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Figure 1: The Flamingo model at 3 resolution Levels, wire-frame view. (a) Lowest Resolution Level, (b) Medium Resolution Level, and (c)
Highest Resolution Level.

Abstract

In this paper a Web architecture for 3D content delivery is pre-
sented. The architecture is based on a progressive compression rep-
resentation integrated into the X3D framework. The architecture is
designed to enhance the Internet user experience by delivering 3D
content quickly, reliably, and with high quality. The progressive
compressed stream enables handling 3D models containing large
amounts of polygonal and textual data. At the client end the stream
is progressively decoded up to the ”best” level-of-details as defined
by the client computational resources and the user inclination.
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1 Introduction

X3D is the latest evolution in 3D graphics specification. One of
its main driving forces is the need to transmit 3D graphics con-
tent over the Internet quickly, reliably, and with high quality. That
means providing the end user with an immediate response while
enhancing her experience over time. A compact, progressive, and
yet simple format is introduced here to achieve this goal. A com-
pact format reduces the data size for fast transmission, and a simple
file structure allows for fast reading and loading. A progressive
scheme exploits asynchronous transmission for better interaction
and quicker response time.

Asynchronous transmission can be employed in different ways.
Consider, for example, a very large environment that is transmitted
to a client along with a view volume that contains only a small por-
tion of the entire environment. The visible objects can be rendered
and displayed regardless of the transmission of the rest of the data.
If the visible volume contains detailed objects in terms of their ge-
ometry or texture, it is desirable to render the object in low level



of details (LOD) and allow the user to interact with the scene be-
fore the transmission of all LOD’s is completed. The asynchronous
transmission of the LOD representations of 3D objects is the focus
of this paper. Later it is shown how X3D is extended to support this
feature.

The most common representation of 3D geometric models to
date is the polygonal mesh, in particular the triangular mesh - a
collection of triangles that form one or more three-dimensional sur-
faces in space, and together define the object geometry. This repre-
sentation is common due to the traditional ability of graphics hard-
ware to draw triangles efficiently. Representing an object with high
level of visual realism requires an enormous number of triangles.

The main reason holding back the wide spread of 3D content
over the Internet is the large size of 3D models. The initial view is
critical, as Internet users are reluctant to wait for ”heavy” web pages
to download. At the same time, the large size of the models are
burdening the web sites in terms of maintenance and storage space.
The image of true interactive 3D models should appear on the end-
user screen at least as fast as common still images (e.g., JPEG, GIF,
etc.) appear, without compromising with the rendering quality. It is
crucial to minimize the overall size of the 3D-content stream, and
the rendering time of the first view. Our solution is based on the
progressive compression technique introduced in [3]. It combines
three principals (i) mesh compression, (ii) level-of-details, and (iii)
progressive transmission. The above three principals are covered in
details in the following section.

2 Progressive Compression Streaming

The problem of minimizing the storage space for a model - repre-
sented as a triangular mesh - can be addressed in two alternative
approaches. One is lossy compression, that is - there is a loss of in-
formation that enables a high compression rate. The other approach
is lossless, where the exact original model is retained. A lossy
method uses a mesh simplification method to reduce the number of
faces (polygons) that represent the model. The lossless approach is
a mesh compression method that minimizes the space taken to store
a particular polygonal mesh. Some recent mesh compression meth-
ods [12, 11, 9, 4, 6] provide extremely efficient mesh compression
rates. Other mesh compression algorithms provide the progressive-
ness property, in which every prefix of the encoded data is a pro-
gressive approximation of the original shape [1, 3, 8].

To improve rendering performance, it is common to define sev-
eral versions of a 3D model, at various levels of detail. A fully-
detailed mesh of triangles is used when the object is close to the
viewer, and coarser levels of detail are substituted as the object re-
cedes. Each such Level-of-Details (LOD) is an approximation of
the full mesh at a lower resolution, containing a smaller number of
triangles.

To create the LOD’s, a model simplification technique variant is
used. (e.g., [7]) that creates a new representation of a given model
with fewer primitives (e.g., data points or polygons), while retain-
ing some user-defined error tolerance. Instantaneous switching be-
tween LOD’s during the display may lead to perceptible ”popping”
effects. These effects can be alleviated by model simplification.
Model simplification (e.g., [7]) is the technique for creating a lighter
representation of a given model with fewer primitives (e.g., data
points or polygons), while retaining some user-defined error toler-
ance.

When a triangular mesh is transmitted over a communication
line, it is desirable to progressively show better approximations of
the model as data is incrementally received. One approach is to
transmit successive LOD approximations, but this requires addi-
tional transmission time. The adopted technique [3] offers a pro-
gressive transmission scheme [5] with no significant overhead. This
leads to best visual response time, where the user gets the minimum

initial response with a reasonable visual quality. The initial model
is immediately ready for interaction and manipulation by the user,
because it is a true 3D representation, which can be, for example,
rotated for inspection from different angles.

