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ABSTRACT
The goal of few-shot fine-grained image classification is to recog-
nize rarely seen fine-grained objects in the query set, given only a
few samples of this class in the support set. Previous works focus
on learning discriminative image features from a limited number
of training samples for distinguishing various fine-grained classes,
but ignore one important fact that spatial alignment of the discrim-
inative semantic features between the query image with arbitrary
changes and the support image, is also critical for computing the
semantic similarity between each support-query pair. In this work,
we propose an object-aware long-short-range spatial alignment
approach, which is composed of a foreground object feature en-
hancement (FOE) module, a long-range semantic correspondence
(LSC) module and a short-range spatial manipulation (SSM) module.
The FOE is developed to weaken background disturbance and en-
courage higher foreground object response. To address the problem
of long-range object feature misalignment between support-query
image pairs, the LSC is proposed to learn the transferable long-range
semantic correspondence by a designed feature similarity metric.
Further, the SSM module is developed to refine the transformed
support feature after the long-range step to align short-range mis-
aligned features (or local details) with the query features. Extensive
experiments have been conducted on four benchmark datasets, and
the results show superior performance over most state-of-the-art
methods under both 1-shot and 5-shot classification scenarios.

CCS CONCEPTS
• Computing methodologies → Visual content-based index-
ing and retrieval; Matching.
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1 INTRODUCTION
Fine-grained image classification [4, 7, 8, 10, 13, 20, 30, 31, 37, 45,
47, 50, 51, 53], aiming to recognize objects of some sub-classes,
plays a critical role in many real-world applications such as the
recognition of retail products and the automatic monitoring of bio-
diversity. Benefiting from the development of Convolution Neural
Networks (CNNs) [22, 23, 35], the ability to learn a robust fine-
grained prediction model has advanced a lot, on condition that
large-scale training samples can be easily accessed and carefully
annotated. However, the manual annotation for a large-scale fine-
grained image dataset often requires domain-specific knowledge
from professionals, which is expensive and difficult to be obtained.

To alleviate the over-dependence of CNNs on large-scale anno-
tated training samples and relieve humans from the cumbersome
labeling activities, researchers have explored the meta-learning
classification methods for generic categories [1, 11, 12, 25, 29, 32,
34, 36, 38, 42, 44, 48, 49]. Specifically, the goal of meta-learning clas-
sification is to train a task-agnostic classifier that can be generalized
well to different tasks, and to further learn meta-knowledge that
can be utilized to compensate for the lack of training data. How-
ever, the above meta-learning approaches mainly focus on learn-
ing the meta-knowledge for recognizing coarse-grained (generic)
categories, which do not have sufficient generalization and repre-
sentation ability for the fine-grained classification task.

Driven by the success of meta-learning classification models for
generic categories, some works [16, 26, 27, 39, 40, 46, 52] try to
extend the study of meta-learning from the generic image classi-
fication to fine-grained classification, by capturing discriminative
parts of the whole image. The work [18] tries to globally align im-
ages or features via parameterized transformation. Recently, in the
work [15], a relation matrix is adopted to highlight semantic-related
local features. However, these methods fail to achieve fine-grained
semantic matching between the samples to be predicted (denoting
the query images) and the given training samples (denoting the
support images). We argue that accurate spatial alignment for the
nuanced feature changes are crucial for fine-grained classification.
Thus, how to find the discriminative object features that are useful
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Figure 1: Spatial alignment examples of two different sub-
classes from CUB dataset are illustrated, where the red and
black color boxes denote Blue Jay and American Goldfinch,
respectively. The support and query images in each sub-
class are initially misaligned, due to the arbitrary pose
and position variations of birds between the two images.
By leveraging the proposed spatial alignment network to
transform the original support features, the semantic distri-
bution between the transformed support features and the
query features can be better aligned.

for fine-grained classification, and further align these discrimina-
tive support-query features representing the same semantics but
are spatially apart from each other in long or short distance, still
require further studies. This can be understood from following
aspects.

First, objects often present different scales, poses, etc., with vari-
ous backgrounds in the images, and in fine-grained image classi-
fication the objects play more important roles than backgrounds.
We thus need to differentiate the foreground objects from the back-
ground, and enhance the discriminative object features that are
useful for fine-grained classification, to do further spatial alignment.

Second, ensuring good long-range spatial matching of an object’s
support-query semantic features is indispensable for the few-shot
classification scenario. Since the number of training samples for a
class is very small, it is difficult to find a good matching between a
limited number of support images and lots of query images with
arbitrarily changing object poses, scales and locations, as illustrated
in Figure 1. Therefore, the designed network should be able to
transform a support image containing misaligned object semantics
with the query image from a long spatial distance range, to make
the same object present similar semantic distribution in both the
query and support images.

Third, a precise short-range spatial matching is also crucial for
the fine-grained classification scenario which is more sensitive to

local part changes. This is because there often exist larger intra-
class variations than inter-class one for fine-grained classification,
due to the local short-range part variations, such as beak rotation
of a bird in different images. This phenomenon can be alleviated if
the local features of a support object can be spatially aligned with
those of a query object.

