skip to main content
10.1145/3400302.3415625acmconferencesArticle/Chapter ViewAbstractPublication PagesiccadConference Proceedingsconference-collections
research-article
Public Access

Effective analog/mixed-signal circuit placement considering system signal flow

Published: 17 December 2020 Publication History

Abstract

Placement is among the most critical steps in analog/mixed-signal (AMS) circuit layout synthesis. It implicitly determines the wiring topology and therefore has considerable impacts on post-layout parasitics and coupling. Existing analog placement techniques are mainly focusing on geometric constraints in analog building blocks. However, there yet lacks an effective way to consider the systemlevel signal flow for sensitive AMS circuits. Leveraging prior knowledge from schematics, we propose to consider the critical signal paths in automatic AMS placement and present an efficient framework. Experimental results demonstrate our proposed framework's efficiency and effectiveness with a 22.8% reduction in routed wire-length compared to state-of-the-art AMS placer and 10 dB improvement in the signal-to-noise-and-distortion ratio (SNDR) for an ADC.

References

[1]
F. Balasa and K. Lampaert. Module placement for analog layout using the sequence-pair representation. In Proc. DAC, 1999.
[2]
F. Balasa, S. C. Maruvada, and K. Krishnamoorthy. Efficient solution space exploration based on segment trees in analog placement with symmetry constraints. In Proc. ICCAD, 2002.
[3]
F. Balasa, S. C. Maruvada, and K. Krishnamoorthy. Using red-black interval trees in device-level analog placement with symmetry constraints. In Proc. ASPDAC, 2003.
[4]
F. Balasa, S. C. Maruvada, and K. Krishnamoorthy. On the exploration of the solution space in analog placement with symmetry constraints. IEEE TCAD, 23(2):177--191, 2006.
[5]
H. Chen, K. Zhu, M. Liu, X. Tang, N. Sun, and D. Z. Pan. Toward silicon-proven detailed routing for analog and mixed signal circuit. In Proc. ICCAD, 2020.
[6]
H.-C. C. Chien, H.-C. Ou, T.-C. Chen, T.-Y. Kuan, and Y.-W. Chang. Double patterning lithography-aware analog placement. In Proc. DAC, 2013.
[7]
P.-Y. Chou, H.-C. Ou, and Y.-W. Chang. Heterogeneous B*-Trees for analog placement with symmetry and regularity considerations. In Proc. ICCAD, 2011.
[8]
J. M. Cohn, D. J. Garrod, R. A. Rutenbar, and L. R. Carley. KOAN/ANAGRAM II: New tools for device-level analog placement and routing. IEEE Journal Solid-State Circuits, 26(3):330--342, 1991.
[9]
J. Doenhardt and T. Lengauer. Algorithmic aspects of one-dimensional layout compaction. IEEE TCAD, 6(5):863--878, 1987.
[10]
Gurobi Optimization LLC. Gurobi optimizer reference manual, 2020.
[11]
D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Proc. ICLR, 2015.
[12]
S. Kuwabra, Y. Kohira, and Y. Takashima. An effective overlap removable objective for analytical placement. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 111(40), 2013.
[13]
C. Lemaréchal. Lagrangian relaxation. In M. Jünger and D. Naddef, editors, Computational Combinatorial Optimization, pages 112--156. Springer, 2001.
[14]
C.-W. Lin, J.-M. Lin, C.-P. Huang, and S.-J. Chang. Performance-driven analog placement considering boundary constraint. In Proc. DAC, 2010.
[15]
C.-W. Lin, C.-C. Lu, J.-M. Lin, and S.-J. Chang. Routability-driven placement algorithm for analog integrated circuits. In Proc. ISPD, 2012.
[16]
J.-M. Lin, G.-M. Wu, Y.-W. Chang, and J.-H. Chuang. Placement with symmetry constraints for analog layout design using TCG-S. In Proc. ASPDAC, 2005.
[17]
P.-H. Lin, Y.-W. Chang, and S.-C. Lin. Analog placement based on symmetry-island formulation. IEEE TCAD, 28(6):791--804, 2009.
[18]
P.-H. Lin and S.-C. Lin. Analog placement based on hierarchical module clustering. In Proc. DAC, 2008.
[19]
P.-H. Lin, H. Zhang, M. D. F. Wong, and Y.-W. Chang. Thermal-driven analog placement considering device matching. In Proc. DAC, 2009.
[20]
J. Liu, S. Dong, Y. Ma, D. Long, and X. Hong. Thermal-driven symmetry constraint for analog layout with cbl representation. In Proc. ASPDAC, 2007.
[21]
M. Liu, K. Zhu, J. Gu, L. Shen, X. Tang, N. Sun, and D. Z. Pan. Towards decrypting the art of analog layout: Placement quality prediction via transfer learning. In Proc. DATE, 2020.
[22]
M. Liu, K. Zhu, X. Tang, B. Xu, W. Shi, N. Sun, and D. Z. Pan. Closing the design loop: Bayesian optimization assisted hierarchical analog layout synthesis. In Proc. DAC, 2020.
[23]
