demanding programming jobs,

whereas before students were likelier to take out loans or

work on campus. Efforts to stop cheating increased dramati-

cally in recent years, providing another dimension of unpre-

dictability. Together, these have fundamentally changed the

teaching landscape. Year-to-year variability in the course it-

self such as the particular teaching assistants adds another

level of unpredictability.

Anecdotal evidence suggests that some students have been

dramatically affected. Some students will always take to one

topic while disliking another. My focus on the two aspects

8

of the project—compilers and engineering—has widened the

audience that is interested in the course, although students

with extreme biases are prone to complain about the intru-

sion of the material that does not appeal to them. However, it

is difficult to judge the balance of opinion, since the majority

of students speaking to me outside of class are positive about

the engineering material, while written comments in course

evaluations tend to be more balanced by invective. Several

times students have commented that the “compiler wrote it-

self” due to the recommendations about how to approach the

design. Other students have expressed pride over the quality

of their test suites and their (well-placed) confidence about

the quality of their compiler. Except for the most successful

students, there seems to be wide agreement that the project

is still too difficult, despite the fact that the trend has been

to simplify the project over time. I believe that this attitude

in large part can be attributed to the fact that 131B is gener-

ally the first such course that students encounter, represent-

ing both a change in expectations as the students move into

the upper division and a steep learning curve.

Job recruiters, however, have a more uniform perspective:

performance in the course is a clear indicator of a student’s

ability to succeed at their company. They frequently ask

for more courses to introduce engineering-oriented projects.

No other course in our curriculum enjoys such wide respect

among recruiters.

Another way to appreciate the changes to the course is how I

can now handle questions. Before the changes to the course,

a question on design was often answered by the comment

“there are many ways to design a...” followed by a couple

of approaches and a recommended solution. To many stu-

dents this looked like a magical process to which they did

not have access. Now when a student asks a question, I can

fall back on techniques I had taught in a previous lecture,

having the student walk through the prescribed process, with

myself only providing guidance. The consequences are two-

fold. First, the student can solve the problem with only a

little help, giving her the experience and confidence to solve

the next problem by herself. Second, the approach repeats

the course material, minimizing the introduction of (appar-

ently) new concepts and reinforcing learning.

Related Approaches

In the one paper found in the literature on software engi-

neering and compilers, Liu describes the design of a com-

piler course with engineering sensibilities [8]. A progressive

project for a real language is used, and the focus is on the

“lower” levels of the software engineering process: design,

test, etc., due to the time constraints and the fact that a proper

software engineering course tends to focus more on higher-

level issues anyway. Otherwise, Liu’s approach is funda-

mentally different. First, Liu requires use of the waterfall

model of software development, with each phase producing

standardized documents. Second, Liu assigns three students

to a group (allowing two in special circumstances) and gives

them defined (but rotating) roles: design, implement, and

test. Third, project grading is substantially different. Only

30% of the project grade is based on the correct performance

of the compiler, whereas the other 70% is based on the doc-

umentation. Components of the project can be regraded if

corrected and turned in again. Moreover, 30% of the docu-

mentation grade is assigned according to an individual stu-

dent’s performance (presumably this is possible because of

the defined roles).

In the context of the UCSD computer science curriculum,

this approach is untenable for three reasons.

For one, the waterfall model is generally not applicable to

small projects and the overhead in producing the documents

would distract too much from a core function of the class,

learning compilers. Also, I have found that students are all

too willing to forgo learning how to construct a compiler if

they can (a) trick their partner into writing it, or (b) earn

their grade by doing some other kind of work. The focus on

grading documentation rather than the compiler’s function

gives students the leeway to do a poor job of constructing

their compiler.

Two, individual grading of any sort on the project encour-

ages students to not work cooperatively. Defining rotating

roles for the students does ensure they get equal exposure

(and grading) for the different roles, but ties a team’s hands

in choosing the work model that works best for them. If

the project flounders, the students are positioned to blame

the professor’s work assignments and can (fairly) claim that

their compiler grade is suffering (rather than improving) be-

cause of the software engineering material. Also, with stu-

dents juggling numerous responsibilities beyond this class,

two team members is enough of a communications chal-

lenge.

Finally, project regrades are an intriguing idea at increasing

fairness and learning (and many commercial products get

a second chance), but the tendency of students to code to

the released test cases in the regrade phase would require

the graders to write a new set of test cases, an expensive

prospect if the first set was any good. Perhaps employing

three-student groups and limiting the number of recoverable

points on a regrade could mitigate these issues.

Extreme Programming (XP) is an industrial software engi-

neering method for rapid development in small teams [1].

Some of the techniques in XP are applicable to the under-

graduate software project context, such as the use of paired

programming to avoid low-level design and coding mistakes

(it also aids learning), and writing unit test cases along with

the unit. The method also advises that initial coding of a fea-

ture should focus on functionality rather than design, only

refactoring once the feature has been fleshed out (the as-

sumption is that the requirements are underspecified in rapid

development, so the initial coding helps define the feature).