To this end, we propose an object-aware long-short-range spatial
alignment network to keep support-query object semantic consis-
tency, for few-shot fine-grained image classification. The proposed
network architecture consists of three sub-networkmodules. Firstly,
a Foreground Object Enhancement (FOE) module is designed to
emphasize the discriminative parts of the input images via exploit-
ing deformable convolution and attention extraction. Secondly, an
object-level Long-range Semantic Correspondence (LSC) module is
designed to transform semantic features of the support image to
a new distribution, which is aligned with that of the query image
from a long-range distance. In this way, the issue of lacking training
images under the few-shot scenario can be alleviated. Specifically,
to match semantically correlated regions between each pair of sup-
port and query features, a semantic correlation matrix is computed.
A higher value in the matrix indicates semantically more similar
regions. Thirdly, a Short-range Spatial Manipulation (SSM) mod-
ule is developed to further refine the alignment of local regions
of an object under the fine-grained classification. Specifically, the
SSM learns the short-range feature coordinate offsets from query
features to support features on the basis of the long-range aligned
support features.

We conduct extensive experiments on several common bench-
marks including the CUB, Stanford Cars, StanfordDogs andNABirds
datasets, and their experimental results demonstrate that the pro-
posed spatial alignment network can bring consistent performance
gains for the few-shot fine-grained classification task. Further, we
extend this fine-grained classification task to cross-domain scenario,
to validate the generalization capability of the proposed approach
in the wild.

The main contributions of this paper can be summarized as
follows:
1) We reveal a crucial aspect to improve the fine-grained classifi-

cation performance under the few-shot scenario, namely, the
long-shot-range spatial alignment between support and query
features, which is a pioneer to recognize fine-grained objects.

2) To align semantic features between various query images and a
support image, we propose an FOE module and an LSC module
for discriminative feature emphasis and object-level semantic
distribution alignment, followed by an SSM for local part-level
semantic alignment.

3) Extensive experiments on four few-shot fine-grained bench-
marks validate that the proposed alignment network brings con-
sistent performance gains under the 1- and 5-shot fine-grained
classification scenarios.

2 RELATEDWORKS
2.1 Few-shot Learning
Few-shot learning is to learn the modeling of new samples based
on a limited number of labeled samples. Most existing works can
be roughly categorized into two classes.
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Figure 2: The architecture of our proposed object-aware long-short-range spatial alignment network, consisting of a selected
backbone network, a ForegroundObject Enhancement (FOE), a Long-range Semantic Correspondence (LSC), and a Short-range
Spatial Manipulation (SSM). To clearly illustrate the whole framework, we only visualize a support image having the same
object category as the query image. GAP denotes global average pooling.

In the first class, to achieve quick adaptation to new tasks, most
works focus on how to learn a good initialization of parameters.
MAML [12] first proposes that a model can be adapted to new
tasks with only a few gradient descent steps. LEO [34] further
improves this method via a parameter generative model applied in
low-dimensional latent space. Another solution is MetaOptNet [25],
where the goal is to learn a well-generalized feature embedding of
novel classes with a linear support vector machine classifier.

The other class is mainly metric-based methods, which aim to
find suitable measurements to quantify the relations between the
query images and the given support images. Matching network [42]
introduces attention mechanism with cosine distance to compute
the similarity and designs a Full Context Embedding module. Pro-
totypical Network [36] represents each class by calculating the
mean features of support images and use Euclidean distance to clas-
sify the samples. A deep learnable metric is proposed by Relation
Network [38] to replace the previous fixed measurement. Further-
more, to make full use of the limited number of labeled samples, the
semantic alignment approach has been explored in recent works.
SAML [15] proposes to align semantic information by highlight-
ing corresponding local regions. ACMM [17] learns to cross-model
align word vectors and pairwise regions. Besides, [3] proposes to
align two self-similarity matrices instead of the relation between
the features given two different images. However, these methods
try to align features in an one-step way or a global matching way,
which is insufficient for fine-grained case where local parts often
require minor adjustments. By comparison, our work aims to mine
the semantic correspondence between pair-wise image regions by
long-short-range spatial alignment, to transform support features
containing misaligned semantics with the query features from both
long and short spatial distance ranges.

2.2 Fine-grained Image Classification
Fine-grained image classification requires the model to capture the
most discriminative features under the interference from various
postures of objects and backgrounds, and use these features for
image classification.

Early works mainly [2, 4, 30, 47, 50] rely on various prior infor-
mation to localize discriminative parts, such as part annotations and
bounding boxes, which rely heavily on manual annotations. Other
works [7, 8, 13, 18, 20, 31, 37, 45, 51] tend to utilize only image-level
annotations to localize discriminative parts. In the work of [31], the
high-order feature representation is extracted by a bilinear pooling
model. This work is further improved by various feature pooling
methods, such as compact bilinear pooling [13], kernel pooling [7],
etc. In [18], a spatial transformer network is proposed to perform
affine transformation to align global features. However, the affine
transformation can only perform rotation, shearing, scaling, and
translation. This is not enough to handle the huge intra-class differ-
ences when the query image and the support image are drastically
distinct from each other even if they are of the same sub-class. In
this work, we aim to more effectively align the discriminative fea-
tures for fine-grained classification by a designed spatial alignment
network on the enhanced features.