Figure 2 shows a series of frames, which demonstrate the pro-
gressiveness of the model transmission. The first image (Figure
2(a)) is created by the lowest-resolution approximation data, and it
appears on the end-user screen after no more than 5K bytes of data
have arrived over the network (about one second on low-end PCs
with a home-modem connection). The second image (Figure 2(b))
is displayed after the arrival of additional 15K bytes only. The fi-
nal image (Figure 2(c)) is displayed after the arrival of the last 30K
bytes. While the stream of data is arriving and the model is being
progressively reconstructed, the user can interactively change the
viewing parameters.

In comparison to standard image files which are usually included
in web pages, the typical size of the JPEG data of the 480x360
image of Figure 2(c)) would be over 50K bytes for a high-quality
image, and over 10K bytes for a low-quality image. Other image
formats such as GIF are even larger than that, and animated-GIF im-
ages are significantly larger. The same holds for Video data. A pro-
gressive transmission technology has inherently a fine-grain levels-
of-detail support. In addition to the immediate visual response time
and the continuous progressive improvement of the visual quality,
the levels of detail are advantageous as a means for reducing data
transmission as well: it may very likely be that the viewer doesn’t
need all the levels of detail. Rather, the higher levels of detail may
be too complex for rendering on the end-user machine, or maybe
the machine is overloaded with other processes. Another possible
situation is that the position of the 3D model in virtual space on the
end-user display is simply far enough from the viewer so that the
higher LOD’s do not contribute to the final image at all, and there is
no need to download and render them. In such situations the client
can avoid the retrieval of the unnecessary data.

3 Mesh Encoding

A lossless compression method based on a multi-resolution decom-
position [3] has been adopted. The method uses a hierarchical sim-
plification scheme, which generates a multi-resolution model of the
given triangular mesh by applying a simplification technique [10].
On the client side the process is reversed defining a hierarchical pro-
gressive refinement stream. A simple prediction plus a correction is
used for reconstructing vertices to form a finer level. Furthermore,
the connectivity of the triangulation is encoded efficiently and re-
covered incrementally during the progressive reconstruction of the
original mesh. This process is detailed out in the following para-
graph.

The series of vertex insertion operations, which reconstruct a
given mesh, is computed by reversing a mesh decimation proce-
dure [10]. Given a meshMi a simplification algorithm that itera-
tively removes sets of verticesui to yield a simplified versionMi�1

is applied. However, at each iteration the selected setui must be an
independent set[2], that is, there are no two vertices inui connected
by a single edge. Removing a vertex from a triangulation requires
removing all the edges connected to the vertex and retriangulating
the hole with a new set of triangles. Let us define the triangles that
cover a given hole as apatch. Once all the holes are triangulated,
patches are interpolated to predict a set of points, which serves as
a base for the displacement vector to the removed vertices. The
predicted points are quantized, so the displacement vectors can be
represented by a small number of bits, with smaller entropy than the
original vertices. For each patch, one displacement vector is stored.

The key idea is to encode the triangles of a patch with colors,
such that the decoder can detect the patches during the reconstruc-
tion stage based on the triangle colors. Thus, adjacent patches can-
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Figure 2: Three resolution Levels. (a) Lowest Resolution Level. (b) Medium Resolution Level, and (c) Highest Resolution Level,

not be assigned the same color, where two patches are said to be
adjacent if they share an edge. The triangles ofMi are recursively
traversed and each patch is assigned a color that is different from
the colors assigned to its adjacent patches. Since the patches do not
tessellate the entire mesh, a null color is used for the triangles that
are not included in any patch. The rest of the triangles are colored
in only three colors (see Figure 3). Three colors are not always
enough, but in practice such cases are rare, and can be avoided by
excluding the removal of some potential vertices.

This coloring technique requires 2 bits per triangle. Thus, the
cost of encoding a vertex is the cost of coloring the triangles of the
patch created by its removal. Assuming the degree of a vertex is
6, then its removal requires coloring four triangles, that is, 8 bits
per vertex removal. Note that there is some overhead since some
triangles are not included in any patch. We strive to create a max-
imal independent set, to reduce this overhead, when selecting the
vertices to be removed.

During reconstruction, for each recovered patch, its triangles are
removed, and the location of the vertex that was removed when the
patch was created is predicted. By adding the associated displace-
ment vector to the predicted point, the original location of the vertex
is recovered. Then, the vertices of the patch are simply connected
to the inserted vertex.

VRML Representation

VRML extensions that encode such a progressive LOD mesh are
asked for. The VRML form described bellow allows for progressive
transmission and provides a uniform VRML framework. Two new
nodes, namelyProgIndexedTriSetandProgLOD, are introduced.

