skip to main content
10.1145/3580305.3599207acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
abstract

Deep Learning on Graphs: Methods and Applications (DLG-KDD2023)

Published: 04 August 2023 Publication History

Abstract

Deep Learning models are at the core of research in Artificial Intelligence research today. A tide in research for deep learning on graphs or graph neural networks. This wave of research at the intersection of graph theory and deep learning has also influenced other fields of science, including computer vision, natural language processing, program synthesis and analysis, financial security, Drug Discovery and so on. However, there are still many challenges regarding a broad range of the topics in deep learning on graphs, from methodologies to applications, and from foundations to the new frontiers of GNNs. This international workshop on "Deep Learning on Graphs: Method and Applications (DLG-KDD'23)" aims to bring together both academic researchers and industrial practitioners from different backgrounds and perspectives to above challenges.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
KDD '23: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
August 2023
5996 pages
ISBN:9798400701030
DOI:10.1145/3580305
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 04 August 2023

Check for updates

Author Tags

  1. deep learning
  2. graph mining.
  3. graph neural network
  4. graph representation learn- ing

Qualifiers

  • Abstract

Conference

KDD '23
Sponsor:

Acceptance Rates

Overall Acceptance Rate 1,133 of 8,635 submissions, 13%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 253
    Total Downloads
  • Downloads (Last 12 months)158
  • Downloads (Last 6 weeks)9
Reflects downloads up to 06 Nov 2024

Other Metrics

Citations

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media