2.3 Few-shot Fine-grained Image Classification
Few-shot fine-grained image classification [16, 26, 27, 40, 46, 52, 52]
aims to distinguish the novel sub-classes given a limited number of
labeled samples for a generic class. In the work of [46], a bilinear
pooling network is proposed to encode features, which are then sent
to multiple sub-classifiers to predict the label. In [52], a gradient-
based meta-learning method is proposed to learn a task-specified
initialization for the classifier with multi-attention mechanisms.
However, limited effort has been devoted to reducing the effects of
local misalignment. The global feature alignment is utilized in [16]
by learning a transformation matrix to minimize the Euclidean
distance between input pairs. More recently, pose normalization
alleviates this problem but still requires part annotations during
training phase [39]. In contrast, we do not need local part annota-
tions for alignment, which relieves experts from expensive labeling
and makes our method flexible to use. In our work, we propose a
long-short-range spatial alignment network to align support-query
semantics for few-shot fine-grained classification.
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3 METHOD
The overview of the proposed approach is shown in Figure 2, where
both long- and short-range spatial alignment for keeping semantic
consistency between the support and query images are imposed.
For easy understanding, we first introduce the problem definition
of few-shot classification and the common meta-learning baseline
models. Next, we give the detailed description of the proposed
spatial alignment method. Finally, the overall loss function is given.

3.1 Preliminaries
Problem Definition. In the standard setting of few-shot classi-
fication, the goal is to learn a generalized network which can be
easily adapted to the novel classes 𝐷𝑛 with only a few labeled sam-
ples, given a large-scale labeled dataset of base classes 𝐷𝑏 , where
𝐷𝑛 ∩ 𝐷𝑏 = ∅. In this work, we study an 𝑁 -way 𝐾-shot few-shot
task, where both the 𝑠𝑢𝑝𝑝𝑜𝑟𝑡-𝑠𝑒𝑡 𝑆 and the 𝑞𝑢𝑒𝑟𝑦-𝑠𝑒𝑡 𝑄 are ran-
domly drawn from the 𝑋𝑏 for meta-training, and from the 𝑋𝑛 for
meta-testing. Besides, the 𝑠𝑢𝑝𝑝𝑜𝑟𝑡-𝑠𝑒𝑡 𝑆 and the 𝑞𝑢𝑒𝑟𝑦-𝑠𝑒𝑡 𝑄 are
sampled from the same 𝑁 classes, with each class containing 𝐾
labeled samples and 𝑈 unlabeled samples. Our goal is to assign
labels to the unlabeled 𝑁 ×𝑈 samples in the 𝑞𝑢𝑒𝑟𝑦-𝑠𝑒𝑡 𝑄 .
Paired-feature Matching Baseline. To make use of the support
set for matching with the query set, one straightforward meta-
leaning baseline model is to directly compare the query features and
the given support features in the N-way prediction [36]. Specifically,
given a pair of images (𝐼𝑆 , 𝐼𝑄 ) sampled from the support set 𝑆 and
query set 𝑄 respectively, the baseline model first feeds them into
the backbone 𝐹 to extract a pair of high-level features

(
𝑓𝑆 , 𝑓𝑄

)
,

where 𝑓𝑆 = 𝐹 (𝐼𝑆 ). Next, a class-wise Euclidean distance between
the query features 𝑓𝑄 to be predicted and the 𝑛-th class support
features 𝑓𝑛,𝑆 is calculated to further represent the inter- and intra-
class relationships of the paired features as follows:

𝐿𝑐𝑙𝑠 (𝐹 ; 𝑆) =
∑︁

(𝐼𝑄 ,𝑦𝑄 ) ∈𝑄 𝑙𝑜𝑔 𝑃 (𝑦𝑄 = 𝑛 |𝐼𝑄 ; 𝑆)

=
𝑒𝑥𝑝 (−𝑑 (𝑓𝑛,𝑆 , 𝑓𝑄 ))∑

𝑛′∈𝑁 𝑒𝑥𝑝 (−𝑑 (𝑓𝑛′,𝑆 , 𝑓𝑄 ))
,

(1)

where 𝑑(·, ·) denotes Euclidean distance between two features, and
𝑦𝑄 is the query label of the corresponding query image 𝐼𝑄 . Note
that the query label can only be utilized during the meta-training
phase, and 𝑓𝑛,𝑆 denotes support features of the 𝑛-th class. Besides,
𝐿𝑐𝑙𝑠 is the classification loss function for the query images.

Considering that postures, scales and local details of objects in
fine-grained images vary greatly, it is hard to classify the features
of these objects with subtle differences by simply employing the
above meta-learning models such as [36, 38, 42].

Generally, the spatial alignment is addressed by matching paired
features [24, 28] or performing affine transformation [18]. The
former method is a parameter-free way. The latter method is a
learnable way of spatial alignment which is often applied for two
images with significant spatial overlapping. In light of these, we de-
sign a long-shot-range (global-to-local) spatial alignment network
consisting of a Foreground object enhancement (FOE), a Long-
range Semantic Correspondence (LSC) and a Short-range Spatial
Manipulation (SSM) for each pair of support and query features.

