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ABSTRACT
Large repositories of products, patents and scientific papers offer an
opportunity for building systems that scour millions of ideas and
help users discover inspirations. However, idea descriptions are typi-
cally in the form of unstructured text, lacking key structure that is
required for supporting creative innovation interactions. Prior work
has explored idea representations that were either limited in expres-
sivity, required significant manual effort from users, or dependent on
curated knowledge bases with poor coverage. We explore a novel rep-
resentation that automatically breaks up products into fine-grained
functional aspects capturing the purposes and mechanisms of ideas,
and use it to support important creative innovation interactions: func-
tional search for ideas, and exploration of the design space around a
focal problem by viewing related problem perspectives pooled from
across many products. In user studies, our approach boosts the qual-
ity of creative search and inspirations, substantially outperforming
strong baselines by 50-60%.

1 INTRODUCTION
Human creativity often relies on detecting structural matches across
distant ideas and adapting them by transferring mechanisms from
one domain to another [16, 17, 37, 38]. For example, microwave
ovens were discovered by repurposing radar technology developed
during World War II. Teflon, today chiefly used in non-stick cook-
ware, was first used in armament development. Recognizing the
potential of this innovation process, major organizations such as
NASA and Procter & Gamble actively engage in searching for op-
portunities to adapt existing technologies for new markets [27].

Online repositories of millions of products, scientific papers, and
patents present an opportunity to augment and scale this core process
of innovation. The large scale and diversity of these repositories is
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important, because inspiration can be found in unexpected places
– for example, a car mechanic recently invented a simple device to
ease childbirths by adapting a trick for extracting a cork stuck in a
wine bottle, which he discovered in a YouTube video [1].

However, the predominant way human problem-solvers currently
interact with these repositories — via standard search engines —
does not tap into their potential for augmenting and scaling human
ingenuity. Core to this limitation is the representation of ideas in the
form of unstructured textual descriptions. This representation hinders
creative innovation interactions that require traversing multiple levels
of granularity and abstraction around a focal problem, to “break
out” of fixation on the details of a specific problem by exploring
the design space and viewing novel perspectives on problems and
solutions [15, 23, 60, 65].

Toward addressing this challenge, our vision in this paper is to
develop a novel representation of ideas that can support exploration
and abstraction of fine-grained functional aspects in large-scale
idea repositories – aspects such as the purposes and mechanisms
of products. More specifically, our goal is to obtain a representation
having two key capabilities: (I) The representation would be able to
automatically disentangle raw descriptions into fine-grained func-
tional “units” that support search and discovery of products that
match on certain functions but not others. (II) This representation
should also allow navigating the landscape of ideas at different
resolutions — enabling users to “zoom” in and out at desired levels
of abstraction of a given problem and connect to inspirations in
seemingly distant areas.

As an example, consider an inventor looking for a way to wash
clothes without water (e.g., in space, or where water is scarce). Fig-
ure 1 illustrates our vision. Breaking down product descriptions into
fine-grained functions (capability I above) could allow an automated
system to find ideas that match on certain purpose aspects (washing
clothes) but not certain mechanism aspects (usage of water). This
could lead to solutions like cleaning mechanisms based on dry ice
or chemical coating.

Zooming out and abstracting the problem to a more general fram-
ing (capability II) might lead to broader ideas for the problem of
cleaning such as techniques for removing dirt or odor – each result-
ing in novel problem perspectives and inspirations. In Figure 1, each
node represents a cluster of documents with a similar purpose and
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the user can explore neighboring clusters to find inspirations (e.g.,
dry shampoo). This can also expand the innovator’s conception of
the problem space itself, such as the assumption that clothes should
be cleaned and reworn (vs. biodegradable).

In this paper, we develop a scalable computational model of
ideas that brings us closer to this vision. We train a neural network
to extract spans of text describing purposes and mechanisms in
product texts, and use them to build a span embedding representation
that allows aspect-based matching between ideas. We then use this
representation of individual ideas to automatically mine connections
between problems and solutions across entire repositories and build
a “functional network” that resembles functional ontologies used
in engineering and design ideation [39, 51], which are typically
hand-crafted and limited in scale.

Our approach could facilitate many applications in creative inno-
vation due to its ability to decompose idea texts into fine-grained
functional aspects, and to surface related problem perspectives at
multiple levels of abstraction — two fundamental drivers of creativ-
ity support. In this paper we instantiate the approach in two prototype
systems, probing its value regarding each of these capabilities:

• Functional aspect-based search for alternative uses. One
important use of our novel representation is to enhance the
expressivity of search engines over idea repositories. This
way, our representation could support expressive search for
alternative, atypical uses of products to identify potentially
high-value adaptation opportunities.

• Exploring alternative levels of problem perspectives. Re-
cent work [42] showed that problem-solvers are often inter-
ested in exploring different reformulations of the problem
when searching for inspiration. Our fine-grained span repre-
sentations facilitate mining of recurring functional relations,
such as purposes that are often mentioned together or mecha-
nisms associated with purposes. This level of detail enables
us to map the landscape of ideas with a network of purposes
and mechanisms, allowing us to automatically traverse neigh-
boring problems and solutions around a focal problem and
surface novel inspirations to users.

Previous work highlighted the importance of functional represen-
tations for supporting ideation [12, 42, 52, 60, 65, 100], but these
methods require significant manual effort from the user, rely on
resources with limited coverage, or have limited expressivity (we
discuss this work in more detail in §2). We seek to advance the
state of the art by developing a novel representation that is both ex-
pressive and scalable, and exploring the applications it unlocks. We
believe our representation may serve as a useful building block for
novel creativity support tools that can help users find and recombine
the inspirations latent in unstructured idea repositories at a scale
previously impossible.

In summary, in this work we contribute:
• A novel computational representation of ideas with fine-

grained functional aspects for purposes and mechanisms.
• Empirical demonstrations of the flexibility and utility of the

representation for computational support of core creative
tasks: (1) searching for alternative, atypical product uses
for potential adaptation opportunities; and (2) creating a func-
tional concept graph that enables innovators to explore the

design space around a focal problem. Through two empirical
user studies we demonstrate that our representation signifi-
cantly outperforms both previous work and state-of-the art
embedding baselines on these tasks. We achieve Mean Aver-
age Precision (MAP) of 87% in the alternative product uses
search, and 62% of our inspirations for design space explo-
ration are found to be useful and novel – a relative boost of
50-60% over the best-performing baselines.

2 RELATED WORK: IDEATION SYSTEMS
AND COGNITIVE MECHANISMS

The contributions in this paper relate broadly to previous work on
systems that use structured representations for supporting ideation,
and studies that seek to understand the cognitive process of creativity
and its implications. We provide a brief discussion of these two
themes.

Cognitive Theories of Creative Thinking with Prior Ideas. A
core aspect of creative thinking that distinguishes it from regular
problem solving is the need for divergent thinking [21, 85, 87] - to
construct and explore diverse ideas that are quite different from the
obvious path of ideation. This process of divergence is shaped by
prior knowledge [97] — such as past ideas, external stimulation,
and examples — in ways that sometimes hinders creativity through
mechanisms like fixation [54], and sometimes leads to creative break-
throughs [92].