TheProgIndexedTriSetnode is an augmentation of the standard
IndexedFaceSetnode. It contains all the fields that anIndexedFace-
Setnode contains. Some of these fields provide general informa-
tion regarding the mesh construction (e.g.,ccw, solid, etc.). Others
represent the initial lowest level triangulation, referred as level 0.
Notice that theconvexfield is not included in aProgIndexedTriSet
node, as the constructed faces (polygons) must be triangles.

In addition, aProgIndexedTriSetnode contains a sequence of
level of details. If thelevelsfield is not empty, it consists of level
of detail nodes, where each additional level is represented by a
ProgLODnode.

A ProgLOD is a node formed by constructing new patches from
existing triangles extracted from the previous level and correspond-
ing vertices inserted into the newly formed patches. Each vertex is
associated with a patch into which the vertex is inserted. Each patch
consists of a number of triangles, which are encoded by a series of
triangle indices.

A ProgLOD node contain a triangle index and a coordi-
nate mandatory fields, and a color, a normal, and a texture-

coordinate optional fields. The coordinate, color, normal, an
texture-coordinate fields contain a coordinate, a color, a normal,
and texture-coordinate nodes respectively. These nodes contain cor-
rection values and are used to construct the 3D vertices inserted
into the newly formed patches. The triangle-index field defines the
patches by indexing into the triangles of the previous level. An in-
dex of ”-1” indicates that the current patch has ended and the next
one begins. The last patch may be (but does not have to be) fol-
lowed by a ”-1” index.

The level-0 triangles indexed by the level-1 patches are explic-
itly defined according to their order in thecoordIndexfield of the
ProgIndexedTriSetnode. The triangles of levels higher than 0 in-
dexed by patches of levels higher than 1 are deduced by a canonical
breadth-first traversal of the triangle of the current evolved mesh.

The levelsUrl field contained by theProgIndexedTriSetnode
provides an alternative method to specify the level of details. If
the levelsUrl field is not empty, thecoord, color, normal, texCo-
ord, coordIndex, colorIndex, normalIndex, texCoordIndex, and em
levels fields are ignored. ThelevelsUrl field contains a sequence
of valid URLs. Each URL describes a file (located on a particular
server and accessed through a specified protocol), typically binary,
that represents a level of details starting with level 0.

A simple example using the prototyping mechanism is provided
in Figures 4 and 5. The image in figure 3 is produced by the viewer
when fed with the model represented in Figure 5.

4 Results

As discussed above, the color-encoding technique requires 2 bits
per triangle. The cost of encoding ad-vertex is2(d� 2) bits, since
the patch created by removing ad-degree vertex consists ofd � 2
triangles only. Thus, the removal of a 6-degree vertex requires8
bits, and a 5-degree vertex only6 bits. In [3] it was shown how
these numbers can be further improved by a more elaborate color-
encoding scheme in which the encoding of a vertex requires about
4-bits only. Since the independence set is not optimal, there are
many triangles that are not included in any of the patches. Thus, in
practice the cost is higher than 4 bits per vertex (see Table 1). In any
case the stream of bits that encodes the mesh is further compressed
by an LZ encoder.

Regarding the compression of geometry, the stream of the dis-
placement is encoded using Huffman encoding. We have tested the
results with 12-bit precision per coordinate. Table 2 compares our
results with those of Touma and Gotsman’s technique [12], which
are the best published so far. It should be noted that the exact
compression values depend on the specific implementation of the
Huffman encoder. However, the combination of compression and
progressiveness results with a unique technique.



v10

v11
v12

v9

t0

t1 t2

t3

t4

t5
t6

t7

t8
v0

v1

v2

v3

v4

v5

v6

v7

v8

t0

t1

(a) (b) (c)

Figure 3: The coloring encoding scheme. (a) The original mesh consists of an arbitrary triangulation. The three black circles are the vertices
selected for removal - the independent set. (b) The mesh after the removal of the black vertices and the triangulation of the holes. The new
triangles are colored in three colors; the rest remains white. The black circle is the vertex selected for removal to create a lower level. (c) The
lowest level after the removal of the selected vertex and the triangulation of the hole with two red triangles.

