
Energy-Efficient Instruction Set Synthesis for
Application-Specific Processors*

Jong-eun Lee†

jelee@poppy.snu.ac.kr
Kiyoung Choi†

kchoi@azalea.snu.ac.kr
Nikil D. Dutt‡

dutt@cecs.uci.edu
† EECS, Seoul National University, Seoul 151-742 KOREA

‡ Center for Embedded Computer Systems, University of California, Irvine, CA 92697

ABSTRACT
Several techniques have been proposed to enhance the energy-effi-
ciency of ASIPs (Application-Specific Instruction set Processors).
While those techniques can reduce the energy consumption with a
minimal change in the instruction set (IS), they fail to exploit the
opportunity of designing the entire IS from the energy-efficiency
perspective. In this paper, we present an energy-efficient IS syn-
thesis technique that can comprehensively reduce the energy-delay
product (EDP) of ASIPs through optimal instruction encoding, con-
sidering both the instruction bitwidth and the dynamic instruction
count. Experimental results with a typical embedded RISC proces-
sor show that our technique can generate application-specific IS’s
that are up to 40% more energy-efficient over the native IS for sev-
eral application benchmarks.

Categories and Subject Descriptors
C.0 [Computer Systems Organization General]: Instruction set
design (e.g., RISC, CISC, VLIW)

General Terms
Design, Algorithms

Keywords
Application-specific instruction set processor (ASIP), customiza-
tion, instruction encoding, low power, energy-delay product

1. INTRODUCTION
It is well known that CISC IS’s (Instruction Sets) are more energy-

efficient than RISC IS’s for the same microarchitecture [1]. How-
ever, it is not well known how we can utilize this observation to

∗This research was conducted while the first two authors were vis-
iting UC Irvine, and supported in part by grants from NSF (CCR-
0203813 and CCR-0205712) and Hitachi Ltd. We also thank mem-
bers of the UCI EXPRESS compiler team for their assistance.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’03,August 25–27, 2003, Seoul, Korea.
Copyright 2003 ACM 1-58113-682-X/03/0008 ...$5.00.

generate more energy-efficient IS’s, especially when we are given
the freedom to modify an IS on an application (or application do-
main) basis. With the recent development in soft IP’s (Intellec-
tual Properties) and configurable processors, IS customization has
become possible and even necessary to make differentiation in to-
day’s competitive markets. Nonetheless, previous work on low-
power ASIPs (Application-Specific Instruction Set Processors) has
not been so ambitious as to fully exploit the flexibility of ASIPs
and redesign the IS from the energy-efficiency perspective.

In this paper, we present an energy-efficient IS synthesis ap-
proach for application-specific processors. We optimize IS’s un-
der given microarchitectural constraints, as the design change in
the datapath may incur significant engineering cost and thus not
be desirable. With a fixed microarchitecture, specialization can be
made in such areas as instruction encoding, the number of instruc-
tions, and the instruction bitwidth, all of which can be considered
as instruction encoding in a broad sense. Thus, our objective is to
find the best instruction encoding (manifested by RISC vs. CISC)
that leads to the maximal energy-efficiency through fewer number
of instructions fetched (reducing the instruction memory energy)
or fewer number of execution cycles (reducing the processor core
energy) or a balance of the two.

One of the critical elements of the proposed energy-efficient IS
synthesis is reducing the instruction fetch energy through multiple
dimensions of the code volume (the number of instructions fetched
multiplied by the instruction bitwidth). While some previous low-
power techniques can also have similar effects of reducing the code
volume, only one dimension has typically been considered.1 Our
technique, on the contrary, addresses the multiple factors of the
code volume and provides a comprehensive optimization frame-
work for energy-efficient IS’s. Also, our scheme generates a single
IS as opposed to dual IS’s (compressed, uncompressed) as the code
compression techniques do; thus, it avoids the problems of dual
IS’s such as requiring an instruction decompressor (or re-map ta-
ble) and, for some techniques, having to take care of the changes in
the branch target addresses. It should be noted, however, that our
IS customization framework assumes minor architectural changes
in the datapath, allowed by the given architectural constraints, such
as inserting additional muxes in front of functional units, as well
as changing the instruction decoder logic. Our experimental re-

1For example, low-power instruction compression schemes [2][3]
try to reduce the code volume by focusing only on the bitwidth of
frequently occurring binary instruction patterns (thus not changing
the number of instructions whether static or dynamic). Likewise,
code size reduction techniques [4] aim to reduce the static code
size, thus may not be effective for reducing the dynamic instruction
count.

