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ABSTRACT
Neural network-based driving planners have shown great promises
in improving task performance of autonomous driving. However, it
is critical and yet very challenging to ensure the safety of systems
with neural network-based components, especially in dense and
highly interactive traffic environments. In this work, we propose a
safety-driven interactive planning framework for neural network-
based lane changing. To prevent over-conservative planning, we
identify the driving behavior of surrounding vehicles and assess
their aggressiveness, and then adapt the planned trajectory for the
ego vehicle accordingly in an interactive manner. The ego vehi-
cle can proceed to change lanes if a safe evasion trajectory exists
even in the predicted worst case; otherwise, it can stay around the
current lateral position or return back to the original lane. We quan-
titatively demonstrate the effectiveness of our planner design and
its advantage over baseline methods through extensive simulations
with diverse and comprehensive experimental settings, as well as in
real-world scenarios collected by an autonomous vehicle company.
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1 INTRODUCTION
Lane changing in dense traffic is a very challenging task in au-
tonomous driving, especially in scenarioswith complex inter-vehicle
interactions. It is a common safety-efficiency dilemma. Some plan-
ners set large buffer space for safety [6] to handle uncertainties
from surrounding vehicles and the environment, however could
be overly conservative and inefficient. Other planners put more
emphasis on efficiency and task success rate, but risk safety. It
could be even more challenging during the transition period to a
fully-automated transportation system, when human-driven and
autonomous vehicles need to share the transportation network and
interact with each other [15]. Without an accurate estimation of
other vehicles’ intention, the lane changing process could be either
inefficient or unsafe.

Moreover, neural network-basedmachine learning techniques [10,
11, 19, 26] have been increasingly utilized in autonomous driving
for perception, prediction, planning, etc. Compared with traditional
rule-based planners, neural network-based ones have the poten-
tial to significantly improve performance and efficiently handle

Figure 1: Lane changing scenario. The ego vehicle 𝐸, an au-
tonomous vehicle, intends to change lanes and insert itself
downstreamof vehicle 𝐹 , a human-driven or an autonomous
vehicle in the target lane.

complex scenarios [4] such as those in mandatory lane chang-
ing. However, the learning components also increase the difficulty
in ensuring system safety. In the literature, a number of neural
network-based methods [4, 22] measure system performance and
safety via extensive simulations, but do not provide safety assur-
ance. On the other hand, while state-of-the-art safety verification
techniques [7, 9, 23] can theoretically analyze learning-enabled
systems, they are challenging to scale to complex scenarios and
often result in conservative conclusions.

To overcome these challenges, we propose a safety-driven inter-
active planning framework with neural network-based planners in
dense lane changing scenarios. Specifically, we have two neural
network planners for longitudinal and lateral motions, respectively.
The two planners take motion status of surrounding vehicles and
the ego vehicle as input, and output planned accelerations for the
ego vehicle. In order to enhance safety while improve efficiency,
the ego vehicle can make lane changing attempt under the neural
network planners only if it has a safe evasion trajectory even in the
predicted worst case; and if such safe evasion trajectory does not
exist, the planned trajectory from neural networks will be adjusted
according to safety analysis of all involved vehicles. To prevent an
overly conservative planner design, we leverage another neural
network to assess the aggressiveness of the following vehicle in the
target lane and predict whether it is willing to let the ego vehicle
complete the lane change. In the case that the following vehicle is
cautious (intuitively meaning that it is willing to let the ego vehicle
get in front of it), the ego vehicle can complete the lane changing
confidently; otherwise, the following vehicle is aggressive and the
ego vehicle needs to be more conservative.
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Fig. 1 shows the specific scenario we consider. The ego vehicle
𝐸, an autonomous vehicle, intends to change lanes and insert itself
downstream of vehicle 𝐹 , a human-driven or an autonomous vehicle
in the target lane. We assume that the worst case occurs when the
leading vehicle 𝐿 in the target lane decelerates abruptly and at the
same time the following vehicle 𝐹 has the highest acceleration under
its predicted cautious/aggressive mode. A safe evasion trajectory
exists if the ego vehicle can take that trajectory and return to the
original lane without colliding with other vehicles.

Specifically, the contributions of our work include:
• We propose a safety-driven interactive lane changing framework
with neural network-based planners. The framework includes a
safety-driven behavior adjustment module that takes the outputs
from two neural network-based planners and decides whether
to proceed, abort, or hesitate. This is based on analyzing whether
a safe evasion trajectory exists, considering the aggressiveness
of the following vehicle in the target lane.