3.2 Foreground Object Enhancement
In most scenarios, the features 𝑓 ∈ R𝐶×𝐻×𝑊 extracted from the
images usually present high responses in the object positions, where
𝐶 is the number of channels, 𝐻 and𝑊 denote the height and width
of the features, respectively. However, due to the scattered locations,
diverse postures and various scales of the fine-grained objects, it
is difficult for the classification network to learn a good mapping
between the feature and its real image label. On the other hand,
the features 𝑓 extracted by the backbone network 𝐹 may not be
spatially consistent with the input image. This is caused by the
fact that each local feature 𝑓 𝑥,𝑦 ∈ R𝐶×1×1 at the position of (𝑥,𝑦)
shares the same receptive field because of the standard convolutions
in the backbone network 𝐹 . Consequently, some weakly related
or unrelated areas with the object may also be activated, which
will interfere the object feature’s spatial alignment and subsequent
feature comparisons.

Therefore, to refine the feature 𝑓 𝑥,𝑦 to weaken background dis-
turbance and encourage higher foreground object response, we
develop a foreground object enhancement (FOE) module and at-
tach the module after the backbone network 𝐹 , which consists of
a deformable convolution block 𝜑 and a spatial attention block.
Particularly, the deformable convolution block with learnable pa-
rameters 𝜑 predicts offset sampling positions, to model geometric
transformation. In this way, an input-dependent receptive field can
be generated to fit the fine-grained objects more precisely. The
refined feature is denoted as 𝜑 (𝑓 ).

In order to fully suppress the noisy background while emphasiz-
ing the foreground objects for both support and query features, we
use a soft attention maskMA as a weight-map of the features.

In detail, given refined features 𝜑 (𝑓 ) ∈ R𝐶×𝐻×𝑊 , we first per-
form the global average pooling (GAP) operation for the 𝜑 (𝑓 ) to
obtain the global semantic representations 𝑢 ∈ R𝐶×1×1. Next, the
soft mask MA ∈ R1×𝐻×𝑊 is obtained by calculating the cosine
similarities between the global semantics 𝑢 ∈ R𝐶×1×1 and local
feature 𝜑 (𝑓 )𝑥,𝑦 ∈ R𝐶×1×1 at the local position of (𝑥,𝑦), which can
approximately reflect the spatial distribution of the discriminative
semantic parts as follows:

MA𝑥,𝑦 =
〈
∥𝑢∥2 , ∥𝜑 (𝑓 )𝑥,𝑦 ∥2

〉
, (2)

where ⟨·, ·⟩ denotes dot product between the two vectors, ∥ · ∥ is the
L2 normalization, andMA𝑥,𝑦 represents the semantic correlations
between global semantics and each local feature at the position
(𝑥,𝑦). Besides, due to that the values of the soft mask obtained via
Eq. 2 are within a range of MA ∈ [−1, 1]𝐻×𝑊 , we calculate the
normalized mask byMA = (MA + 1)/2. Then, the output features
¤𝑓 ∈ R𝐶×𝐻×𝑊 of the FOE is formulated as follows:

¤𝑓 = MA ⊙ 𝜑 (𝑓 ), (3)

where ⊙ indicates the spatial-wise multiplication.

3.3 Long-range Semantic Correspondence
Given the re-weighted features ¤𝑓 above, we propose to spatially
transform the support features ¤𝑓𝑆 to align with the query features
¤𝑓𝑄 especially for those semantic-related regions. In order to map
the features into low dimensional space, we use 𝑔 with kernel size
of 1 × 1 to reduce the dimensions of the above support features
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and query features. Next, the semantic correlation matrix 𝑀𝑇 ∈
R𝐻𝑊 ×𝐻𝑊 is obtained as follows:

𝑀𝑇𝑖, 𝑗 =
⟨ ®𝑓 𝑖
𝑄
,

®
𝑓
𝑗

𝑆
⟩

| | ®𝑓 𝑖
𝑄
| | | | ®𝑓 𝑗

𝑆
| |
, (4)

where ®𝑓𝑄 ∈ R𝐶×𝐻𝑊 and ®𝑓𝑆 ∈ R𝐶×𝐻𝑊 represent the spatially
vectorized features of the re-weighted support features ¤𝑓𝑆 and query
features ¤𝑓𝑄 , respectively.

Given the semantic correlation matrix 𝑀𝑇𝑖, 𝑗 , solving the long-
range semantic correspondence is simplified as performing spatial
alignment for the highly correlated positions in the matrix𝑀𝑇𝑖, 𝑗 .
We treat this as a global sampling problem supposing that the
support features ®𝑓𝑆 can be spatially rearranged to match the query
features ®𝑓𝑄 . Specifically, each row in the semantic correlationmatrix
𝑀𝑇𝑖, 𝑗 should be normalized to sum to 1, in order to be used as a
weighting vector for the support features ®𝑓𝑆 as follows:

𝑀𝑇 𝑖,𝑗 =
𝑒𝑥𝑝 (𝑀𝑇𝑖,𝑗 )∑𝐻𝑊

𝑘=1 𝑒𝑥𝑝 (𝑀𝑇𝑘,𝑗 )
, (5)

where𝑀𝑇 𝑖, 𝑗 denotes the row-wise normalized semantic correlation
matrix.