330

Figure 1: Instruction set synthesis flow.

sults show that our technique can generate application-specific IS’s
that outperform the native IS of a typical embedded RISC proces-
sor, not only in performance but also in energy and the EDP, up to
about 40% with each metric.

The rest of the paper is organized as follows. In Section 2 we
briefly discuss the previous work for energy-efficient ASIPs and in
Section 3 we highlight the key elements of the encoding-oriented IS
synthesis for ASIP customization. In Section 4 we derive the con-
tribution of each instruction to the overall energy-efficiency based
on an ASIP energy consumption model. We present our experi-
mental results in Section 5 and conclude the paper.

2. PREVIOUS WORK
Previous work on low power techniques for ASIPs has mostly

concentrated on bit pattern assignment of instructions, without
changing the number of instructions in the IS. To reduce the switch-
ing activity and the dynamic energy consumption in IF (Instruction
Fetch) registers of ASIPs, it was proposed to re-encode the opcode
part of instructions so that the most frequent opcode sequences can
have the smallest Hamming distances [5][6]. Or, exploiting the
asymmetric energy consumption of some memory devices, even
whole instructions can be re-encoded [7][8]. Also, for a more
aggressive approach, removing unused or less useful instructions
from the IS has been suggested [9].

While these techniques may fit well where only minimal changes
can be made in the architecture, they are too conservative when a
more aggressive IS redesign is preferred to seize the opportunity
afforded by configurable processors. Contrastingly, we consider
redesigning the IS from the energy-efficiency perspective to bet-
ter exploit the flexibility of configurable processors. In [10], an
IS synthesis technique is proposed considering instruction encod-
ing, which is, however, developed for performance improvement
and does not consider energy-efficiency. Our energy-efficient IS
synthesis is based on this technique, but significantly extends it by
considering various optimization goals and their efficacy.

3. SYNTHESIZING INSTRUCTION SETS
The encoding-oriented IS synthesis framework assumesbasicin-

structions, which are provided by users once for each processor.
A basic instruction is defined to have only one operation and is
used to create new instructions for specific applications. These new
application-specific instructions are calledcomplexinstructions be-
cause they are built by combining multiple basic instructions. Also,
the basic instruction set (basic IS) provides a simple representation
of the processor architecture, together with the resource constraints
provided separately. Complex instructions are generated for each
application or a set of applications representing a domain of appli-
cations.

Figure 1 illustrates the process of generating a complex IS. First
the application and the basic IS are given as input. The application
is compiled using a retargetable compiler targeted for the basic IS.
This preliminary assembly code is used in the rest of the IS syn-
thesis process. The actual synthesis process consists of two phases:
complex instruction generation and instruction selection. In the

(a) (b)

Figure 2: (a) The structural view and (b) the behavioral view
of an example ASIP system.

complex instruction generation phase, a group of complex instruc-
tions are created for every sequence of up toN basic instructions
appearing in the preliminary assembly code, whereN is a design
parameter. Then the most useful complex instructions are selected
in the instruction selection phase.

Now, to select the most profitable ones to include in the final IS,
we need to consider the benefit and the cost of choosing a complex
instruction. If the objective is the performance, the benefit may
be the number of cycles saved by using the complex instruction
instead of the corresponding basic instruction sequence. The cost
factor comes into play to take into account the instruction encod-
ing constraint, i.e., there can be at most 2IW (IW is the instruction
bitwidth) number of distinct bit patterns that can be assigned to the
selected instructions (including the basic instructions). Therefore,
if a complex instructioni usesWi bits to encode all its operands,
2Wi number of bit patterns (called thecode spaceused byi) need to
be reserved for instructioni, which can be regarded as the cost of
selectingi. Then, the instruction selection can be formulated as an
optimization problem determining the set of complex instructions
that maximizes the total benefit within the code space constraint
(i.e., the code space of the selected ones should not exceed the total
code space permitted).