Our design goals for this research are guided by past research
on cognitive mechanisms that enable helpful interactions with past
ideas. For example, research on insight problem-solving has uncov-
ered the role of re-representation of past ideas by decomposing them
into conceptual chunks and then recombining and/or repurposing
them into new solutions [61, 73]. Similar patterns in terms of core
helpful interactions with prior ideas have been observed in in situ
studies of expert designers’ dissection of past ideas into component
aspects and features for repurposing and recombination into new
ideas [26, 48, 49]. Another core process is analogical abstraction,
where innovators think about and retrieve past ideas not in terms of
their surface features, but in terms of deeper structural features or
schemata, such as their underlying purposes (goals) and mechanisms
[40, 41]. These abstracted “schemas" can then facilitate analogical
transfer of ideas across domains that can lead to groundbreaking
discoveries [19, 50, 60, 72, 79]. For example, the ancient Greeks
studied the properties of sound waves by analogy to ripples in water;
Nobel laureate Salvador Luria used abstract structural similarity
between a slot machine and bacteria mutations to understand bac-
terial replication [77]; and in computer science and optimization,
analogies to processes in nature inspired algorithms such as simu-
lated annealing [59], genetic algorithms [35], and momentum-based
gradient descent [83]. This process of abstraction over past ideas is
also an important contributor to the ability to reformulate problems
[20, 23, 24, 31, 57]. For example, innovators tasked with a problem
(find more room to store e-waste) might consider a related, more
general goal (reducing environmental pollution) to inspire new solu-
tions, or consider “sibling” formulations (create alternative materials
that are biodegradable). This ability to reframe a problem using other
problems that bear some abstract relation to it is known to be a pow-
erful way to combat fixation and boost creativity [16, 31, 36–38].
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Purpose: wash clothes
Mechanism: NOT water Waterless washing machine scrubs 

clothes clean with dry ice.

Dry shampoo uses starch-based 
active ingredients to soak up the 
oils and sweat from your hair, 
making it appear cleaner. Fragrance 
makes your hair smell fresh.

A chemical coating causing cotton 
materials to clean themselves of 
stains and remove odors when 
exposed to sunlight. 

Biodegradable yarn from cellulose 
fiber from citrus fruit peels. Can be 
spun into high-quality fabric that 
feels like silk.
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Example Documents from ClustersExploring the Purpose Graph

Figure 1: Extracting fine-grained purposes and mechanisms at scale enables mapping the landscape of ideas. Suppose an inventor is
looking for a way to wash clothes without water. On the left we see a snippet from the graph of purposes. Each node in the graph
represents a cluster of similar purpose spans extracted from documents (labels are manually generated for illustration purposes).
Edges reflect abstract structural similarity, capturing co-occurrence patterns of spans in the corpus (see Section 5.1 and Figure
9). On the right we see example documents containing purposes from the four clusters (corresponding cluster numbers appear in
boxes). Purpose/mechanism spans in documents are shown in pink/green, respectively. One could find direct matches to the query –
i.e., documents with purpose from cluster 1 and mechanism not “water” (e.g., waterless washing machine using dry ice), or explore
neighboring purpose clusters, reformulating the problem as removing odor, removing dirt, or getting rid of the dirty clothes, each
resulting in a different set of inspirations.

This abstraction and reframing process has also been observed in
studies of example curation [49, 56].

A core unifying thread across these mechanisms is the need for
particular structured, yet flexible, representations of ideas in terms of
their component aspects, such as analogical schemas, or conceptual
chunks. In this paper, we focus on developing representations with
these properties, starting with the decomposition of ideas into their
component purposes and mechanisms. As we discuss in the next
section, developing computational representations with these proper-
ties that can operate over large scale repositories of ideas remains a
formidable open challenge.

Utilizing Structured Representations for Ideation Systems. A
main focus of creativity techniques and prototypes has been building
computational systems for exploring the space of possible solutions
to problems and alternative problem perspectives [31]. To do so,
such systems often leverage structured knowledge representations
for mapping the design space and linking across different prob-
lems. For example, the WordTree method [65] – a prominent design
method in creative engineering design – directs designers to break
their problem into subfunctions, and then use the WordNet database
[75] to explore abstractions and related functional aspects. Like-
wise, a recent study [42] asked designers to select product aspects
to abstract using WordNet and the Cyc ontology [63], which aimed

to serve as a general-purpose repository of commonsense knowl-
edge in structured form. These and other general-purpose knowledge
bases (e.g., NELL [76] and DBpedia [29]) largely encode categorical
knowledge (e.g., is-a, has-a) and rarely functional knowledge (e.g.,
used-for), and often suffer from poor coverage of concepts in real-
world products [42]. Knowledge bases and ontologies that do focus
on functions, behaviors, and structures [6, 51, 96] have primarily
been hand-crafted and are therefore even more limited in coverage.
Work attempting to scale up has shown promise but is limited in
expressivity or interpretability, such as modeling patents in terms
of verbs and nouns [32], using principal component analysis [25],
or learning coarse aggregate vectors that capture only one overall
product purpose and mechanism [52] that cannot disentangle the dif-
ferent aspects of a product, unlike our work presented in this paper.
While full abstraction of ideas currently remains a holy grail, here
we investigate whether learning nuanced functional aspects might
enable a limited form of abstraction useful for augmenting creativity
and providing a first step towards true automated abstraction.

3 LEARNING A FINE-GRAINED
FUNCTIONAL REPRESENTATION

Our goal in this section is to construct a representation that can
support the creative innovation tasks and interactions discussed in
the Introduction.
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Figure 2: Crowdsourcing interface for fine-grained purposes
and mechanisms.

We propose to use span representations [62]. Given a product
text description, we extract tagged spans of text corresponding to
purposes and mechanisms (see Figure 2), and represent the product
as a set of span embeddings.

More technically, we use a standard sequence tagging formulation,
with X𝑁 = {x1, x2, . . . , x𝑁 } a training set of𝑁 texts, each a sequence
of tokens x𝑖 = (𝑥1

𝑖
, 𝑥2
𝑖
, . . . , 𝑥𝑇

𝑖
), and Y𝑁 a corresponding set of label

sequences, Y𝑁 = {y1, y2, . . . , y𝑁 }, y𝑖 = {𝑦1
𝑖
, 𝑦2
𝑖
, . . . , 𝑦𝑇

𝑖
}, where

each 𝑦 𝑗 indicates token 𝑗’s label (purpose/mechanism/other). In
later sections, we represent each product 𝑖 as a set of purpose span
embedding vectors and a set of mechanism span embedding vectors.

3.1 Data
We use real-world product idea descriptions taken from crowd-
sourced innovation website Quirky.com and used in [52], including
8500 user-generated texts describing inventions across diverse do-
mains (e.g., kitchen products, health and fitness, clean energy). Texts
typically include multiple purposes and mechanisms. Texts in Quirky
use very nonstandard language, including grammatical and spelling
errors (e.g., “Folds Up Perfect For Carrying. you can walk-on, put
your mouth on and or hands on. numbers in any configuration 4
learning to De / Composing Numbers.”).

Annotation. To create a dataset annotated with purposes and mecha-
nisms, we collect crowdsourced annotations on Amazon Mechanical
Turk (AMT). In the similar annotation task of [52] workers were
reported to annotate long, often irrelevant spans. We thus guided
workers to focus on shorter spans. To further improve quality and
encourage more fine-grained annotations, we limited maximal span
length that could be annotated, and disabled the annotation of stop-
words. Fig. 2 shows our tagging interface; rectangles are taggable
chunks. For quality control, we required US-based workers with
approval rate over 95% and at least 1000 approved tasks, and filtered
unreasonably fast users. In total, we had 400 annotating workers.
Workers were paid $0.1 per task. This rate was computed aiming
for an hourly rate of $7, where completion time was estimated via
a small-scale pilot study. However, in the full study we were sur-
prised to find the median completion time was much higher, reaching
100 seconds. We note that this figure could be skewed (e.g., due to
workers queuing of tasks or the ability to take breaks).