Our recommendation to use the domain-specific specifica-

9

tion as a way of structuring the design is similar, in that little

up-front effort is invested in design; an awkward result leads

to redesign, if necessary.

9 Application to Other Subjects
Generically, this approach can be characterized as domain-

formalism-directed software engineering, complemented

with customized risk-reduction practices gleaned from ex-

perience in building systems in the domain. For example,

in the area of operating systems, Dijkstra characterized the

problem as providing each user with an efficient, tractable

abstraction of a complex computer [4]. In particular, the ab-

straction presented to the user should be a sequential ma-

chine with an arbitrary amount of memory, even though the

underlying machine had limited resources, parallel and inter-

ruptable execution with races, and was shared by many peo-

ple. Dijkstra prioritized the requirements of the operating

system he would like to provide, and then used step-wise re-

finement and layered design to incrementally abstract away

the machine’s most undesirable features first (starting with

interrupts, which destroy our most basic notions of sequen-

tial execution) and replace them with desirable ones.

Three properties of his approach are notable. First, each ma-

jor requirement was achieved in a separate layer; hence, the

solution is structured around the problem and is driven di-

rectly from the system requirements and the theory of oper-

ating systems. Two, to the extent allowed by the interdepen-

dence of features, the most dangerous (risky) properties of

the machine were abstracted away first; this risk-driven pro-

cess increased the probable success of other features because

they did not have to cope with this undesirable machine prop-

erty. Third, the system was incrementally designed, imple-

mented, and tested, and was runnable upon the completion

of the first system layer. Today, of course, a microkernel

design might be favored over a layered design, but the prin-

ciples would be the same: organize components around the

requirements (a paging component would provide an infi-

nite memory abstraction), implement (only) the most critical

features in the microkernel, and incrementally develop the

system from the inside out, starting with the microkernel, so

that the system is always runnable.

10 Conclusion
Teaching a computer science topics course with a signifi-

cant project is complicated by the fact that students require

expertise in both the topic area and software engineering.

Many such courses are taken before a software engineering

course. Without guidance on software engineering practices,

students may fail on the project, hurting their grade and lim-

iting their learning of the topic material.

Introducing software engineering material into such a course

can help, but class time is limited. A domain-specific risk-

driven approach leads to practices that are natural to the

topic and provide more benefits than overhead. I have de-

tailed this approach for a course in compiler construction, a

classic project-driven topics course. For compilers, I em-

ploy a “syntax-directed” approach that involves designing

lightweight software techniques driven organized through

the grammar-based specification of the compiler. Moreover,

compiler construction provides numerous opportunities for

reinforcing engineering lessons such as the importance of

conceptual integrity in design, especially if the course is

placed in an engineering context early in the course.

Producing such a course is costly. (My notes are available

from www.cs.ucsd.edu/users/wgg/CSE131B.) A com-

pilers text that was organized around the data abstractions of

a compiler, rather than the compiler phases, algorithms, and

data structures, would be a significant aid.

As sketched in the previous section, this approach can be

applied to other mature to other mature topics, reinforcing

the lessons of (software) engineering wherever possible in a

curriculum.

Acknowledgments. I thank the numerous TA’s and bright

students who have helped me develop this course, and Brian

Russ who has shared teaching duties on 131B. I especially

thank Darren Atkinson, whose dual expertise in compilers

and engineering proved invaluable. I also thank Kevin Sulli-

van and Michael Ernst for sharing their teaching experiences

with me.

REFERENCES

[1] K. Beck. Extreme Programming Explained: Embrace

Change. Addison-Wesley, Reading, MA, 1999.

[2] B. W. Boehm. A spiral model of software development

and enhancement. Computer, 21(5):61–72, May 1988.

[3] F. P. Brooks. The Mythical Man Month: Essays on

Software Engineering. Addison-Wesley, Reading, MA,

1975.

[4] E. W. Dijkstra. The structure of the “THE”-

multiprogramming system. Communications of the

ACM, 11(5):341–346, May 1968.

[5] W. W. Gibbs. Software’s chronic crisis. Scientific Amer-

ican, 271(3):72–81, September 1994.

[6] S. C. Johnson. A portable compiler: Theory and prac-

tice. In Proceedings of the 5th Symposium on Princi-

ples of Programming Languages, pages 97–104, January

1978.

[7] N. G. Leveson and C. S. Turner. An investigation of

the Therac-25 accidents. IEEE Computer, 26(7):18–41,

1993.

[8] H. Liu. Software engineering practice in an undergrad-

uate compiler course. IEEE Transactions on Education,

36(1):104–107, February 1993.

[9] H. Petroski. Design Paradigms: Case Histories of Er-

ror and Judgment in Engineering. Cambridge University

Press, Cambridge, England, 1994.

10