However, this formulation involves two issues. First, the ben-
efit and the cost of a complex instruction depend on what other
complex instructions are already selected. Second, the effect (ben-
efit) of a complex instruction depends on how the compiler will use
the newly-generated complex instructions in the code generation
phase as well as other compilation phases. [10] gives an efficient
heuristic algorithm for the first issue, whereas for the second is-
sue it assumes a certain deterministic procedure for the compiler
to generate the code using the complex instructions, thus making
it easy to estimate their benefit. This encoding-oriented IS synthe-
sis framework provides a versatile IS synthesis environment where
different CISC-like IS’s can be generated for different optimiza-
tion goals, in essence, by altering the definition of the benefit of a
complex instruction.

4. ENERGY OPTIMIZATION

4.1 ASIP Energy Model
Figure 2 illustrates a simple ASIP chip including a processor IP

core and memory blocks. From the behavior perspective, the same
ASIP chip can be viewed, at the cycle level, as a pipeline of IF, ID,
and EX stage operations. The CMOS dynamic energy of the whole
ASIP can then be seen asEIF + EID + EEX, whereEIF , EID , and
EEX are the energy consumed by the operations in IF, ID, and EX
stages, respectively. Also, the energy-delay product (EDP) of the

331

ASIP, for a given clock frequency, can be defined as

EDP= (EIF +EID +EEX) ·Ncyc,

whereNcyc is the number of execution cycles of an application.
The energy consumed in each stage can be modeled, simplifying

interrupts, pipeline flush, etc., as

EIF +EID +EEX =
[Nins · (eIM +eIBus+eIF)]+ [Nins ·eID]+

[
∑opNop ·eop

]
,

whereNins is the dynamic instruction count;eIM , eIBus, eIF , and
eID are the per-access energy consumption in the instruction mem-
ory, instruction bus, instruction fetch unit, and instruction decoder,
respectively; andNop andeop are the number of operations and the
per-operation energy consumption in the EX stage for each opera-
tion (group)op, respectively.

4.2 EDP Change Due to IS Customization
Let’s consider the energy-efficiency (defined by EDP) of the ba-

sic IS (denoted byB) and the synthesized IS (denoted byC), which
is B plus selected complex instructions. For the two IS’s, letNB

cyc

andNC
cyc be the numbers of execution cycles, andNB

ins andNC
ins be

their dynamic instruction counts. Note thatNB
cyc andNB

ins are fixed

for a given application whereasNC
cyc andNC

ins are subject to opti-
mization. From the IS synthesis procedure described in Section 3,
we can assume the following relationships.

NC
cyc = NB

cyc−∑
i

Rcyc
i ·di ·χi

NC
ins = NB

ins−∑
i

Rins
i ·di ·χi ,

whereRcyc
i andRins

i are the expected reductions in the cycle count
and the instruction count (respectively) if a complex instructioni is
used once in place of a basic instruction sequence;di is the dynamic
matching count, by which times the complex instructioni is used
in the application2; and χi is a binary variable with the value 1
indicatingi is selected.

Now, we make the following observations to derive the EDP dif-
ference. First, the EX stage operations such as ALU operations and
memory operations are considered the same in terms of energy con-
sumption for bothB andC, assuming gated clock implementation
to prevent unnecessary computation; hence,EEX is the same for
both IS’s. Second,eIM , eIBus, andeIF are considered the same for
bothB andC. Although the two IS’s will have different binary pat-
terns, resulting in different binary codes and different energy con-
sumption, we assume that the per-access energy consumptions are
the same for the two IS’s.3 Then, assuming that IF energy is much
larger than ID energy increase (i.e.,eIM +eIBus+eIF � eC

ID −eB
ID),

the EDP difference can be approximated as

∆EDP≈∑
i
(a·Rcyc

i +b·Rins
i) ·di ·χi , (1)

where constantsa areb are defined asa = EB
IF + EB

ID + EEX and
b = EB

IF +EB
ID .

2How many times a complex instruction will be used by the com-
piler depends on what the selected IS (C) is as well as the compiler’s
code generation algorithm. This dependency onC is taken care of
by the selection heuristic by adjusting the benefit and cost values
as complex instructions are selected.
3The instruction bitwidth is given as a parameter for the IS synthe-
sis and thus is constant during the IS synthesis.