Table 1:The models and the connectivity compression results. The first two columns show the number of vertices and triangles in each model.
The third column shows the number of vertices removed. The fourth column the number of bytes of the connectivity stream, and the last
column shows the number of bits per vertex. The average of the bit/vertex column is 5.98

model vertices triangles removed connectivity bits/vertex
horse 19851 39698 15494 11090 5.72
jaw 12349 24585 9453 6966 5.89
blob 8036 16068 6067 4507 5.94
holes3 5884 11776 4246 3526 6.64
tricerotops 2832 5660 2171 1550 5.71

#VRML V2.0 utf8

PROTO ProgIndexedTriSet[
field SFBool ccw TRUE
field SFBool colorPerVertex TRUE
field SFFloat creaseAngle 0 # [0;1)
field SFBool normalPerVertex TRUE
field SFBool solid TRUE

exposedField SFNodecoord NULL
exposedField SFNodecolor NULL
exposedField SFNodenormal NULL
exposedField SFNodetexCoord NULL
field SFNode coordIndex NULL # [�1;1)
field SFNode colorIndex NULL # [�1;1)
field SFNode normalIndex NULL # [�1;1)
field SFNode texCoordIndex NULL # [�1;1)
exposedField MFNodelevels []

exposedField MFUrl levelsUrl []
]
PROTO ProgLOD[

field MFInt32 triIndex [] # [�1;1)
exposedField SFNodecoord NULL
exposedField SFNodecolor NULL
exposedField SFNodenormal NULL
exposedField SFNodetexCoord NULL

]

Figure 4: The prototype definitions of the progressive LOD mesh
representation in VRML.

ProgIndexedTriSetf
levels [

coord level0f
point[10 70, 20 20, 65 120, 80 20, 90 60,

110 120, 115 90, 120 10, 150 55]
g
coordIndex[4 2 5 -1 0 2 4 -1 4 6 5 -1 4 8 6 -1

3 8 4 -1 3 7 8 -1 1 3 4 -1 1 4 0 -1]
ProgLODf

coord level1f
point[0 0]

g
triIndex[0 1 -1]

g
ProgLODf

coord level2f
point[0 0, 0 0, 0 0]

g
triIndex[0 1 2 -1 3 4 5 -1 6 7 8 -1]

g
]

g

Figure 5: The usage of the progressive LOD mesh representation
in VRML. Three LOD’s comprise the 3d model. Thez coordinates
are omitted



Table 2:Compression results. The same models as in Table 1 with 12 bits per coordinates precision. The second column shows the size of the
stream and the base is the size of the base model compressed. Their sum is presented in the next column. The TG column shows the results of
Touma and Gotsman’s method. The right most column contains the compression ratio between TG and our progressive compression method.
The average ratio is 1.08

model stream base total TG ratio
horse 42001 10445 52446 47108 1.11
jaw 29533 8090 37623 34577 1.08
blob 19928 5757 25685 21396 1.18
hole3 8182 4001 12183 13452 0.90
tricerotops 7252 2026 9278 7871 1.17

The above progressive technique has been integrated into a 3D
content delivery system. The system accepts 3D content in vari-
ous representations, an extended VRML being the most common,
and translates it into an extended X3D representation off-line. In
the final representation critical parts of the data (i.e., meshes and
images) are in binary format. In Figure 6 four examples of 3D
models that were designed and generated with the Form-Z modeler
are shown. The models of the kettle and the ring consist of thou-
sands of polygons and a number of textures, which are used as en-
vironment maps. Based on a wavelet decomposition our streaming
system translates the input textures into a progressive hierarchy of
images which are streamed along the geometry. The model of the
Pokemon (see Figure 6(c)) was generated by scanning a physical
toy using the 3D scanner of NexTecTM.

5 Conclusions

We have presented a VRML/X3D-based representation that sup-
ports progressive and selective transmission of 3D scenes or parts
of them, and achieves compression rates competitive with flat-
compression rates. It includes a textual-format specification, and
a compact, yet linear, binary format, used to represent critical sec-
tions. It is linear in the sense that it does not require any special
streaming capabilities, and allows for quick reading and process-
ing. On the server side, a standard HTTP service application (e.g.,
Apache) is adequate. On the client side, however, a special compo-
nent that process the incoming streams must be present. The client
component has been implemented as a plug-in to existing browsers
and as a stand-alone application. It consists of a few threads that
run in parallel; One thread reads the streams from the servers. Other
threads decode the streams and produce usable data structures that
represent mesh and texture-image hierarchies. Another thread con-
sumes the data that has been produced so far and use it to render the
scene.

As a result of employing asynchronous transmission of compact
streams, the end-user is exposed to an immediate view of an ap-
proximation of the visible 3D models in the scene. While viewing
and interacting with the scene, the rest of the data arrives asyn-
chronously, and progressively refines the models in the scene up
to the optimal level of details. We are currently working on ex-
tending the asynchronous transmission concept, and the file format
that comes along, to support other free-from surface and animation
sequence representations.

In Addition, we are further improving the process quality in var-
ious ways. One direction is to increase the size of the independent
set of vertices to remove, while keeping the visual distortion min-
imal. Another direction is to triangulate the patches such that the
visual shape of the resulting mesh resembles the original shape as
much as possible.
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(a) Charizard (36K, 51K) (b) Ring (15K, 42K)

(c) Gangar (12K, 43K) (d) Kettle (16K, 34K)

Figure 6: Four examples of 3D models; Their polygon count and their size, including the textures, in bytes are in parenthesis, respectively