While a manual inspection of the annotations revealed they are
mostly satisfactory, we observe two main issues: First, there are of-
ten multiple correct annotations. Second, workers provide partial
tagging – in particular, if similar spans appear in different sentences,
very few workers bother tagging more than one instance (despite

instructions). These issues would have made computing evaluation
metrics problematic. We thus decided to use the crowdsourced an-
notations as a bronze-standard for training and development sets
only. For a reliable evaluation, we collected gold-standard test sets
annotated by two CS graduate students. Annotators were instructed
to mark all the relevant chunks, resulting in high inter-annotator
agreement of 0.71. We collect 22316 annotated training sentences
and 512 gold sentences, for a total of 238, 399𝑡𝑜𝑘𝑒𝑛𝑠 (tag proportions:
14.5% mechanism, 15.9% purpose, 69.6% other).

A note on related annotated data. There has been recent work on
the related topic of information extraction from scientific papers
by classifying sentences, citations, or phrases. Recent supervised
approaches [9, 55, 66] use annotations which are often provided
by either paper authors themselves, NLP experts, domain experts,
or involve elaborate (multi-round) annotation protocols. Sequence
tagging models are often trained and evaluated on (relatively) clean,
succinct sentences [71, 101]. When trained on noisy texts, results
typically suffer drastically [2]. Our corpus of product descriptions is
significantly noisier than scientific papers, and our training annota-
tions were collected in a scalable, low-cost manner by non-experts.
Using noisy crowdsourced annotation for training and development
only is consistent with our quest for a lightweight annotation ap-
proach that would still enable training useful models.

3.2 Extracting Spans
After collecting annotations, we can now train models to extract the
spans. We explore several models likely to have sufficient power to
learn our proposed novel representation, with the goal of selecting
the best performing one. In particular, we chose two approaches
that are common for related sequence-tagging problems, such as
named entity recognition (NER) and part-of-speech (POS) tagging:
a common baseline and a recent state-of-the-art model. We also
tried a model-enrichment approach with syntactic relational inputs.
We briefly describe the models we used below, with full technical
descriptions and implementation details, data and code appearing in
the supplementary material (Appendix A.1). We note that our goal in
this section is to find a reasonable model whose output could support
creative downstream tasks; many other architectures are possible
and could be considered in future work.

• BiLSTM-CRF. A BiLSTM-CRF [53] neural network, a common
baseline approach for NER tasks, enriched with semantic and syn-
tactic input embeddings known to often boost performance [101].
We adopt the “multi-channel” strategy as in [101], concatenating
input word embeddings (pretrained GloVe vectors [81]) with part-
of-speech (POS) and NER embeddings. A conditional random field
(CRF) model over the BiLSTM outputs maximizes the tag sequence
log likelihood under a pairwise transition model between adjacent
tags [5].

• Pre-trained Language Model (Pooled Flair). A pre-trained lan-
guage model [4] based on contextualized string embeddings, re-
cently shown to outperform other powerful models such as BERT
[22] in NER and POS tagging tasks and achieve state-of-art results.

• GCN. We also explore a model-enrichment approach with syn-
tactic relational inputs. We employ a graph convolutional network
(GCN) [58] over dependency-parse edges [101]. GCNs are known
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Configuration P R F1
Enriched BiLSTM 45.24 39.01 41.90
Pooled-Flair 53.30 39.80 45.50
GCN 47.85 47.93 47.89
GCN self-train 49.00 52.00 50.50

Figure 3: Left: Precision@K results for the best performing
model (GCN + self-training). Right: Raw extraction accuracy
evaluation. All approaches use CRF loss. GCN with syntactic
edges outperforms baselines. Self-training further improves re-
sults. Random-label achieves only 16.01 F1.

to be useful for propagating relational information and utilizing
syntactic cues [71, 101]. The linguistic cues are of special relevance
and interest to us, as they are known to exist for purpose/mechanism
mentions in texts [32].

3.3 Evaluation of Extraction Accuracy
In this section we assess extraction accuracy (whether we are able to
extract purpose and mechanism spans of text). In the next sections,
we evaluate the utility of the extracted spans for enabling creative
innovation tasks.

To evaluate raw accuracy of the model’s predictions, we use the
standard IOB label markup to encode the purpose and mechanism
spans (5 possible labels per token, {Beginning, Inside} x {Purpose,
Mechanism} plus an "Outside" label). We conduct experiments using
a train/development/test split of 18702/3614/512 .

Due to our challenging setting, we train models on bronze-standard
annotations with noisy and partial tagging done by non-experts; for
evaluation we use a curated gold-standard test set (Section 3). See
Figure 3 (right) for results: GCN reaches an F1 score of ∼ 48%, out-
performing the BiLSTM-CRF model (enriched with multi-channel
GloVe, POS, NER and dependency relation embeddings) by 6%.
GCN also surpasses the strong Pooled-Flair pre-trained language
model by nearly 2.5%. A random baseline guessing each token by
label frequencies (Section 3) achieves 16.01 F1. We interpret these
results as possibly attesting to the utility of graph representations
and features capturing syntactic and semantic information when
labels are noisy. As a sanity check, we also computed precision@K
(Figure 3, left). As expected, precision is higher with low values
of 𝐾 , and gradually degrades. Precision for mechanisms is higher

Figure 4: Comparing our GCN model predictions (right) to
human annotations (left). Interestingly, our model managed to
correct some annotator errors (“it’s”, “heated”, “coffee warm”,
“beverages”). Purposes in pink, mechanisms in green.

than for purposes. Interestingly, a manual inspection revealed many
cases where despite the noisy training setting, our models managed
to correct mistaken or partial annotations (see Figure 4).

Self-Training. According to the results, we chose GCN as our best-
performing model. We experimented adding self-training [86] to
GCN. Self-training is a common approach in semi-supervised learn-
ing where we iteratively re-label “O” tags in training data with
model predictions. A large portion of our training sentences are
(erroneously) un-annotated by workers, perhaps due to annotation
fatigue, introducing bias towards the “O” label.

Self-training with GCN shows an improvement in F1 by an ad-
ditional 2.6%, substantially increasing recall (more than 12% over
Flair), see Figure 3, right. Self-training stopped after 2 iterations,
following no gain in F1 on the development set.

In the following two sections we demonstrate that our extraction
model’s accuracy, while far from perfect, is sufficient for achieving
good performance on the downstream tasks which are at the focus of
this paper. One main reason for this gap is that our downstream tasks
involve aggregation of multiple extracted spans: Product descriptions
will typically mention salient mechanisms/purposes several times
in the text, such that the effect of local false positives/negatives is
mitigated if overall the key aspects are captured somewhere in the
text. Further, as we discuss in §5.1, our approach also aggregates
purposes and mechanisms across the entire corpus, not just single
texts, learning from patterns observed sufficiently many times across
multiple texts and thus removing noise introduced by extraction
errors. As future information extraction technologies advance, our
task could benefit from improved extraction accuracy to further
reduce the rate of false positives and negatives.