Further, the spatially transformed support features 𝑓 𝑆 ∈ R𝐶×𝐻𝑊
is obtained by calculating the matrix multiplication between the
row-wise normalized semantic correlation matrix𝑀𝑇 and the trans-
pose of vectorized support features ®𝑓𝑆 as follows:

𝑓 𝑆 = (𝑀𝑇 ®𝑓𝑆
𝑇
)𝑇 . (6)

3.4 Short-range Spatial Manipulation
Globally aligning features belonging to the same class via the above
LSC is beneficial to class-agnostic feature variations such as object
postures and positions. However, some short-range feature vari-
ations of local details for fine-grained objects, such as the shape
and rotation of a bird beak, being crucial for sub-category bird
recognition, cannot be modeled only by the LSC. Accordingly, we
further develop a short-range spatial manipulation module to align
those nuanced parts of the paired support and query samples for
feature refinement, on the basis of well-aligned long-range features.
Our idea is to predict a coordinate offset for each local feature
𝑓
𝑥,𝑦

𝑆 ∈ R𝐶×1×1 at the original position (𝑥,𝑦).
Specifically, the SSM is composed of three stages: a sampling

grid, a coordinate offset predictor ℎ, and a differentiable feature
sampling.

First, given the well transformed features 𝑓 𝑆 after LSC, we first
generate the original coordinate grid, whose values are within a
range of [−1, 1]𝐻×𝑊 ×2, where the number 2 denotes two chan-
nels, representing x- and y-coordinates, respectively. The left-top
coordinate value of the grid is denoted as (−1,−1) while the corre-
sponding coordinate value in the right bottom is denoted as (1, 1).
Note that the local feature 𝑓 𝑥,𝑦𝑆 at the same position (𝑥,𝑦) of differ-
ent channels shares the same coordinate.

Next, we concatenate the transformed support features 𝑓 𝑆 and
the query features ¤𝑓𝑄 , and feed the concatenated features into the
subsequent offset predictor. In this way, the offset predictor can

generate an offset grid, representing the position offsets (Δ𝑥,Δ𝑦).
For each initial coordinate (𝑥,𝑦) of the support feature 𝑓 𝑥,𝑦𝑆 , we
calculate its corresponding rectified sampling grid (𝑥,𝑦) as follows:(

𝑥

𝑦

)
=

(
𝑥

𝑦

)
+
(
Δ𝑥
Δ𝑦

)
, (7)

where Δ𝑥 = ℎ( [𝑓 𝑆 , ¤𝑓𝑄 ]) denotes the offset predictor with learnable
parameters ℎ, and [·, ·] is the concatenation operation.

Finally, the sampled value of the local feature 𝑓 𝑥,𝑦
𝑆

at the recti-
fied position of (𝑥 , 𝑦) can be obtained by calculating the distance-
weighted sum of its four neighboring features as follows:

𝑓
𝑥,𝑦

𝑆
=

𝐻∑︁
𝑛

𝑊∑︁
𝑚

(𝑓 𝑛,𝑚𝑆 𝑚𝑎𝑥 (0, 1 − |𝑥 −𝑚 |) 𝑚𝑎𝑥 (0, 1 − |𝑦 − 𝑛 |)).

(8)

3.5 Overall Loss Function
In the meta-training stage, the task is to learn a task-agnostic back-
bone network 𝐹 serving as the classification network. Specifically,
an N-way K-shot task will be randomly sampled from a task distri-
bution 𝑃 (T ) in each episode𝑇 . Given N×1 labeled images from the
support set 𝑆 , the final network tries to predict the sub-category
label for unlabeled query images from the query set 𝑄 . Based on
the selected backbone network 𝐹 and well-designed 𝜑 , 𝑔, and ℎ, the
overall meta-loss considering the long-shot-range spatial alignment
can be defined as follows:

𝐿𝑐𝑙𝑠 (𝐹, 𝜑, 𝑔, ℎ; 𝑆) =
∑︁

(𝐼𝑄 ,𝑦𝑄 ) ∈𝑄 𝑙𝑜𝑔 𝑃 (𝑦𝑄 = 𝑛 |𝐼𝑄 ; 𝑆)

=
𝑒𝑥𝑝 (−𝑑 (ℎ(𝑔(𝜑 (𝑓𝑛,𝑆 ))), 𝑓𝑄 ))∑

𝑛′∈𝑁 𝑒𝑥𝑝 (−𝑑 (ℎ(𝑔(𝜑 (𝑓𝑛′,𝑆 ))), 𝑓𝑄 ))
.

(9)

4 EXPERIMENTS
We conduct our experiments on four fine-grained benchmark datasets
including CUB, Stanford Dogs, Stanford Cars and NABirds. All ex-
periments of the proposed method are implemented by Pytorch,
and all images are resized to 84 × 84 pixels.

4.1 Dataset
CUB [43] is the most widely used fine-grained dataset, containing
11,788 images collected from 200 bird categories. We follow the
same split used in [49], which is divided into 100, 50 and 50 classes
for meta-train, meta-validation and meta-test, respectively.
Stanford Dogs [19] includes 120 sub-classes of dogs and 20,580
images in total. Following [52], we adopt 70, 20, 30 classes for meta-
train, meta-validation and meta-test, respectively.
Stanford Cars [21] contains 16,185 images coming from 196 sub-
classes. Following [52], we adopt 130, 17, 49 classes for meta-train,
meta-validation and meta-test, respectively.
NAB [41] contains 555 sub-classes of the North American bird. The
split is consistent with [16], which uses 350, 66, 139 categories for
meta-train, meta-validation and meta-test, respectively.