• Our framework includes a learning-based module for assessing
the aggressiveness of the following vehicle in the target lane
to prevent over-conservative planning, which improves lane
changing success rate and efficiency, especially in dense traffic.

• We demonstrate the advantages of our framework on various
metrics through extensive simulations on synthetic examples
and real-world scenarios, when compared with a traditional
optimization-based planner and an end-to-end neural network
planner. In particular, our framework is safe in all simulations.
Moreover, our framework is guaranteed to be safe if the aggres-
sive assessment is accurate or if we choose to always treat the
following vehicle as aggressive.
The rest of this paper is organized as follows. In Section 2, we

review related works on lane changing, inter-vehicle interaction,
and neural network-based planning. In Section 3, we present our
safety-driven interactive planning framework. Section 4 shows the
experimental results and Section 5 concludes the paper.

2 RELATEDWORK
There is a rich literature for trajectory planning, and specifically,
lane changing, which is reviewed in details in [16, 17, 25]. For in-
stance, [20] proposes a dynamic lane changing planner that updates
its reference trajectory periodically. If necessary, it can plan a trajec-
tory back to the original lane to eliminate collision. However, [20]
assume that the leading and following vehicles in the target lane
will keep their velocities unchanged when the ego vehicle changes
lanes, which may not hold due to the fluctuation of traffic stream
and the interactions between vehicles.

To improve efficiency and lane changing success rate, especially
in dense traffic, prior works [3, 8] have emphasized the importance
of modelling inter-vehicle interactions. [1] assumes that all vehicles
are connected and cooperative, which is not the case during the
transition period. [2] leverages partially observable Markov deci-
sion process to model the level of cooperation of other drivers, and
incorporates this belief into reinforcement learning based planner
for higher merging success rate. In this work, we design a neural
network to predict the acceleration of the following vehicle in the
target lane. By comparing our prediction with its true acceleration,
we can assess the following vehicle’s aggressiveness. In the case

where there is low confidence with the prediction, the ego vehicle
conservatively assumes that the following vehicle is aggressive for
making safe decisions.

Machine learning techniques, particularly those based on neural
networks, have been increasingly applied to the lane changing task.
[24] leverages reinforcement learning and considers the possible
action of aborting lane changing and returning back to the original
lane. [4] proposes a hierarchical reinforcement and imitation learn-
ing (H-REIL) approach that consists of low-level policies learned by
imitation learning under different driving modes and a high-level
policy learned by reinforcement learning for switching between
driving modes. However, these methods do not provide safety assur-
ance, while our method can if our aggressive assessment is accurate
or if we choose to always treat the following vehicle in the target
lane as aggressive.

There are several works that try to provide formal safety guar-
antees for lane changing. For instance, [21] analyzes the distance
between vehicles to ensure safety, however the distance is derived
only based on braking behavior. Moreover, it does not explicitly
analyze the intention of the following vehicle in the target lane.
The work in [5] analyzes the minimum critical distance around
surrounding vehicles by considering both braking and steering be-
havior, and assumes that the worst case occurs when the leading
vehicle in the target lane has a full stop suddenly or the following
vehicle in the target lane remains its acceleration to close the gap.
However, different from our work, [5] neglects the fact that the ego
vehicle can steer and brake at the same time to avoid collision, and
that the worst case for the leading and the following vehicles can
occur at the same time. Moreover, it does not consider inter-vehicle
interactions as our approach.

3 OUR SAFETY-DRIVEN INTERACTIVE
PLANNING FRAMEWORK

Our proposed framework design is shown in Fig. 2. In this frame-
work, we consider neural network-based planners for longitudinal
and lateral motion planning, with more details in Section 3.1. To
improve lane changing success rate in dense traffic, we leverage
another neural network to assess the aggressiveness of the follow-
ing vehicle 𝐹 in the target lane, which is discussed in Section 3.2.
Then, based on the predicted behavior of vehicle 𝐹 (aggressive or
cautious), we conduct safety analysis and compute the critical re-
gion to avoid collision in the predicted worst case. The trajectory
planned under neural networks is adjusted in advance if there is
any possibility of collision during the lane changing process. This
is detailed in Section 3.3.