4 FINE-GRAINED FUNCTIONAL SEARCH
FOR ALTERNATIVE USES

In the previous section we suggested a model for extracting purpose
and mechanism spans and assessed extraction accuracy. Our focus
in this paper is to study the utility of the extracted purposes and
mechanisms, in terms of the user interactions they enable. In the
following sections we explore two tasks demonstrating the value of
our novel representation for supporting creative innovation. We start
with a task involving search for alternative uses.
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Motivation. Our task is inspired by one of the most well-known
divergent thinking tests [46] for measuring creative ability – the
alternative uses test [47], where participants are asked to think of
as many uses as possible for some object. Aside from serving as a
measure of creativity, the ability to find alternative uses for technolo-
gies has important applications in engineering, science and industry.
Technologies developed at NASA, the US space agency, have led to
over 2,000 spinoffs, finding new uses in computer technology, agri-
culture, health, transportation, and even consumer products1. Procter
& Gamble, the multinational consumer goods company, has invested
in systematic search for ideas to re-purpose and adapt from other
industries, such as using a compound that speeds up wound healing
to treat wrinkles - an idea that led to a new line of anti-wrinkle
products [27]. And very recently, the COVID-19 pandemic provided
a stark example of human innovation, with many companies seeking
to pivot and re-purpose existing products to fit the new climate [28].

One teaching story is that of John Osher, creator of the “Spin Pop”
— a lollipop with a mechanism for twirling in your mouth. After sell-
ing his invention, Osher’s team systematically searched for new ideas
— “rather than having an idea come to us”2. The group eventually
landed on the ”Spin Brush” – a cheap electric toothbrush adapted
from the same twirling mechanisms. This case of repurposing an
existing technology involved a systematic search process rather than
pure serendipity. Introducing automation could help accelerate the
search process by scouring many relevant problems available online,
but the task is challenging for existing search systems, requiring a
fine-grained, multi-aspect understanding of products.

Illustrative Example. Consider a company that manufactures light
bulbs. The company is familiar with straightforward usages of their
product (lamps, flashlights), and wants to identify non-standard uses
and expand to new markets. Finding uses for a lightbulb that are not
about the standard purpose of illuminating a space would be difficult
to do with a standard search query over an idea repository, as the
term “lights” or “lighting” will bring back lots of results close to
“lamps,” “flashlight,” and the like. In contrast, with our representation
each idea is associated with mechanism and purpose aspects, and one
could form a query such as mechanism=“light bulb”, purpose= NOT

“light”. Using our system, the searcher adds “light” as a mechanism
and also adds “light” as a negative purpose (i.e., results should not
include “light” as a purpose). Our prototype returns examples such
as billiard laser instructor devices (Table 1), warning signs on food
packages to get attention of kids with allergies, and lights attached
to furniture to protect your pinky toes at night (Figure 5).

4.1 Study Design
We have built a search engine prototype supporting our representa-
tion. Figure 5 shows the top two results for the light bulb scenario:
warning lights on food for kids with allergies, and lights attached to
furniture to protect your pinky toe at night. These are non-standard
recombinations [30] (light + allergies, light + furniture guard) that
could lead the company to new markets.

1https://spinoff.nasa.gov/
2https://www.allbusiness.com/the-man-the-legend-john-osher-inventor-of-the-spin-
brush-part-i-2-7665547-1.html

Figure 5: Applications for light where light is not in the purpose.
Left: Interface. Right: Two of the results and their automatic
annotations (purposes in pink, mechanisms in green).

We conduct an experiment simulating scenarios where users wish
to find novel/uncommon uses of mechanisms. Table 1 shows the sce-
narios and examples. To choose these scenarios for the experiment,
we find popular/common mechanisms in the dataset and their most
typical uses. For example, one frequent mechanism is RFID, which
is typically used for purposes such as “locating” and “tracking”. We
then create queries searching for different uses – purposes that do not
include concepts related to the typical uses of a given mechanism.
To automate scenario selection, we cluster mechanisms (see Section
5.1), select frequent mechanisms from the top 5 largest mechanism
clusters, and identify purposes strongly co-occurring with them (e.g.,
“RFID” co-occurs with “locating”, “tracking”) to avoid.

Our Approach. We represent each product 𝑖 as a set of purpose
vectors P𝑖 B {p1

𝑖
, p2
𝑖
, . . . , p𝑃𝑖

𝑖
}, and a set of mechanism vectors

M𝑖 B {p1
𝑖
, p2
𝑖
, . . . , p𝑀𝑖

𝑖
} extracted with our GCN model. Simi-

larly, we define a set of query vectors q𝑝 B q1, q2, . . . q𝑄𝑝
and

q𝑚 B q1, q2, . . . q𝑄𝑚
. Each query chunk can be negated, meaning

it should not appear. Finally, we define distance metrics 𝑑𝑝 (·, ·),
𝑑𝑚 (·, ·) between sets of purposes and mechanisms. For example, to
locate a dog using RFID but not GPS:

argmin 𝑖 𝑑𝑝 ({q“locate dog”},P𝑖 )
𝑠 .𝑡 . 𝑑𝑚 ({q“GPS”},M𝑖 ) ≥ threshold

𝑑𝑚 ({q“RFID”},M𝑖 ) ≤ threshold
(1)

https://spinoff.nasa.gov/
https://www.allbusiness.com/the-man-the-legend-john-osher-inventor-of-the-spin-brush-part-i-2-7665547-1.html
https://www.allbusiness.com/the-man-the-legend-john-osher-inventor-of-the-spin-brush-part-i-2-7665547-1.html
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We explore two alternatives for computing distance metrics 𝑑𝑚, 𝑑𝑝 :

• FineGrained-AVG. 𝑑𝑝 (q𝑝 ,P𝑖 ) is 1 minus the dot product be-
tween average query and purpose vectors (normalized to unit
norm). We define 𝑑𝑚 similarly.

• FineGrained-MAXMIN. We match each element in q𝑝 with
its nearest neighbor in P𝑖 , and then find the minimum over the
distances between matches. 𝑑𝑝 is defined as 1 minus the minimum.
All vectors are normalized. We define 𝑑𝑚 similarly. This captures
cases where queries match only a small subset of product chunks,
erring on the side of caution with a max-min approach.

Baselines. We test our model against:

• AvgGloVe. A weighted average of GloVe vectors of the entire
text (excluding stopwords), similar to standard NLP approaches
for retrieval and textual similarity. We average query terms and
normalize to unit norm. Distance is computed via the dot product.

• Aggregate purpose/mechanism. Representing each document
with the model in [52]. This model takes raw text as input, applies
a BiLSTM neural network and produces two vectors correspond-
ing to aggregate purpose and mechanism of the document. We
average and normalize query vectors, and use the dot product.
For all four methods, we handle negative (purpose) queries by

filtering out all products whose similarity is lower than 𝜆, where
lambda is a threshold selected to be the 90th percentile of similarities
(1 minus the distances). This corresponds to the threshold seen in
the example in Eq. 1.

4.2 Results
We recruited five engineering graduate students (three female, two
male) to judge the retrieved product ideas. Each participant provided
binary relevance feedback [88] (yes/no) to the top 20 results from
each of the four methods, shuffled randomly so that judges are blind
to the condition.3

See Figure 6 for results. We report Non Cummulative Discounted
Gain (NDCG) and Mean Average Precision (MAP), two common
metrics in information retrieval [88]. Our FineGrained-AVG wins
for both metrics, followed by FineGrained-MAXMIN. The baselines
perform much worse, with the aggregate-vectors approach in [52]
outperforming standard embedding-based retrieval with GloVe. Im-
portantly, our approach achieves high MAP (85% - 87%) in absolute
terms, in addition to a large relative improvement over the baselines
(MAP of 40%-60%).