D. Long, X. Hong, and S. Dong. Signal-path driven partition and placement for analog circuit. In Proc. ASPDAC, 2006.
[24]
Y.-S. Lu, Y.-H. Chang, and Y.-W. Chang. WB-Trees: A meshed tree representation for finfet analog layout designs. In Proc. DAC, 2018.
[25]
Q. Ma, L. Xiao, Y.-C. Tam, and E. F. Young. Simultaneous handling of symmetry, common centroid, and general placement constraints. IEEE TCAD, 30(1):85--95, 2011.
[26]
S. Nakatake, M. Kawakita, T. Ito, M. Kojima, M. Kojima, K. Izumi, and T. Habasaki. Regularity-oriented analog placement with diffusion sharing and well island generation. In Proc. ASPDAC, 2010.
[27]
W. C. Naylor, R. Donelly, and L. Sha. Non-linear optimization system and method for wire length and delay optimization for an automatic electric circuit placer, October 2001. Patent No. US6301693B1, Filed Dec. 16th., 1998, Issued Oct. 09th., 2001.
[28]
H.-C. Ou, H.-C. C. Chien, and Y.-W. Chang. Simultaneous analog placement and routing with current flow and current density considerations. In Proc. DAC, 2013.
[29]
H.-C. Ou, K.-H. Tseng, J.-Y. Liu, I.-P. Wu, and Y.-W. Chang. Layout-dependent effects-aware analytical analog placement. IEEE TCAD, 35(8):1243--1254, 2016.
[30]
Y. Pang, F. Balasa, K. Lampaert, and C.-K. Cheng. Block placement with symmetry constraints based on the o-tree non-slicing representation. In Proc. DAC, 2000.
[31]
A. Patyal, P.-C. Pan, A. K. A, H.-M. Chen, H.-Y. Chi, and C.-N. Liu. Analog placement with current flow and symmetry constraints using pcp-sp. In Proc. DAC, 2018.
[32]
J. Rijmenants, J. B. Litsios, T. R. Schwarz, and M. G. R. Degrauwe. ILAC: an automated layout tool for analog CMOS circuits. IEEE Journal Solid-State Circuits, 24(2):417--425, 1989.
[33]
M. Strasser, M. Eick, H. Gräb, U. Schlichtmann, and F. M. Johannes. Deterministic analog circuit placement using hierarchically bounded enumeration and enhanced shape functions. In Proc. ICCAD, 2008.
[34]
H.-F. Tsao, P.-Y. Chou, S.-L. Huang, Y.-W. Chang, M. P.-H. Lin, D.-P. Chen, and D. Liu. A corner stitching compliant B*-Tree representation and its applications to analog placement. In Proc. ICCAD, 2011.
[35]
I.-P. Wu, H.-C. Ou, and Y.-W. Chang. QB-Trees: Towards an optimal topological representation and its applications to analog layout designs. In Proc. DAC, 2016.
[36]
P.-H. Wu, M. P.-H. Lin, T.-C. Chen, C.-F. Yeh, T.-Y. Ho, and B.-D. Liu. Exploring feasibilities of symmetry islands and monotonic current paths in slicing trees for analog placement. IEEE TCAD, 33(6):879--892, 2014.
[37]
P.-H. Wu, M. P.-H. Lin, Y.-R. Chen, B.-S. Chou, T.-C. Chen, T.-Y. Ho, and B.-D. Liu. Performance-driven analog placement considering monotonic current paths. In Proc. ICCAD, 2012.
[38]
L. Xiao and E. F. Y. Young. Analog placement with common centroid and 1-d symmetry constraints. In Proc. ASPDAC, 2009.
[39]
B. Xu, B. Basaran, M. Su, and D. Z. Pan. Analog placement constraint extraction and exploration with the application to layout retargeting. In Proc. ISPD, 2018.
[40]
B. Xu, S. Li, C.-W. Pui, D. Liu, L. Shen, Y. Lin, N. Sun, and D. Z. Pan. Device layer-aware analytical placement for analog circuits. In Proc. ISPD, 2019.
[41]
B. Xu, S. Li, X. Xu, N. Sun, and D. Z. Pan. Hierarchical and analytical placement techniques for high-performance analog circuits. In Proc. ISPD, 2017.
[42]
B. Xu, Y. Lin, X. Tang, S. Li, L. Shen, N. Sun, and D. Z. Pan. WellGAN: Generative-adversarial-network-guided well generation for analog/mixed-signal circuit layout. In Proc. DAC, 2019.

Cited By

View all
  1. Effective analog/mixed-signal circuit placement considering system signal flow

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    ICCAD '20: Proceedings of the 39th International Conference on Computer-Aided Design
    November 2020
    1396 pages
    ISBN:9781450380263
    DOI:10.1145/3400302
    • General Chair:
    • Yuan Xie
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    In-Cooperation

    • IEEE CAS
    • IEEE CEDA
    • IEEE CS

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 17 December 2020

    Permissions

    Request permissions for this article.

    Check for updates

    Qualifiers

    • Research-article

    Funding Sources

    Conference

    ICCAD '20
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 457 of 1,762 submissions, 26%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)243
    • Downloads (Last 6 weeks)34
    Reflects downloads up to 26 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media