3.1 Longitudinal and Lateral Planners
The two neural networks for longitudinal and lateral planning
each has seven independent input variables1 and one of the two
output variables, as summarized in Table 1. In order to cover as
many traffic scenarios as possible, we synthesize the dataset by
simulations according to human driving norm [14]. The ego vehicle
initially is at the center of the original lane and has no lateral
speed. Then it changes lanes under an MPC controller [18] with
1There are eight input variables in Table 1. However, among 𝑝𝑥 , 𝑝𝑥,𝑙 and 𝑝𝑥,𝑓 , only
two of them are independent.
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Table 1: Input and output of neural network-based planners.

notation definition
inputs
𝑝𝑥 longitudinal position of the ego vehicle
𝑝𝑦 lateral position of the ego vehicle
𝑣𝑥 longitudinal velocity of the ego vehicle
𝑣𝑦 lateral velocity of the ego vehicle
𝑝𝑥,𝑙 longitudinal position of the leading vehicle 𝐿
𝑣𝑥,𝑙 longitudinal velocity of the leading vehicle 𝐿
𝑝𝑥,𝑓 longitudinal position of the following vehicle 𝐿
𝑣𝑥,𝑓 longitudinal velocity of the following vehicle 𝐿

outputs
𝑎𝑥 longitudinal acceleration of the ego vehicle
𝑎𝑦 lateral acceleration of the ego vehicle

step size 𝛿𝑡 = 0.1 second. The optimization goal is to minimize fuel
consumption and lane changing time while satisfying safety and
comfort constraints.

The dataset collects system states and accelerations of the ego
vehicle at every step, which is composed of about 36 million entries.
The neural network planner is trained to minimize mean squared er-
ror with the Adam optimizer. Note that using more comprehensive
datasets with good performance (either from human driving trajec-
tories or from synthesized trajectories), the neural network-based
planners can be further improved.

3.2 Aggressiveness Assessment and Behavior
Prediction

According to [13], the driving behavior of the following vehicle in
the target lane follows one model when it is cautious and another
model when it is aggressive. This assumption is validated by real-
world human driving data. In this work, we use similar assumptions.
We assume that the following vehicle 𝐹 follows the ego vehicle 𝐸

Figure 2: Design of our safety-driven interactive planning
framework for neural network-based lane changing. Safety-
driven behavior adjustment module will adjust risky mo-
tions based on analyzing whether a safe evasion trajectory
exists, considering the aggressiveness assessment of other
vehicles.

when it is cautious and follows the leading vehicle 𝐿 when it is
aggressive.

For both two cases, we leverage a neural network to predict
the accelerations of the following vehicle. Let 𝑎1 and 𝑎0 denote
the accelerations when it is cautious or aggressive, respectively.
Different from the motion planner, we do not need 𝑝𝑦 and 𝑣𝑦 as
input variables of the neural network.

For this prediction task, we also synthesize the dataset via sim-
ulations. We generate various types of traffic states for the three
vehicles and compute the accelerations of the following vehicle 𝐹
with the Intelligent Driver Model (IDM) [12]. The parameters in
the IDM model are uniformly sampled by following 𝑎𝑥,𝑎 = 4 m/s2,
𝑣𝑚 = ¤ℎ + 𝑣𝑥,𝑓 , 5 m ≤ ℎ𝑠 ≤ 8 m, 1 s ≤ 𝑡𝑔 ≤ 2 s, 𝑎𝑥,𝑑 = 6 m/s2. With
the dataset of one million entries, we train the neural network to
minimize mean squared error with the Adam optimizer.

The following vehicle’s behavior is predicted by comparing its
true acceleration 𝑎∗

𝑥,𝑓
with the predicted 𝑎1 and 𝑎0. When 𝑎∗

𝑥,𝑓
is

closer to 𝑎1, the following vehicle 𝐹 is predicted as cautious and
follows the ego vehicle 𝐸; when 𝑎∗

𝑥,𝑓
is closer to 𝑎0, it is predicted

as aggressive and follows the leading vehicle 𝐿:


|𝑎∗
𝑥,𝑓

− 𝑎1 | < |𝑎∗
𝑥,𝑓

− 𝑎0 | − 𝑎𝑡ℎ → vehicle 𝐹 is cautious

|𝑎∗
𝑥,𝑓

− 𝑎0 | < |𝑎∗
𝑥,𝑓

− 𝑎1 | − 𝑎𝑡ℎ → vehicle 𝐹 is aggressive

−𝑎𝑡ℎ ≤ |𝑎∗
𝑥,𝑓

− 𝑎0 | − |𝑎∗
𝑥,𝑓

− 𝑎1 | ≤ 𝑎𝑡ℎ → uncertain
(1)

Here 𝑎𝑡ℎ is a threshold. Larger 𝑎𝑡ℎ means higher confidence on the
behavior prediction. For those uncertain scenarios, we assume that
the vehicle 𝐹 is aggressive so that the planned trajectory for ego
vehicle is conservative and safe.