4.2 Network Structure
To make a fair comparison with prior works, we adopt the com-
monly used Conv-64 [36, 48] and ResNet-12 [6, 33, 49] as the
backbone network 𝐹 , where the size of the output features 𝑓 is
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Method Backbone Stanford Dogs Stanford Cars NABirds
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Matching Net† (NIPS-16) [42] Conv-64 35.80±0.99 47.50±1.03 34.80±0.98 44.70±1.03 - -
Prototypical Net† (NIPS-17) [36] Conv-64 37.59±1.00 48.19±1.03 40.90±1.01 52.93 ± 1.03 - -
RelationNet (CVPR-18) [38] Conv-64 43.29±0.46⋄ 55.15±0.39⋄ 47.79±0.49⋄ 60.60±0.41⋄ 64.34 ±0.81* 77.52±0.60*

GNN† (ICLR-18) [14] Conv-64 46.98±0.98 62.27±0.95 55.85±0.97 71.25±0.89 - -
CovaMNet (AAAI-19) [27] Conv-64 49.10±0.76 63.04±0.65 56.65±0.86 71.33±0.62 60.03±0.98* 75.63±0.79*

DN4 (CVPR-19) [26] Conv-64 45.73±0.76 66.33±0.66 61.51±0.85 89.60±0.44 51.81±0.91* 83.38±0.60*
LRPABN (TMM-20) [16] Conv-64 45.72±0.75 60.94±0.66 60.28±0.76 73.29±0.58 67.73±0.81* 81.62±0.58*
MattML (IJCAI-20) [52] Conv-64 54.84±0.53 71.34±0.38 66.11±0.54 82.80±0.28 - -
ATL-Net (IJCAI-20) [9] Conv-64 54.49±0.92 73.20±0.69 67.95±0.84 89.16±0.48 - -

Ours Conv-64 55.53±0.45 71.68±0.36 70.13±0.48 84.29±0.31 75.60±0.49 87.21±0.29
Ours ResNet-12 64.15±0.49 78.28±0.32 77.03±0.46 88.85±0.46 83.76±0.44 92.61±0.23

Table 1: 5-way classification accuracies (%) on the Stanford Dogs, Stanford Cars and NABirds datasets respectively. The ±
denotes that the results are reported with 95% confidence intervals over 2000 test episodes. †: reported in [27]. ⋄: reported
in [52]. * represents that the results are reported in [16]. Other results are reported in the original papers.

Method Backbone CUB
1-shot 5-shot

Matching Net◦ (NIPS-16) [42] Conv-64 67.73±0.23 79.00±0.16
ProtoNet◦ (NIPS-17) [36] Conv-64 63.73±0.22 81.50±0.15
FEAT (CVPR-20) [48] Conv-64 68.87±0.22 82.90±0.15

Ours Conv-64 73.07±0.46 86.24±0.29
ProtoNet* (NIPS-17 [36] ResNet-12 66.09±0.92 82.50±0.58

RelationNet* (CVPR-18) [38] ResNet-34 66.20±0.99 82.30±0.58
MAML* (ICML-17) [12] ResNet-34 67.28±1.08 83.47±0.59

cosine classifier* (ICLR-17) [5] ResNet-12 67.30±0.86 84.75±0.60
Matching Net* (NIPS-16) [42] ResNet-12 71.87±0.85 85.08±0.57
DeepEMD (CVPR-20) [49] ResNet-12 75.65±0.83 88.69±0.50

ICI (CVPR-20) [44] ResNet-12 76.16 90.32
Ours ResNet-12 77.77±0.44 89.87±0.24

Table 2: 5-way classification accuracies (%) on the CUB
dataset. The definition of ± follows Table 1. ◦ denotes the
results are reported in [48]. *: reported in [49].

64 × 10 × 10 and 512 × 10 × 10, respectively. Note that we remove
the last pooling layer of the backbone network in order to preserve
the spatial resolution of features, and no additional parameters are
introduced.
The operation 𝑔 used in LSC contains a 1 × 1 convolutional layer, a
BatchNorm layer, a ReLU layer and a 1 × 1 convolutional layer.
The offset predictor ℎ used in SSM consists of three convolutional
blocks. The first two blocks each consists of a convolutional layer
with kernel size of 3 × 3, a BatchNorm layer, and a ReLU layer. The
last block contains a 3 × 3 convolutional layer and a Tanh layer.