4.3 Modifying the Selection Algorithm
From the EDP difference of IS’s in (1), we can quantify (approx-

imately) each complex instruction’s contribution to the reduction
of EDP, or benefitBeni , as

Beni = a·Rcyc
i +b·Rins

i . (2)

Note that (2) can also represent the performance improvement and
the energy reduction benefits by changing the constant values:a =
1 andb = 0 for performance improvement, anda = 0 andb= 1 for
energy reduction.

To extend the IS synthesis framework for energy or EDP opti-
mization, the benefit definition and the benefit updating part in [10]
need to be changed according to (2). The newly introduced vari-
ableRins

i , which represents the instruction count reduction by using
a complex instructioni instead of the corresponding basic instruc-
tion sequence, can be easily calculated—the number of basic in-
structions in the sequence minus one.

5. EXPERIMENTS

5.1 Experimental Setup
For our experiments, we used the MIPS microprocessor archi-

tecture [11], from which we defined a basic IS annotated with re-
source and timing information. For deriving complex instruction
sets, we used a number of realistic benchmark applications cov-
ering multimedia (e.g., h.263 decoder, JPEG encoder), control-
intensive (e.g., ADPCM coder/decoder), and cryptography (e.g.,
DES) domains. The benchmark applications were preprocessed us-
ing the EXPRESS retargetable compiler [12] targeting the basic IS
to generate preliminary assembly code, which was used for the rest
of the IS synthesis process.

While the MIPS architecture has 32-bit instructions, the native
IS [11] of the MIPS uses the code space of only about 230, meaning
that the native IS essentially uses only 30 bits, reserving the rest of
the code space for future versions. Since the basic IS for the MIPS
was defined with the code space of about 1.42×108, we used the
code space of 230−1.42×108 for the complex IS synthesis.

After the IS synthesis process, the application was recompiled
using the same retargetable compiler targeted for the synthesized
IS. The execution cycle counts and the instruction fetch counts
were obtained through cycle-accurate simulation (at the basic block
level) and profiling. We assume that the ID energy is the same for
all IS’s, as we compare the synthesized IS’s with the native IS,
which also has many complex instructions.

For the energy consumption estimation, we made the following
assumptions on the architecture. We assumed that the instruction
memory is large enough to fit each application so that there is no
off-chip memory access for instruction fetch. To further simplify,
we assumed that there is no instruction cache; thus, instruction
memory energy consumption only depends on the number of in-
struction fetch. For the energy consumption ratio between IF, ID,
and EX stages, we assumed that the ratio betweenEB

IF + EB
ID and

EEX is 1:1 for all applications.4 Note that this assumption also al-
lows for an easy comparison of the EDP values for different IS’s;
that is,

REDP = [1−0.5(1−R#IF)] ·R#CYC,

whereREDP, R#IF , andR#CYC are the ratios of the EDP, #IF, and
the cycle count values (respectively) of two IS’s.

4We base this ratio on the ARM920T power analysis result [13]
taking into account different activation factors of components.

332

(a) Performance (b) #IF (Instruction Fetch) (c) EDP (Energy-Delay Product)

Figure 3: Performance, #IF, and EDP of the synthesized IS’s, normalized to that of the native IS. The three bars per each application
correspond to the three IS’s synthesized with different optimization goals: Performance, EDP, and Energy (in order). The rightmost
column in (c) is the geometric mean of the four benchmark results on EDP.

5.2 Improvement Through IS Synthesis
Recall that the strategy employed by our IS synthesis framework

improves the native IS in two steps: 1) extract the basic IS from
the native IS; and 2) build complex instructions on top of the basic
IS. Therefore, the synthesized IS’s always generated far better re-
sults compared to the basic IS in all the experiments performed, and
these trivial results are not shown here. More importantly, in most
cases the synthesized IS generated better results even compared to
the native IS, as shown in Figure 3.