Based on the predicted behavior of the following vehicle, we
conduct safety analysis. We assume that (1) if the following vehicle
is cautious and willing to create gap for ego vehicle, it can at least
decelerate with 𝑎𝑥,𝑓 ,𝑑 = 6 m/s2; and (2) if the following vehicle is
aggressive, in the worst case, it can accelerate with 𝑎𝑥,𝑓 ,𝑎 = 4 m/s2
to prevent ego vehicle from cutting in.

3.3 Safety Analysis and Motion Adjustment
We assume that the ego vehicle is safe when it is in the original lane
at the very beginning. At every step during the lane changing, the
ego vehicle has a safe evasion trajectory computed at the last step.
As shown in Fig. 3, it has three options with decreasing preference:
proceed to change lanes, hesitate around the current lateral position,
or abort the lane changing and return back to the original lane. It
analyzes the state after executing selected behavior for one time
step. If it has a safe evasion trajectory following that, it can go
ahead with the selected behavior; otherwise, it has to attempt a
less preferred behavior. In summary, safety of the ego vehicle is
ensured by only selecting the strategy with a following safe evasion
trajectory, assuming that the aggressiveness assessment for the
following vehicle is correct (if not, safety can only be ensured if the
following vehicle is always treated as aggressive).

The behavior of proceeding to change lanes is to directly follow
the longitudinal and lateral accelerations computed using the neural
network planners. For hesitating, the lateral acceleration is adjusted
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Figure 3: At every step in the lane changing process, the ego
vehicle has three strategy choices. The first is proceeding to
change lanes, in which case the short-term proceeding tra-
jectory (green dotted line) and following complete aborting
trajectory (green dash-dotted line) should be verified with
safety guarantee. If the first strategy is not safe, the ego ve-
hicle can hesitate around the current lateral position, and
we need to verify safety for the short-term hesitating tra-
jectory (blue dotted line) and following complete aborting
trajectory (blue dash-dotted line). If both strategies do not
work, the ego vehicle can directly abort lane changing be-
havior and go back to the original lane (red dash-dotted line),
which is already verified to be safe in the last planning step.

to diminish the velocity:

𝑎𝑦 =𝑚𝑖𝑛(𝑚𝑎𝑥 (−𝑣𝑦/𝛿𝑡,−𝑎𝑦,𝑚), 𝑎𝑦,𝑚), (2)

where 𝑎𝑦,𝑚 is the absolute value of the maximal lateral acceleration.
Next we will analyze the safe evasion trajectory. The optimal

lateral motion is to return back to the original lane as soon as
possible. We define time 𝑡 = 0 when the ego vehicle just starts
taking the evasion trajectory. The centers of the original and the
target lane are𝑦 = 0 and𝑦 = 𝑤𝑙 , respectively. The width of a vehicle
is denoted as𝑤𝑣 . The ego vehicle is completely in the original lane
when 𝑝𝑦 ≤ 𝑤𝑙−𝑤𝑣

2 . The fastest lateral motion is that the ego vehicle
has lateral acceleration 𝑎𝑦 = −𝑎𝑦,𝑚 when 𝑡 ∈ [0, 𝑡1] and then
𝑎𝑦 = 𝑎𝑦,𝑚 when 𝑡 ∈ [𝑡1, 𝑡𝑦,𝑓 ], and finally it reaches the position
𝑝𝑦 =

𝑤𝑙−𝑤𝑣

2 with 𝑣𝑦 = 0:
𝑝𝑦,𝑡0 + 𝑣𝑦,𝑡0𝑡1 −

𝑎𝑦,𝑚𝑡21
2 + (𝑣𝑦,𝑡0 − 𝑎𝑦,𝑚𝑡1) (𝑡𝑦,𝑓 − 𝑡1)

+𝑎𝑦,𝑚 (𝑡𝑦,𝑓 −𝑡1)2
2 =

𝑤𝑙−𝑤𝑣

2
𝑣𝑦,𝑡0 − 𝑎𝑦,𝑚𝑡1 + 𝑎𝑦,𝑚 (𝑡𝑦,𝑓 − 𝑡1) = 0

(3)

Here 𝑝𝑦,𝑡0 and 𝑣𝑦,𝑡0 are the lateral position and velocity of the ego
vehicle when 𝑡 = 0.