4.3 Experimental Setup
Pre-training Phase. Following the pre-training setting in [6], we
insert a fully-connected layer at the end of the backbone network,
and optimize the network on base classes via minimizing the cross-
entropy loss. Standard data augmentation including random crop
and horizontal flipping is employed. For all datasets, we train 200
epochs with a batch size of 128. SGD optimizer is used with a

learning rate of 0.1, a decay factor of 0.1, and the learning rate
decays at 85 and 170 epochs. The weight decay for Conv-64 and
ResNet-12 is 0.0005. After the pre-training phase, we remove the
fully-connected layer for the next two meta-training phases.
Episodic Meta-training LSC Phase. For all three datasets, we
train 200 epochs with 200 batches per epoch for both 1- and 5-shot
settings. Each batch contains 4 episodes, and each episode includes 5
classes with 15 query images per class. Adam optimizer with a fixed
learning rate of 0.001 is applied for CUB, NABirds, and Stanford
Cars, and 0.0005 for Stanford Dogs, respectively. Data augmentation
methods such as random crop, horizontal flip, and color jittering
are used. Moreover, the best model is selected according to its
classification accuracy on the meta-validation set.
Episodic Meta-training SSM Phase. In this phase, we follow the
settings of data augmentation and model selection in the above
meta-training LSC phase. Besides, Adam optimizer is used with a
fixed learning rate of 0.0001 for Stanford Cars, NABirds and CUB,
0.00005 for Stanford Dogs, respectively. 50 epochs are trained for
all datasets.

4.4 Experimental Results
Stanford Dogs, Stanford Cars and NABirds. Table 1 reports
the 5-way classification results on the Stanford Dogs, Stanford
Cars and NABirds, respectively. During the meta-testing phase, the
evaluation results are calculated with 95% confidence intervals over
2000 test episodes.

It can be seen that the proposed method achieves the best re-
sults under the most settings on three datasets. Specifically, our
method outperforms state-of-the-art few-shot fine-grained classifi-
cation methods by 0.69%, 4.02%, 7.87% under 1-shot learning on
Stanford Dogs, Stanford Cars and NABirds respectively. Besides,
we conduct experiments on another backbone, ResNet-12, further
showing the generalization of our methods.

NABirds is more challenging than CUB due to its diverse distri-
bution of categories. To further show our method’s generalization
ability in fine-grained classification, we conduct the experiments
on NABirds following the setup in [16]. As shown in Table 1, the
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Baseline FOE LSC SSM CUB Stanford Cars
1-shot 1-shot

✓ 63.89±0.49 50.67±0.44
✓ ✓ 69.22±0.51 60.62±0.49
✓ ✓ 69.50±0.49 64.57±0.49
✓ ✓ ✓ 70.80±0.51 62.83±0.48
✓ ✓ ✓ 71.35±0.47 67.99±0.49
✓ ✓ ✓ ✓ 73.07±0.46 70.13±0.48

Table 3: Ablation studies of each module on CUB and Stan-
ford Cars 5-way 1-shot classification task. Conv-64 is used
as the backbone. The definition of ± follows Table 1.

Baseline FOE CUB Dogs Cars
𝜑 MA 1-shot 1-shot 1-shot

✓ 63.89±0.49 45.92±0.44 50.67±0.44
✓ ✓ 63.85±0.48 46.48±0.44 50.64±0.45
✓ ✓ 69.19±0.49 50.28±0.45 64.31±0.48
✓ ✓ ✓ 69.50±0.49 50.40±0.43 64.57±0.49

Table 4: Ablation studies of FOE on three datasets on 5-way
1-shot classification task. Conv-64 is used as the backbone.
The definition of ± follows Table 1.

Baseline FOE LSC CUB Dogs Cars
𝑔 𝑀𝑇 1-shot 1-shot 1-shot

✓ 63.89±0.49 45.92±0.44 50.67±0.44
✓ ✓ 67.61±0.51 50.39±0.49 59.85±0.50
✓ ✓ ✓ 69.22±0.51 50.39±0.49 60.62±0.49
✓ ✓ 69.50±0.49 50.40±0.43 64.57±0.49
✓ ✓ ✓ 71.24±0.48 53.18±0.45 67.83±0.48
✓ ✓ ✓ ✓ 71.35±0.47 55.06±0.46 67.99±0.49

Table 5: Ablation studies of LSC on three datasets on 5-way
1-shot classification task. Conv-64 is used as the backbone.
The definition of ± follows Table 1.

proposed method also achieves the highest classification accuracy
over the existing methods.
CUB. Considering that the existing state-of-the-art few-shot learn-
ing methods also report the results on CUB, we carry out experi-
ments following the same setting used in [48]. Note that all com-
pared methods use the images cropped by bounding boxes. In Ta-
ble 2, it can be observed that the proposed method achieves superior
classification accuracy in most scenarios, showing the advantages
of the proposed method under data-scarce scenarios.