Qualitative Analysis. Table 1 shows example results of FineGrained-
AVG. For instance, a query for using light not for lighting results
in laser-based billiard instructions. A query for using RFID not for
locating or tracking results in an idea for an RFID-based lock, or
RFIDs used at supermarket checkouts. To give an intuition for what
might be driving our quantitative findings, we examine examples of
retrieved results.

For instance, with the query for using light for the non-standard
purpose of cleaning, the top ranked result retrieved by FineGrained-
AVG is a UV Light Sterilizer, with extracted purposes including
Sterilizes bacteria, Keep public and people healthy and Cleaner

3Inter-rater agreement measured across all scenarios was at 50% by both Fleiss kappa
and Krippendorff’s alpha tests.

Figure 6: Results for search evaluation test case. Mean average
precision (MAP) and Normalized Discounted Cumulative Gain
(NDCG) by method, averaged across queries. Methods in bold
use our model.

fresher air, and the top result from FineGrained-MAXMIN is sim-
ilarly a Standalone bug zapper bulb that uses uv light/black light.
Conversely, the top result for both baselines (standard search and
aggregate-vectors) is a Toilet/Bathroom Light, with “a sensor light
that glows around your toilet” and “extra batteries if you lose elec-
tricity in the bathroom”. It appears that both baselines were not able
to accurately capture and disentangle purposes and mechanisms,
despite the aggregate-vector being explicitly designed for that.

More generally, it appears that the aggregate-vector approach
squashes multiple purposes together by design into one soft, ag-
gregate vector, which in this case includes concepts like toilet and
bathroom that are somewhat topically related to cleaning. The aggre-
gate approach had similar issues in the next product ideas it retrieved
(e.g., Switch that glows in the dark, a Dash Light to illuminate ash
trays).

Overall, our results demonstrate that fine-grained purposes and
mechanisms lead to better functional search expressivity than ap-
proaches based on distributional representations or coarse purpose-
mechanism vectors.

5 EXPLORING THE DESIGN SPACE WITH A
FUNCTIONAL CONCEPT GRAPH

In this section we test the value of our novel representation for
supporting users in exploring the design space for solving a given
problem. We use our span-based representation to construct a corpus-
wide graph of purpose/mechanism concepts. We demonstrate the
utility of this approach in an ideation task, helping users identify
useful inspirations in the form of problems that are related to their
own.

Our goal is to help users “break out” of fixation on a certain
domain, a well-known hindrance to innovation [15, 60]. Doing so is
challenging because it requires some level of abstraction: being able
to go beyond the details of a concrete problem to connect to a part



CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Hope et al.

Query Example results
Mechanism: light. Purpose: NOT light Billiard laser instructor (projector)
Mechanism: solar energy. Purpose: NOT generating power Light bulbs with built-in solar chips.
Mechanism: water. Purpose: NOT cleaning, NOT drinking A lighter that burns hydrogen generated from water and sunlight.
Mechanism: RFID. Purpose: NOT locating, NOT tracking A digital lock for your luggage with RFID access.
Mechanism: light. Purpose: cleaning A UV box to clean and sanitize barbells at the gym.

Table 1: Scenarios and example results retrieved by our FineGrained-AVG method. Queries reflect non-trivial uses of mechanisms
(e.g., using water not for drinking/cleaning, retrieving a lighter running on hydrogen from water and sunlight).

of the design space that may look dissimilar on the surface, but has
abstract similarity. Numerous studies in engineering and cognitive
psychology have shown the benefits of problem abstractions for
ideation [32, 34, 45, 60, 64, 98, 99]. However, these studies either
involve non-scalable methods (relying on highly-structured annota-
tions, or on crowd-sourcing) or simple, syntactical pattern-matching
heuristics incapable of capturing deeper abstract relations. In [52]
(aggregate-vectors baseline from the previous section), crowdwork-
ers were given a product description from the Quirky database, and
asked to come up with ideas for products that solve the same prob-
lem in a different way. Aggregate vectors representing purpose and
mechanism were used to find near-purpose, far-mechanism analo-
gies. Thus, finding analogies relied on having a given mechanism to
control for structural distance.

Unlike [52], in our setup we assume a more realistic scenario
where we are given only a short problem description – e.g., generat-
ing power for a phone, reminding someone to take medicine, folding
laundry – and aim to find inspirational stimuli [45] in the “sweet
spot” for creative ideation – structurally related to the given problem,
not too near yet also not too far [33].

Functional Concept Graph. To address this challenge, we build a
tool inspired by functional modeling [51], which we call a Func-
tional Concept Graph. A functional model is, roughly put, a hierar-
chical ontology of functions and ways to achieve them, and is a key
concept in engineering design. Such models are especially useful
for innovation, allowing problem-solvers to break out of a fixed
overly-concrete purpose or mechanism and move up and down the
hierarchy. Despite their great potential, today’s functional models
are constructed manually, and thus do not scale. While automati-
cally inducing full abstraction hierarchies/ontologies of functional
properties of real-world products remains a daunting challenge, in
our approach we construct a rough approximation — simple enough
to extract automatically from noisy product texts, while still being
useful for exploring the design space and suggesting inspirations
to users. Specifically, in our approach Functional Concept Graphs
consist of nodes corresponding to purposes or mechanisms, and
edges reflect semantic relatedness that is not guaranteed to directly
encode abstraction. We build this graph by observing fine-grained
co-occurrences of concepts appearing together in products, using
rule-mining to infer which concept is likely to be more general to
(roughly) capture different levels of abstraction.

For example, Figure 7 shows an actual subgraph from our auto-
matically constructed functional concept graph related to electricity,
power and charging. Products that mention certain purposes (e.g.,
“charge your phone") will often mention other, structurally related
problems that could be more general/abstract (e.g., “generate power")

Figure 7: An example of our learned functional concept graph
extracted from texts. Mechanism in green, purpose in pink. Ti-
tles are tags nearest to cluster centroids (redacted to fit).

or more specific (“wireless phone charging"), resulting in edges in
our graph (only high-confidence edges are shown). A designer could
go from the problem of charging batteries to the more general prob-
lem of generating power, and from there to another branch (e.g., solar
power and mechanical stored energy), to get inspired by structurally
related ideas.

5.1 Building a Functional Concept Graph
We develop a method to infer this representation from co-occurrence
patterns of the fine-grained spans of text. Naively looking for co-
occurrences of problems may yield inspirations too near to the orig-
inal 𝑝𝑖 , as many frequently co-occurring purposes tend to be very
similar, while we are interested discovering the more abstract re-
lations. In addition, raw chunks of text extracted from our tagging
model have countless variants that are not sufficiently abstract and
are thus sparsely co-occurring. We thus design our approach to en-
courage abstract inspirations. As an overview of our approach before
presenting the technical details, we take the following two steps:

I. Concept discretization. Intuitively, nodes in our graph should
correspond to groups of related spans (“charging”, “charging the
battery”, “charging a laptop”). To achieve this, we take all purpose
and mechanism spans P̂, M̂ in the corpus, extracted using our
GCN model, and cluster them (separately), using pre-trained vector
representations. We refer to the clusters C𝑝 , C𝑚 as concepts.

II. Relations. We employ rule-mining [80] to discover a set of re-
lations R between concepts (see §5.2 for implementation details).
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Relations are Antecedent =⇒ Consequent, with weights correspond-
ing to rule confidence. To illustrate our intuition, suppose that when
“prevent head injury” appears in a product description, the condi-
tional probability of “safety” appearing too is large (but not the other
way around). In this case, we can (weakly) infer that preventing head
injuries is a sub-purpose of “safety”.