We assume that the ego vehicle 𝐸, leading vehicle 𝐿 and following
vehicle 𝐹 all have the samemaximal longitudinal acceleration𝑎𝑥,𝑎 =

𝑎𝑥,𝑙,𝑎 = 𝑎𝑥,𝑓 ,𝑎 and braking deceleration 𝑎𝑥,𝑑 = 𝑎𝑥,𝑙,𝑑 = 𝑎𝑥,𝑓 ,𝑑 . Let
𝑝𝑥,𝑡0 and 𝑣𝑥,𝑡0 represent the longitudinal position and velocity of
the ego vehicle when 𝑡 = 0, respectively. For simplicity of notation,
we omit the subscript of 𝑡0, and use 𝑝𝑥,𝑙 , 𝑣𝑥,𝑙 , 𝑝𝑥,𝑓 and 𝑣𝑥,𝑓 to denote
the longitudinal position and velocity of the leading and following
vehicles when 𝑡 = 0, respectively. Next we will temporarily neglect

the following vehicle 𝐹 , and analyze the longitudinal motion when
the leading vehicle 𝐿 decelerates with 𝑎𝑥,𝑙,𝑑 abruptly.

If 𝑣𝑥,𝑙 ≥ 𝑣𝑥,𝑡0 , then
𝑣2
𝑥,𝑙

2𝑎𝑥,𝑙,𝑑 ≥
𝑣2𝑥,𝑡0
2𝑎𝑥,𝑑 , and the ego vehicle can

prevent collisions with the leading vehicle if it decelerates with
𝑎𝑥,𝑑 . If 𝑣𝑥,𝑙 < 𝑣𝑥,𝑡0 , the ego vehicle takes at least 𝑡𝑥,𝑓 =

𝑣𝑥,𝑡0
𝑎𝑥,𝑑

to fully
stop. If 𝑡𝑥,𝑓 ≥ 𝑡𝑦,𝑓 , ego vehicle only needs to keep enough headway
when 𝑡 ∈ [0, 𝑡𝑦,𝑓 ] because it is already not in the target lane when
𝑡 ∈ [𝑡𝑦,𝑓 , 𝑡𝑥,𝑓 ]. We define 𝐶1 to reflect the minimum headway2:

𝐶1 =


𝑝𝑥,𝑡0 − 𝑝𝑥,𝑙 + 𝑣𝑥,𝑡0𝑡𝑦,𝑓 −

𝑎𝑥,𝑑𝑡
2
𝑦,𝑓

2 −
𝑣2
𝑥,𝑙

2𝑎𝑥,𝑙,𝑑 + 𝑝𝑚

if 𝑣𝑥,𝑙
𝑎𝑥,𝑙,𝑑

< 𝑡𝑦,𝑓

𝑝𝑥,𝑡0 − 𝑝𝑥,𝑙 + (𝑣𝑥,𝑡0 − 𝑣𝑥,𝑙 )𝑡𝑦,𝑓 −
(𝑎𝑥,𝑑−𝑎𝑥,𝑙,𝑑 )𝑡2𝑦,𝑓

2 + 𝑝𝑚

otherwise
(4)

Here 𝑝𝑚 is the minimum gap between vehicles to avoid collisions.
We need 𝐶1 < 0 to ensure safety. If 𝑡𝑥,𝑓 < 𝑡𝑦,𝑓 , ego vehicle needs
to keep enough headway when 𝑡 ∈ [0, 𝑡𝑥,𝑓 ]. Similarly, we define
𝐶2 and need 𝐶2 < 0 to ensure safety:

𝐶2 = 𝑝𝑥,𝑡0 − 𝑝𝑥,𝑙 +
𝑣2𝑥,𝑡0
2𝑎𝑥,𝑑

−
𝑣2
𝑥,𝑙

2𝑎𝑥,𝑙,𝑑
+ 𝑝𝑚 (5)

Next we assume that at the same time, the following vehicle 𝐹 ac-
celerates to prevent the ego vehicle from cutting in. In such case, the
ego vehicle can even accelerate and get closer to the leading vehicle,
thus acquiring more time for lateral evasion before the following
vehicle catches up. It is indeed the fastest longitudinal motion to
prevent collision with the following vehicle by first accelerating
with 𝑎𝑥,𝑎 , and then decelerating with 𝑎𝑥,𝑑 .