Figure 3 shows the results generated by the synthesized IS’s, in
terms of the performance (#cycles), #IF, and the EDP, normalized
to that of the native IS. To see the effects of different optimization
goals, i.e., performance, EDP, and energy (#IF), we synthesized
three IS’s for each benchmark application; thus, the three bars for
each application represents the results of the three different synthe-
sized IS’s. The graphs show that the synthesized IS’s can generate
performance improvements of up to 43% or the IF reduction of up
to 44%, though the improvements vary depending on the applica-
tion as well as the optimization goal used. Also, when translated
into EDP, the synthesized IS’s can reduce the EDP by up to 42%
(compared to the native IS), and 25% on average for all the applica-
tions using the EDP optimization. These results clearly show that
the proposed technique can generate energy-efficient IS’s for many
applications in various domains.

From the figure, it is clear that optimizing for one metric does
not necessarily lead to optimal results for other metrics as well,
which confirms the need to consider the energy-efficiency metric
more explicitly. Also, as expected, the best results for a metric
were obtained by directly optimizing for the metric in most cases.
There were minor exceptions, however: for the ADPCM bench-
mark the greatest energy reduction (the lowest #IF) was achieved
by optimizing for EDP, and for the h.263 benchmark the greatest
EDP reduction was achieved by optimizing for performance. This
phenomenon is most likely due to the suboptimality of the instruc-
tion selection heuristic algorithm.

6. CONCLUSION
We have presented an energy-efficient IS synthesis technique

that is based on an encoding-oriented IS synthesis framework. To
comprehensively reduce the code volume, our technique optimizes
the instruction encoding, considering both the instruction bitwidth
and the dynamic instruction count. To apply the IS synthesis frame-
work for energy-efficiency optimization, we formulated the EDP
change due to IS customization and derived the contribution of
each complex instruction. The experimental results show that our

technique can generate application-specific IS’s that outperform the
native IS of a typical embedded RISC processor, in performance,
energy, and the EDP, up to about 40% with each metric.

Our methodology to improve the IS of a processor from the
energy-efficiency perspective focuses on the flexibility of ASIPs
at the instruction level. In the future, we plan to investigate cus-
tomization techniques at higher-levels (e.g., loops, functions), to
exploit more opportunity available in future complex systems-on-
chips.

7. REFERENCES

[1] J. Bunda et al. Energy-efficient instruction set architecture for
CMOS microprocessors. InProc. Twenty-Eighth Hawaii Int’l Conf.
System Sciences, 1995.

[2] S. Chandar et al. Area and power reduction of embedded dsp
systems using instruction compression and re-configurable
encoding. InProc. ICCAD, 2001.

[3] L. Benini et al. Selective instruction compression for memory energy
reduction in embedded systems. InProc. ISLPED, 1999.

[4] S. Liao, S. Devadas, and K. Keutzer. A text-compression-based
method for code size minimization in embedded systems.ACM
Trans. on Design Automation of Electronic Systems, pages 12–38,
1999.

[5] S. Kim and J. Kim. Opcode encoding for low-power instruction
fetch.IEEE Electronics Letters, 1999.

[6] L. Benini et al. Reducing power consumption of dedicated
processors through instruction set encoding. InProc. Great Lakes
Symposium on VLSI, 1998.

[7] K. Inoue et al. Reducing power consumption of instruction ROMs by
exploiting instruction frequency. InProc. Asia-Pacific Conf. Circuits
and Systems, 2002.

[8] T. Glokler and S. Bitterlich. Power efficient semi-automatic
instruction encoding for application specific instruction set
processors. InProc. Int’l Conf. Acoustics, Speech, and Signal
Processing, pages 1169–1172, 2001.

[9] W. Dougherty et al. Instruction subsetting: Trading power for
programmability. InProc. Workshop on System Level Design, 1998.

[10] J. Lee, K. Choi, and N. Dutt. Efficient instruction encoding for
automatic instruction set design of configurable ASIPs. InProc.
ICCAD, pages 649–654, 2002.

[11] D. Patterson and J. Hennessy.Computer Organization and Design:
The Hardware/Software Interface, 2nd ed.Morgan Kaufmann
Publishers, 1997.

[12] University of California, Irvine.EXPRESS Retargetable Compiler.
Project website http://www.cecs.uci.edu/∼express.

[13] S. Segars. Low power design techniques for microprocessors. In
ISSCC, 2001. (Presentation, also available at http://www.arm.com).

333

	Main Page
	ISLPED'03
	Front Matter
	Table of Contents
	Author Index