Indeed, manually observing the purpose-purpose edges, the one-
directional relations captured are often sub-purpose, and the bi-
directional ones often encode abstract similarity. Similarly, for
mechanism concepts the one-directional relations are often part
of (“cell phone” and “battery”), and bi-directional are mechanisms
that co-occur often. For pairs of purpose and mechanism concepts,
the relation is often functionality (“charger”, “charge”). Exploring
more relations is left for future work.

5.2 Study Design & Implementation
Next, we set out to test the utility of the functional concept graph
in an ideation task. In our setup participants are given problems
(e.g., reminding people to take their medication in the morning)
and are asked to think of creative solutions. Participants were also
given a list of potential inspirations, grouped into boxes, and were
instructed to mark whether each was novel and helpful. They were
also encouraged to explain the solution it inspired.

Figure 8 shows our interface. In this example, seeing inspirations
about health monitors caused one user to suggest monitoring the
person to find the best time to remind them to take medicine; see-
ing inspirations about coffee caused them to suggest integrating
medicine reminders into coffee machines.

To create a set of seed problems, a graduate student mapped
between problems from WikiHow.com (a website of how-to guides)
to purposes in our data. Using this source allowed us to collect
real-world problems that are broadly familiar, with succinct and self-
explanatory titles that do not require further reading to understand.
The student was tasked with confirming that our Quirky dataset
contains idea descriptions that mention these problems. For a given
problem in WikiHow (how to remember to take medication), they
performed keyword search over 17𝐾 purpose spans gleaned by our
model from Quirky, and found matching spans (morning medicine
reminder). We use those matching spans as our seed problem descrip-
tion given to users (purple text in Figure 8). We collect 25 problems
this way. Table 2 shows more examples, such as Tracking distance
walked, folding laundry or sensing dryness level.

Inspirations are other purpose spans from our dataset (see Table
2), selected automatically using our approach or baseline approaches.

Our Method. For our approach, we construct a functional concept
graph as in Section 5.1. To cluster related spans into concept nodes,
we explore two common and powerful vector representations of
spans to capture semantic similarity:
• GloVe [81] pre-trained word embeddings, averaged across tokens.
• BERT-based [84] contextualized vectors that have been fine-
tuned for semantic similarity tasks4.

4We use RoBERTa-large-STS-SNLI, available at github.com/UKPLab/sentence-
transformers.

Figure 8: A snippet from our ideation interface for “morn-
ing medicine reminder”. Users see inspirations grouped into
boxes. Each box is supposed to represent a concept – a clus-
ter of related spans as found by our method or by the baselines
(see §5.1). Users indicate which inspirations were useful, and
what ideas they inspired. For example, seeing “real time health
checker” inspired one user to suggest a monitoring device for
finding the best time for reminding to take the medicine.

We cluster the spans using K-Means++ 5[8]. We then apply the
Apriori algorithm6 to automatically mine association rules between
clusters, [80] and use the confidence metric to select the top rules7.
To use the mined rules between purpose nodes (clusters) for select-
ing inspirations shown to users, we start from the purpose node
corresponding to the given problem and take its consequents; as
explained earlier, this captures a weak signal of abstract similarity.

Some of these nodes contain tens of spans in them. Thus, we
also explore two approaches to “summarize” each concept cluster
with representative spans displayed to users – one that attempts to
summarize the cluster independently of the seed problem, and one
that takes the seed problem into account:

• TextRank [74]. We construct a graph where nodes are the spans
in a cluster and edges represent textual similarity. We run PageRank
[78] on this graph, selecting the top 𝐾 spans to present.

• Nearest spans. Following the findings in [33], select the top 𝐾
spans in C𝑝 that are nearest to the query 𝑝𝑖 . (For both approaches,
we use 𝐾 = 5).

Baselines.8

• Purpose span similarity. Given a problem 𝑝𝑖 , we find the 𝐾 = 5
nearest purpose spans of text in our corpus (out of 17𝐾 purposes).
We experiment with the same two vector representations used
by our approach: GloVe and BERT. This method is similar to
applying the methodology in [52] to our setting, where in our
setting we are given only a problem 𝑝𝑖 and no mechanism𝑚𝑖 is
available to control for structural distance. While this approach
relies on our model for extracting purpose spans, we consider it a
baseline to study the added value of our hierarchy.

5𝐾 = 250 selected automatically with elbow-based criteria on silhouette scores.
6http://www.borgelt.net/pyfim.html.
7We use the top 3 rules in our experiment.
8We note that all methods and baselines include both single and multi-word spans of
text as inspirations, ensuring users are blind to the condition.

github.com/UKPLab/sentence-transformers
github.com/UKPLab/sentence-transformers
http://www.borgelt.net/pyfim.html
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Problem Inspirations Rater explanation
Track distance walked Protect children Get ideas from devices that keep track of children

Folding laundry Store toilet paper Roll laundry around a tube instead of folding

Dispense medicine
Pet bowl that keeps ants
away

Based on pet bowls that can dispense food during the day

Sense dryness level
Voltage reading Use electric current to measure water level (safely)
Waterproof Ideas from sensors in waterproof devices
Temperature reading

Morning medicine reminder

Schedule coffee, coffee
alarm

Alarm clock with coffee and medicine reminders
Send vital data, real-time
health checker

Health trackers to tell if medicine not taken, alert accordingly
Heart rate monitoring, con-
tinuously monitor glucose Find the best time to take medicine

Table 2: Example inspirations and explanations given by human evaluators.

• Linguistic abstraction. We use the WordNet [75] lexical data-
base to extract hypernyms (for each token in 𝑝𝑖 ), in order to
capture potential abstractions. WordNet is often used in similar
fashion for design-by-analogy studies [42, 45, 64].

• Random concepts. Random inspirations are often considered as
a baseline in ideation studies since diversity of examples is a
known booster for creative ability [52]. For each task, we select a
random cluster from C𝑝 and display its TextRank summary.

Study Participants. We recruit 10 raters to evaluate the inspirations,
via university mailing lists. 8 raters were engineering graduate stu-
dents, and the remaining two raters included a senior engineering
professor and an architect. This cohort is intended to reflect a target
user base of people interested in innovation and involved in creative
inventive thinking as part of their work.

Rating Collection. In our study, each method generated𝐾 = 5 spans
(concept summaries), which are grouped and displayed together in
a box (see Figure 8). For each problem a rater views 8 boxes in
randomized order, to avoid bias. Raters were instructed to mark
inspirations they consider useful and relevant for solving a given
problem, while being not about the same problem. Raters were
also encouraged to write comments, especially for non-trivial cases
which they found of interest (see Table 2). In total, raters viewed
2584 boxes, or 12920 purpose descriptors.

5.3 Results
Analyzing inspirations. Table 2 and Figure 8 show examples of
problems, inspirations and user explanations from our study. For in-
stance, users facing the “morning medicine reminder” problem were
presented with nearby concepts in the Functional Concept Graph
that included health monitoring and coffee machines. To explore
why these concepts are connected in our graph and why they are
potentially useful as inspirations, we make use of the direct inter-
pretability of our approach. We examine the purpose co-occurrences
from which the Functional Concept Graph was constructed.