We assume that the ego vehicle accelerates with 𝑎𝑥 = 𝑎𝑥,𝑎 when
𝑡 ∈ [0, 𝑡2] and then decelerates with 𝑎𝑥 = −𝑎𝑥,𝑑 until it stops
when 𝑡 ∈ [𝑡2, 𝑡𝑦,𝑓 ]. By letting the minimum distance between ego
vehicle and leading vehicle be exactly 𝑝𝑚 to remain safe, 𝑡2 can be
represented as a function of 𝐶1 and 𝐶2.

To prevent collisions with the following vehicle accelerating
with 𝑎𝑥,𝑓 ,𝑎 , we have

𝑝𝑥,𝑡0 + 𝑣𝑥,𝑡0𝑡2 +
𝑎𝑥,𝑎𝑡

2
2

2 + (𝑣𝑥,𝑡0+𝑎𝑥,𝑎𝑡2)
2

2𝑎𝑥,𝑑

−𝑝𝑥,𝑓 − 𝑣𝑥,𝑓 𝑡𝑦,𝑓 −
𝑎𝑥,𝑓 ,𝑎𝑡

2
𝑦,𝑓

2 − 𝑝𝑚 > 0
if 𝑡2 +

𝑣𝑥,𝑡0+𝑎𝑥,𝑎𝑡2
𝑎𝑥,𝑑

< 𝑡𝑦,𝑓

𝑝𝑥,𝑡0 + 𝑣𝑥,𝑡0𝑡2 +
𝑎𝑥,𝑎𝑡

2
2

2 + (𝑣𝑥,𝑡0 + 𝑎𝑥,𝑎𝑡2) (𝑡𝑦,𝑓 − 𝑡2)

−𝑎𝑥,𝑑 (𝑡𝑦,𝑓 −𝑡2)2
2 − 𝑝𝑥,𝑓 − 𝑣𝑥,𝑓 𝑡𝑦,𝑓 −

𝑎𝑥,𝑓 ,𝑎𝑡
2
𝑦,𝑓

2 − 𝑝𝑚 > 0
otherwise

(6)

Similar to Eq. 6, we can derive the inequality constraint for
ensuring system safety when the following vehicle is cautious,
willing to decelerate and create gap for ego vehicle.

In summary, if the constraints can be satisfied, the ego vehicle
is verified to have safe evasion trajectory after taking planned
trajectory; otherwise, it has to adjust the driving behavior to prevent
possible collisions.

2It is indeed a constant minus the minimum headway.
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Table 2: Safety and performance evaluation for our proposed framework. From top to bottom, experimental settings corre-
spond to more challenging lane changing scenarios. Our ‘SafIn NN’ planner results in zero collision rate in all simulations.

experimental
settings

methods lane changing
time

final lateral
position

success rate collision rate

−6 ≤ 𝑎𝑥,𝑙 ≤ 4,
7 ≤ 𝛿𝑝 ≤ 37

MPC 1.90 s 3.44 m 92.61% 7.39%
only NN 1.70 s 3.25 m 89.59% 10.41%
SafIn NN 1.90 s 2.73 m 80.31% 0%

−6 ≤ 𝑎𝑥,𝑙 ≤ 0,
7 ≤ 𝛿𝑝 ≤ 37

MPC 1.90 s 3.46 m 87.46% 12.54%
only NN 1.68 s 3.30 m 82.37% 17.63%
SafIn NN 2.08 s 2.44 m 67.89% 0%

−6 ≤ 𝑎𝑥,𝑙 ≤ 4,
7 ≤ 𝛿𝑝 ≤ 17

MPC 1.90 s 3.44 m 83.06% 16.94%
only NN 1.73 s 3.24 m 84.53% 15.47%
SafIn NN 1.97 s 2.23 m 61.51% 0%

−6 ≤ 𝑎𝑥,𝑙 ≤ 0,
7 ≤ 𝛿𝑝 ≤ 17

MPC 1.90 s 3.46 m 71.82% 28.18%
only NN 1.71 s 3.29 m 74.32% 25.68%
SafIn NN 2.34 s 1.66 m 38.76% 0%

4 EXPERIMENTAL RESULTS
In this section, we first demonstrate the effectiveness of our pro-
posed framework via simulations on synthetic and real-world ex-
amples. We compare our approach (denoted as ‘SafIn NN’) with
a neural network-based planner without safety consideration or
interactive planning (denoted as ‘only NN’) and an MPC-based
planner from [18]. We then further evaluate the performance of
our aggressiveness assessment module for the following vehicle in
the target lane.

