Fine-grained sentiment Feature Extraction Method for Cross-modal Sentiment Analysis
Abstract
References
Index Terms
- Fine-grained sentiment Feature Extraction Method for Cross-modal Sentiment Analysis
Recommendations
Joint sentiment/topic model for sentiment analysis
CIKM '09: Proceedings of the 18th ACM conference on Information and knowledge managementSentiment analysis or opinion mining aims to use automated tools to detect subjective information such as opinions, attitudes, and feelings expressed in text. This paper proposes a novel probabilistic modeling framework based on Latent Dirichlet ...
Topic sentiment change analysis
MLDM'11: Proceedings of the 7th international conference on Machine learning and data mining in pattern recognitionPublic opinions on a topic may change over time. Topic Sentiment change analysis is a new research problem consisting of two main components: (a) mining opinions on a certain topic, and (b) detect significant changes of sentiment of the opinions on the ...
Fine-grained analysis of explicit and implicit sentiment in financial news articles
In the financial domain, news has an impact on the stock markets.Most sentiment analysis methods are coarse-grained and focus on explicit sentiment.Such a method is insufficient to detect topic-specific sentiment in financial news articles.We propose a ...
Comments
Information & Contributors
Information
Published In
Publisher
Association for Computing Machinery
New York, NY, United States
Publication History
Check for updates
Author Tags
Qualifiers
- Research-article
- Research
- Refereed limited
Conference
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 37Total Downloads
- Downloads (Last 12 months)37
- Downloads (Last 6 weeks)6
Other Metrics
Citations
View Options
Login options
Check if you have access through your login credentials or your institution to get full access on this article.
Sign inFull Access
View options
View or Download as a PDF file.
PDFeReader
View online with eReader.
eReaderHTML Format
View this article in HTML Format.
HTML Format