Figure 9 shows the subgraph with concept nodes of Making hot
drinks, alerting/reminding, health monitoring, medicine delivery,
and edges representing products in which two adjacent purposes
were co-mentioned (e.g., a “coffee machine alarm” product that men-
tioned the purposes of making hot drinks and alerting/reminding, or

       
             Alert/remind

 

                  Making hot      
        drinks

       
          Medicine   
       delivery

 

       
              Medical

                  monitoring

 

Coffee 
machine 
alarm

Smart 
medicine 
injector

Smart 
medicine 
injector

pill 
reminder

Smart 
medicine 
injector

Figure 9: Excerpt from our Functional Concept Graph. Nodes
represent concepts (clusters of purposes). To give intuition for
how edges were created, they are annotated with example prod-
ucts containing spans from both concepts. All nodes and edges
in this figure were automatically constructed and used to create
the user-facing inspirations shown in Figure 8. This figure pro-
vides a graphic illustration (not shown to users) explaining how
the boxes in Figure 8 are generated, with node names provided
here by us for readability. The problem of “medicine morning
reminder” is mapped (via embedding) to the Alert/remind con-
cept cluster (as named by us), which is linked to the concepts of
medical monitoring and making hot drinks through products
such as “smart medicine injector” and “coffee machine alarm”
(among others, not displayed in the figure). These links serve as
the source for inspirations in our study, as seen in Figure 8.

a “smart medicine injector" that mentioned both alerting/reminding
and medicine delivery). This explains why the concepts are nearby
in the graph, as there are multiple products in our dataset that share
purposes from both concepts.

For example, a “pill reminder” product refers to the problem of
forgetting to take medicine at prescribed times (Sends notification
if you forgot to take your AM or PM meds), while a “smart injec-
tor” device administers medicine on set time intervals. At the same
time, both of these products mention purposes of medicine delivery.
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When our graph construction algorithm observes enough similar co-
occurrence patterns between the concepts of alerting and medicine
delivery, across multiple products, an edge is added between the two
in the graph. Similarly, an “Alarm coffee maker” product mentions
the purposes of time management and making coffee at a set time as
well as alerting when the coffee is ready, explaining how it emerges
as a potential inspiration in our graph.

This type of linkage or overlap between an original problem space
and inspiration problems helps get at a sweet-spot of innovation [16]
by finding ideas that are not too near and not too far from the original
problem, helping users break out of fixation as discussed earlier in
this section. Users in our study used these inspirations to come up
with a tracker that alerts the user at the best time to take a medicine
and a coffee machine reminding the user to take their medication
with their morning coffee. Those creative directions demonstrate
the utility of the Functional Concept Graph for exploring the design
space.

Quantitative results. Figure 10 shows the results of the user study.
On the left, we show the proportion of inspirations (individual spans)
selected by at least two raters, for each method. Our approach sig-
nificantly outperforms all the baselines. The effect is particularly
pronounced for the BERT-based approach, with 51% of inspirations
found useful, while the best baseline reaches less than 30%. Interest-
ingly, for both BERT and GloVe representations, the Nearest-span
summarization approach fares better, potentially due to striking a
balance between being too far/near the initial problem 𝑝𝑖 .

Figure 10 (right) shows the proportion of inspiration boxes that
got at least 2 individual inspirations marked (by at least 2 raters). This
metric measures the effect of a box as one unit, as each box is meant
to represent a coherent cluster. Our method is able to reach 62%,
while the best baseline (GloVe search on purpose spans) yields only
39%. Again, the nearest-span summarization is prefered to TextRank.
Importantly, for both individual inspiration spans and inspirations
boxes, 51%-62% are rated as useful – high figures considering the
challenging nature of the task.

6 DISCUSSION AND CONCLUSION
In this paper we introduced a novel span-based representation of
ideas in terms of their fine-grained purposes and mechanisms and
used it to develop new tools for creative ideation. We trained a model
to extract spans from a noisy, real-world corpus of products. We used
this representation to support human creativity in two applications:
expressive search for alternative, uncommon uses of products, and
generating a graph to help problem-solvers explore the design space
around their problem. In both ideation studies, we were able to
achieve high accuracies, significantly outperform baselines and help
boost user creativity.

6.1 Limitations
While our results showed the promise of a functional aspect-based
representation, and demonstrated potentially feasible technical ap-
proaches for extracting this representation from unstructured text,
the approach has several limitations.

Challenging Annotation Task for Crowds. First, the annotation
task proved to be somewhat difficult for crowdworkers, and the out-
puts were noisy. One direction for future work would be to explore

weak supervision approaches to augment annotation. One issue that
might exacerbate the problem is that sometimes the boundary be-
tween purpose and mechanism is fuzzy, and it is genuinely difficult
to tell how to annotate the span.

Limited Functional Schema. In a similar vein, it might be interest-
ing to explore more expressive schemas, containing elements other
than just purpose and mechanism (similar to [12]). One particularly
useful element to add might be context/constraints (e.g., nanoscale),
to restrict the search space to feasible solutions.

Surface Form Abstraction. Another limitation of our approach is
that our functional aspects (and resulting embeddings) remain quite
closely anchored to the original texts. This limits their ability to be
used to match across domains, to make connections such as inspiring
new optimization approaches by analogy to "heating/cooling" sched-
ules in metallurgy. Achieving abstraction to match across distant
domains without burdening the user with a combinatorial explosion
of noisy matches remains an open problem. We wonder if abstract-
ing key objects or entities in a purpose functional aspect — such
as a more automated approach to replacing objects with their "com-
monsense" properties — might be more feasible than attempting to
abstract from an entire product description or abstract, given that the
chunk is already a rich signal of the product’s functional meaning.

6.2 Future Work and Broader Implications
Moving to future directions, we are excited about the potential of
functional aspects to lead to advances in the interpretability of
content-based recommender systems in these complex domains.
Keywords are inherently interpretable, but are limited in their ca-
pacity to support crossing knowledge boundaries; and until now,
embedding-based approaches (e.g., [52]) have not always led to
interpretable justifications for matches. Functional aspects could
provide the basis of not just more powerful search operators, but
also more interpretable results and feedback loops.

Deeper Functional Graph Exploration. A key component for the
above might be expanding on our use of functional graphs, built
from the extracted functional aspects. In our experiments, we used
our functional concept graph to retrieve inspirations from "around"
the problem. But what would it take to be able to explore this graph?
Could we identify and optimize for latent coordinates in the func-
tional space, moving "up" and "down abstraction levels, or "across"
sibling nodes in a functional graph? Taking inspiration from network
perspectives on ideation [11, 44, 94], could we retrieve interesting
"lineages" of ideas, or compute the potential inspiration value of
functional aspects based on network connectivity metrics? Could we
combine these content-based functional aspects with measures of
use (e.g., citations), to enrich approaches that combine content- and
social-based signals, such as literature-based discovery [93, 95]?

Identifying Overlap and Gaps Across Fields. These approaches
rely on identifying interesting overlaps in concepts that simultane-
ously coincide with disjunctions in citations, as signals of potentially
impactful "undiscovered public knowledge": a persistent challenge is
how to define "concepts" - keyword or unstructured text approaches
can lead to combinatorial explosions of noise to sift through, and con-
trolled vocabulary (e.g., MEDLine) can help increase the signal to
noise ratio, but are only available in specialized circumstances [89].
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Figure 10: Inspiration user study results. Left: Proportion of inspirations selected by at least 2 raters, per condition. Right: Proportion
of boxes (clusters) with at least 2 spans marked by ≥ 2 raters.