4.1 Evaluation with Synthetic Examples
We first evaluate the performance of our proposed framework
through extensive simulations on synthetic examples, and the re-
sults are shown in Table 2. We have four classes with different
experimental settings, which indicate the ranges that 𝑎𝑥,𝑙 and 𝛿𝑝
will uniformly sample from. 𝛿𝑝 is the initial longitudinal distance
between leading vehicle and ego vehicle. Thus −6 ≤ 𝑎𝑥,𝑙 ≤ 4 and
7 ≤ 𝛿𝑝 ≤ 37 correspond to easier lane changing scenarios, while
−6 ≤ 𝑎𝑥,𝑙 ≤ 0 and 7 ≤ 𝛿𝑝 ≤ 17 correspond to more congested and
dangerous scenarios. For each class, we conduct 200,000 simula-
tions with randomly generated relative positions, velocities and
IDM parameters. The following vehicle has 50% probability of being
aggressive, and another 50% probability of being cautious.

For every round simulation with a horizon of 10 seconds, the
ego vehicle attempts to change lanes until it collides with other
vehicles. It is successful if the ego vehicle finally crosses the two
lanes within the simulation horizon without any collision. For all
successful lane changing simulations, we compute the average time
that it takes to cross the lanes. For all safe simulations, we compute
the average of final lateral positions. The lateral position 𝑦 = 3.5
meters represents the center of target lane, and 𝑦 = 1.75 meters is
the border of two lanes.

Table 2 shows that: (1) Our approach ‘SafIn NN’ results in zero
collision rate in all simulations regardless whether the fol-
lowing vehicle is aggressive or not, while ‘MPC’ and ‘only NN’
both lead to significant collision rate, especially in more challeng-
ing scenarios. (2) Under ‘MPC’ and ‘only NN’, the ego vehicle has

a higher lane changing success rate, less lane changing time and
larger final lateral position. In easier scenarios, these advantages are
relatively small. When it becomes more congested and challenging,
risky behaviors are restricted under our ‘SafIn NN’ planner while
lead to higher collision rate for ’MPC’ and ’only NN’.

We further demonstrate the strength of our ‘SafIn NN’ planner
with a concrete example. The initial longitudinal velocities of all
three vehicles are set to 30 meters per second. The distance between
leading and following vehicle is 20meters. Thenwe let the following
vehicle start accelerating with 𝑎𝑥,𝑓 = 4 meters per second squared
until 𝑝𝑥,𝑙 − 𝑝𝑥𝑓

≤ 17 meters at 𝑡 = 2 seconds. Then it adjusts
velocity and attempts to maintain the distance to the leading vehicle.
Fig. 4 presents the relative position changes of vehicles when the
ego vehicle is controlled by ‘only NN’ planner. The ego vehicle
completes lane changing at 𝑡 = 3 seconds, but collides with the
following vehicle at 𝑡 = 5 seconds. Fig. 5 shows the lateral position
and longitudinal velocity of the ego vehicle under ‘only NN’ and
‘SafIn NN’ planners, respectively. Our ‘SafIn NN’ planner prevents
the collision proactively. The ego vehicle aborts changing lanes at
around 𝑡 = 3 seconds, and then hesitates around 𝑦 = 1 meters and
looks for the next chance to change lanes.
4.2 Evaluation with Real-world Challenging

Dataset
We further evaluate our approach in challenging scenarios with
real-world dataset collected by Pony.ai, an autonomous vehicle
company. The dataset provides road geometry and motion informa-
tion of surrounding traffic participants in congested scenarios with
industry-level accuracy. Under our designed planner, the ego vehicle
is controlled to change lanes. In all tested 48 real-world chal-
lenging scenarios, the ego vehicle can always remain safe
under our planner during the lane change process, despite that
our planner is never trained or optimized with the dataset. Under
‘only NN’ planner, there are 12 scenarios in which the ego vehicle
collides with other vehicles.

Fig. 6 shows a concrete example of the challenging scenario that
the gap between the leading vehicle and the following vehicle is
decreasing initially. The ego vehicle under our designed planner
attempts to change lane at the beginning and then hesitates around
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Figure 4: Illustrating Example. The x and y axes show the longitudinal and lateral positions of vehicles. Four subplots show
the positions at different times. Red rectangle represents the ego vehicle, and black rectangles are surrounding vehicles. It
corresponds to the scenario that initial velocity is 30m/s for all vehicles, and the distance between the leading vehicle and the
following vehicle is 20 m. The following vehicle accelerates at 𝑡 = 2 seconds to prevent the ego vehicle from cutting in. The
ego vehicle is controlled by the ‘only NN’ planner.