4.5 Insight Analyses
Module-wise Ablation Study. In this section, we investigate the
impact of individual module. The overall results are presented in
Table 3. Exciting accuracy gains come from the following aspects.
Firstly, LSC significantly increases the accuracy of the baseline
model from 63.89% to 69.22% on CUB. Secondly, by introducing
FOE for object feature enhancement, the accuracy of the baseline

Method Backbone CUB → NABirds
1-shot 5-shot

Baseline ResNet-12 45.70±0.45 63.84±0.40
Ours ResNet-12 48.50±0.48 66.35±0.41

Table 6: Cross-domain adaptation from the CUB to NABirds
dataset. The results are reported on 5-way classification ac-
curacies (%). The definition of ± follows Table 1.

model can be increased. Thirdly, SSM can further boost the accuracy
to a higher level.
Ablation Study of FOE. We evaluate the impact of 𝜑 and MA
employed in FOE on three datasets. Table 4 presents that each com-
ponent brings performance gains due to that the feature learning
is focused on the foreground object. Besides. the most significant
gain comes from 𝜑 , 5.3%, 4.5%, 13.64% for CUB, Stanford Dogs
and Stanford Cars, respectively. Further, we observe thatMA can
further improve the results by suppressing semantically irrelevant
regions.
Ablation Study of LSC. To further study the impact of 𝑔 and𝑀𝑇
in LSC, we conduct experiments in Table 5. The addition of 𝑔 brings
further improvement to the results. Considering that certain gains
are due to FOE as discussed above, we report the results when only
LSC is employed on three datasets. It can be seen that LSC brings
significant improvements to the baseline model, by 5.33%, 4.47%,
9.95% for CUB, Stanford Dogs and Stanford Cars, respectively. Also,
LSC can further boost the accuracy after introducing FOE, which
shows the effectiveness of the proposed spatial alignment.
Cross-domain Fine-grained Classification.We further extend
the study of few-shot fine-grained classification to a real-world ap-
plication. Considering such an important fine-grained recognition
scenario: given generic bird categories widely collected from the
Internet, the goal of cross-domain fine-grained classification is to
adapt the well-trained fine-grained classifier trained on the generic
bird categories to specific birds living in a particular location such
as the North American. To our best knowledge, this is the first
attempt that the cross-domain fine-grained classification is studied
under the few-shot scenario. It can be seen from Table 6 that the
proposed method is beneficial to recognize rarely seen species of
birds, which is helpful for the real-world applications.

4.6 Visualization Results
To demonstrate that the proposed spatial alignment network is
beneficial for the baseline model, we visualize the support and
query features, and the corresponding aligned support features.
Specifically, in Figures 3, 4 and 5, the heatmaps are obtained via a
max-pooling operation along the channel dimension of the features,
so that spatial information can be effectively preserved.
Analyses of LSC and SSM. The results from Figures 3 and 4 show
two aspects of observations as follows. Firstly, for input image pairs
of the same sub-class, semantic information for distinguishing fine-
grained objects can be enhanced, which ensures the final good
results of object-aware spatial alignment (shown in Figure 4). Sec-
ondly, for input image pairs of different sub-classes, our LSC sup-
presses the high response areas of the support features. As a result,
the inter-class feature discrepancies will become much larger, and
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Figure 3: Visualization results of features after the LSC module on CUB and Stanford Cars. Note that two datasets show the
same situation, where the support image (a) is of the same class and (b) ∼ (e) are of different classes with the query image,
respectively. LSC can produce aligned support features having highest similarities in the same class.
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Figure 4: Visualization results of features after the LSCmod-
ule and SSM module on Stanford Dogs dataset. Support Im-
age (a), (b) and the query image are of the same class.
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Figure 5: Visualization results of features after the LSCmod-
ule on Stanford Dogs dataset. The query image and support
image (a) are of the same class, support image (b) is of differ-
ent class. The visualized matrices (1) and (3) represent the
semantic correlation matrices before the LSC module. The
matrices (2) and (4) are the visualized semantic correlation
matrices after the LSC module.

the query image will be classified as a different subclass from the
support image. Besides, Figure 4 shows the features after applying
the LSC and SSM, respectively, to further illustrate the alignment
performance of our network in different stages.

Analyses of semantic correlation matrix in LSC. We conduct
further studies from two aspects to demonstrate the effectiveness of
the proposed semantic correlation matrix in LSC. The first aspect is
to show whether high response values in the semantic correlation
matrix can represent the semantically matched regions between the
support and query images. The second aspect is to showwhether the
support features spatially transformed by the LSC are successfully
matched with the query feature.

The first aspect can be well demonstrated by the semantic cor-
relation matrix (1) in Figure 5. The high response regions in the
matrix indicate that the corresponding regions (cyan and orange
regions) in the support and query features are highly correlated
with each other. The second aspect can be well demonstrated by
the matrices (2) and (4) in Figure 5, which represent the correlation
matrices between the transformed support features and the query
features. Note that higher response values on the diagonal of the
correlation matrix imply stronger correlation between the trans-
formed support features and the query features. It can be seen that
the top left of the diagonal of the correlation matrix (2) are highly
correlated and more concentrated on the diagonal, and closer to a
symmetric matrix than those in the previous stage, which shows
the transformed support features have good spatial match with
the query features. In contrast, many rows of the matrix (4) are
suppressed due to its semantic differences, which is also reflected
on the diagonal of the correlation matrix.

5 CONCLUSION
We have introduced an object-aware long-short-range spatial align-
ment approach to boost the performance of few-shot fine-grained
image classification. A foreground object enhancement module is
first developed to strengthen those discriminative object features.
Then a long-range semantic correspondence module is proposed to
find a transferable feature transform for the enhanced features, to
do the global support-query spatial matching. Finally, a short-range
spatial manipulation module is developed to further refine the long-
range transformed output by aligning more short-range local parts
in the object. Experimental results on four benchmarks demonstrate
the effectiveness and superiority of our proposed method.
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