Functional aspects might be a useful bridge between unstructured
text and controlled vocabularies for identifying points of overlap and
disjunction between different fields, accelerating the discovery of
gems hidden in plain sight.

Functional aspects for Collaborative Ideation. Future work could
also explore new interactions in collaborative and crowd innovation
that might be enabled by the ability to quickly extract functional
aspects in idea corpora. The source of our primary dataset here,
Quirky, was actually a crowd innovation platform. HCI research on
these platforms have begun to emphasize moving away from mere
"selection" of best ideas from large samples of ideas, towards sup-
porting generative collaboration over ideas . Open problems include
synthesizing major themes in large-scale corpora of user-generated
ideas and identifying gaps in the idea space [13, 68, 90], as well
as supporting intelligent matching and structuring ways for crowd
innovators to collaborate and build on each others’ ideas [14, 69]
between crowd innovators. We are excited about the potential for
functional aspects to assist with these functions, as a complement
to other approaches like crowd-powered synthesis [7, 18, 43, 91].
Here, too, the potential for functional aspects to be highly inter-
pretable could power novel explorations of mixed-initiative systems
for augmenting collaborative ideation at scale [67, 91].

Mapping of Design Spaces. Beyond supporting richer search for
creative inspiration, a data-driven approach to extracting functional
aspects and learning relationships between the aspects could power
much more expansive approaches to mapping out design spaces
for entire domains or problem areas, identifying key subproblems
and constraints and novel paths through the design space. Mapping
approaches like this, such as technological roadmapping [10], have
already shown significant promise for reinvigorating research and
development in real-world applications such as neural recording [70].
However, these mapping exercises are still highly manual and labor-
intensive processes; computational support for such tasks could have
transformative impacts on innovation.
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A TECHNICAL APPENDIX
A.1 Model Details
• BiLSTM-CRF. A BiLSTM-CRF [53] neural network, a common

baseline approach for NER tasks, enriched with semantic and syn-
tactic input embeddings known to often boost performance [101].
We first pass the input sentence x = (𝑥1, 𝑥2, . . . , 𝑥𝑇 ) through an
embedding module resulting in v1:𝑇 , v𝑖 ∈ R𝑑𝑒 , where 𝑑𝑒 is the
embedded space dimension. We adopt the “multi-channel” strat-
egy as in [101], concatenating input word embeddings (pretrained
GloVe vectors [81]) with part-of-speech (POS) and NER embed-
dings. We additionally add an embedding corresponding to the
incoming dependency relation. The sequence of token embeddings
is then processed with a BiLSTM layer to obtain contextualized
word representations h(0)

1:𝑇 , h𝑖 ∈ R𝑑ℎ , where 𝑑ℎ is the hidden state
dimension. The outputs are fed into a linear layer 𝑓 to obtain per-
word tag scores 𝑓

(
h(𝐿)
1

)
, 𝑓

(
h(𝐿)
2

)
, ..., 𝑓

(
h(𝐿)
𝑇

)
. These are used as

inputs to a conditional random field (CRF) model which maximizes
the tag sequence log likelihood under a pairwise transition model
between adjacent tags [5].

• Pooled Flair. A pre-trained language model [4] based on contex-
tualized string embeddings, recently shown to outperform pow-
erful approaches such as BERT [22] in NER and POS tagging
tasks and achieve state-of-art results. Flair 9 uses a character-based
language model pre-trained over large corpora, combined with a
memory mechanism that dynamically aggregates embeddings of
each unique string encountered during training and a pooling op-
eration to distill a global word representation. We follow [4] and
concatenate pre-trained GloVe vectors to token embeddings, add a
CRF decoder, and freeze the language-model weights rather than
fine-tune them [22, 82].

• GCN. We also explore a model-enrichment approach with syn-
tactic relational inputs. We employ a graph convolutional network
(GCN) [58] over dependency-parse edges [101]. GCNs are known
to be useful for propagating relational information and utilizing
syntactic cues [71, 101]. The linguistic cues are of special relevance
and interest to us, as they are known to exist for purpose/mechanism
mentions in texts [32].
We used a GCN with same token embeddings as in the BiLSTM-
CRF baseline, with a BiLSTM layer for sequential context and
a CRF decoder. For the graph fed into the GCN, we use a pre-
computed syntactic edges with dependency parsing: For sentence
x1:𝑇 , we convert its dependency tree to A𝑠𝑦𝑛 where A𝑠𝑦𝑛

𝑖 𝑗
= 1 for

any two tokens 𝑥𝑖 , 𝑥 𝑗 connected by a dependency edge. We also

add self-loops A𝑠𝑒𝑙 𝑓 = 𝐼 (to propagate from h(𝑙−1)
𝑖

to h(𝑙)
𝑖

[101]).
Following [101], we normalize activations to reduce bias toward
high-degree nodes. For an 𝐿-layer GCN, denoting h(𝑙)

𝑖
∈ R𝑑ℎ to be

the 𝑙-th layer output node, the GCN operation can be written as

ℎ
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9https://github.com/flairNLP/flair
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Figure 11: Schema of our GCN model.

where R = {syn, self}, 𝜎 is the ReLU activation function, W(𝑙)
𝑟 is a

linear transformation, b(𝑙)
𝑟 is a bias term and 𝑑𝑟

𝑖
=
∑𝑇
𝑗=1 A

𝑟
𝑖 𝑗

is the
degree of token 𝑖 w.r.t 𝑟 . In the GCN architecture, 𝐿 layers corre-
spond to propagating information across 𝐿-order neighborhoods.
We set the contextualized word vectors h(0)

1:𝑇 to be the input to the

GCN, and use h(𝐿)1:𝑇 as the output word representations. Figure 11
illustrates the GCN model architecture. Similarly to [71], we do
not model edge directions or dependency types in the GCN layers,
to avoid over-parameterization in our data-scarce setting. We also
attempted edge-wise gating [71] to mitigate noise propagation but
did not see improvements, similarly to [101].

In our experiments, we followed standard GCN training proce-
dures. Specifically, we base our model on the experimental setup
detailed in [101] (see also the authors’ code which we adapt for our
architecture, at https://github.com/qipeng/gcn-over-pruned-trees).
We pre-process the data using the spaCy (https://spacy.io) package
for tokenization, dependency parsing, and POS/NER-tagging. We
use pretrained GloVE embeddings of dimension 300, and NER, POS
and dependency relation embeddings of size 30 each, giving a total
embedding dimension 𝑑𝑒 = 390. The bi-directional LSTM and GCN
layers’ hidden dimension is 𝑑ℎ = 200, with 1 hidden layer for the
LSTM. We find that the setting of 2 hidden layers works best for the
GCNs. We also tried training with edge label information based on
syntactic relations, but found this hurts performance. The training
itself was carried out using SGD with gradient clipping (cutoff 5)
for 100 epochs, selecting the best model on the development set.

For the Pooled-Flair approach [4], we use the FLAIR framework
[3], with the settings obtaining SOTA results for CONLL-2003 as
in [4] (see https://github.com/flairNLP/flair/blob/master/resources/
docs/EXPERIMENTS.md). We also experiment with non-pooled
embeddings and obtain similar results. We experiment with initial
learning rate and batch size settings described in [4], finding 0.1 and
32 to work best, respectively.

https://github.com/qipeng/gcn-over-pruned-trees
https://spacy.io
https://github.com/flairNLP/flair/blob/master/resources/docs/EXPERIMENTS.md
https://github.com/flairNLP/flair/blob/master/resources/docs/EXPERIMENTS.md
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