Figure 5: Lateral position and longitudinal velocity of the
ego vehicle in the same scenario as in Fig. 4.

𝑝𝑦 = 0.8 meters from 𝑡 = 1.1 seconds, and finally continues chang-
ing lane from 𝑡 = 4.5 seconds. While under the ‘only NN’ planner,
the ego vehicle will collide with the following vehicle at 𝑡 = 1.6
seconds in this challenging scenario.

4.3 Evaluation of Aggressiveness Assessment
We conduct experiments to evaluate the performance of our aggres-
sive assessment module, and Table 3 shows the results. We classify
all simulation entries in the dataset into three classes based on
the difference of accelerations under different behaviors, 𝛿𝑎∗

𝑥,𝑓
=

|𝑎∗
𝑥,𝑓 ,1−𝑎

∗
𝑥,𝑓 ,2 |. It is classified as easy, medium or hard if 𝛿𝑎∗

𝑥,𝑓
> 0.5,

0.25 < 𝛿𝑎∗
𝑥,𝑓

≤ 0.5, or 𝛿𝑎∗
𝑥,𝑓

≤ 0.25, respectively. We conduct sensi-
tivity analysis over the threshold 𝑎𝑡ℎ . It shows that with larger 𝑎𝑡ℎ ,
the uncertain rate is higher and the error rate is lower for all three

Figure 6: Longitudinal and lateral position of the ego vehicle,
leading vehicle and following vehicle. It shows an example
of challenging scenario in dataset collected by Pony.ai and
the ego vehicle is controlled by the ‘SafIn NN’ planner.

Table 3: Performance of aggressiveness assessment.

𝑎𝑡ℎ = 0 𝑎𝑡ℎ = 0.15 𝑎𝑡ℎ = 0.25 𝑎𝑡ℎ = 0.5 𝑎𝑡ℎ = 1
easy

uncertain rate 0% 2.28% 4.05% 9.16% 19.3%
error rate 4.61% 3.6% 3.05% 2.01% 0.91%
medium

uncertain rate 0% 18.38% 31.33% 56.32% 79.65%
error rate 36.73% 28.82% 24.53% 15.87% 7.16%

hard
uncertain rate 0% 65.26% 74.16% 85.57% 94.39%
error rate 49.76% 17.18% 12.76% 7.1% 2.74%
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different difficulty levels. It meets our expectation because a larger
𝑎𝑡ℎ results in a more robust and conservative predictor, which is
prone to be uncertain when it is less confident. It also presents that
for easy cases, the performance can be considerably greater because
a larger 𝛿𝑎∗

𝑥,𝑓
means that it is more distinguishable.

For simulations conducted in Section 4.1, we use 𝑎𝑡ℎ = 0.5.
Although it has a positive error rate, our overall approach is quite
robust and does not result in collisions in all experiments. We
think that there are two reasons: (1) aggressiveness assessment is
conducted every 0.1 seconds along with other modules, and thus
occasional mis-prediction is highly likely to be corrected later; and
(2) it is more challenging to make correct assessment when the
following vehicle is far away from the ego vehicle. However, in
those cases, incorrect assessment is less critical because of the large
gap between vehicles.

4.4 Discussion on MPC and Neural
Network-based Planners

In this work, the neural network planners are learned from the
synthesized data of the system under MPC, and thus ‘only NN’ has
similar performance as MPC – albeit in more challenging scenar-
ios, ‘only NN’ shows slight advantages in both success rate and
collision rate. Moreover, MPC with the safety-driven behavior ad-
justment module also provide similar performance as our ‘SafIn NN’
planner. However, note that our safety-driven interactive planning
framework can be incorporated with any state-of-the-art neural
network-based planners to improve safety. We believe that with
more high-quality training data, ‘SafIn NN’ can also significantly
improve its performance in success rate and may perform better
than MPC-based planners in all metrics, especially when system
dynamics and interactions are hard to model (in this work the MPC
is assumed to have perfect system model).

5 CONCLUSION
In this work, we present a novel safety-driven interactive planning
framework for neural network-based lane changing. The framework
includes a safety-driven behavior adjustment module for safety as-
surance and an aggressiveness assessment module for avoiding
over-conservative planning. Extensive experiments on synthetic
examples and real-world challenging scenarios demonstrate the
effectiveness of our approach in improving system safety. In future
work, we will continue improving the performance (success rate)
of our approach while ensuring safety. We plan to start with im-
proving the neural network-based planners by conducting training
on higher quality data and with more advanced methods.
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