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ABSTRACT
While deep learning has shown tremendous success in a wide range
of domains, it remains a grand challenge to incorporate physical
principles in a systematic manner to the design, training and in-
ference of such models. In this paper, we aim to predict turbulent
flow by learning its highly nonlinear dynamics from spatiotempo-
ral velocity fields of large-scale fluid flow simulations of relevance
to turbulence modeling and climate modeling. We adopt a hybrid
approach by marrying two well-established turbulent flow simu-
lation techniques with deep learning. Specifically, we introduce
trainable spectral filters in a coupled model of Reynolds-averaged
Navier-Stokes (RANS) and Large Eddy Simulation (LES), followed
by a specialized U-net for prediction. Our approach, which we call
Turbulent-Flow Net (TF-Net), is grounded in a principled physics
model, yet offers the flexibility of learned representations. We com-
pare our model, TF-Net, with state-of-the-art baselines and observe
significant reductions in error for predictions 60 frames ahead. Most
importantly, our method predicts physical fields that obey desirable
physical characteristics, such as conservation of mass, whilst faith-
fully emulating the turbulent kinetic energy field and spectrum,
which are critical for accurate prediction of turbulent flows.
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1 INTRODUCTION
Modeling the dynamics of large-scale spatiotemporal data over a
wide range of spatial and temporal scales is a fundamental task in
science and engineering (e.g., hydrology, solid mechanics, chem-
istry kinetics). Computational fluid dynamics (CFD) is at the heart
of climate modeling and has direct implications for understanding
and predicting climate change. However, the current paradigm in
atmospheric CFD is purely physics-based: known physical laws en-
coded in systems of coupled partial differential equations (PDEs) are
solved over space and time via numerical differentiation and inte-
gration schemes. Thesemethods are tremendously computationally-
intensive, requiring significant computational resources and exper-
tise. Recently, data-driven methods, including deep learning, have
demonstrated great success in the automation, acceleration, and
streamlining of highly compute-intensive workflows for science
[28]. But existing deep learning methods are mainly statistical with
little or no underlying physical knowledge incorporated, and are yet
to be proven to be successful in capturing and predicting accurately
the properties of complex physical systems.

Developing deep learning methods that can incorporate physical
laws in a systematic manner is a key element in advancing AI for
physical sciences [32]. Recently, several studies in data science and
computational mathematics communities have attempted incor-
porating physical knowledge into deep learning, an area coined
as “physics-informed deep learning”. For example, [8] proposed a
warping scheme to predict the sea surface temperature, but only
considered the linear advection-diffusion equation. [1, 12] proposed
physics guided neural networks to model temperature of lakes by
explicitly regularising the loss function with physical constraints.
Still, regularization is quite ad-hoc and it is difficult to tune the
hyper-parameters of the regularizer. [39] and [13] developed deep
learning models in the context of fluid flow animation, where phys-
ical consistency is less critical. [34, 38] introduced statistical and
physical constraints in the loss function to regularize the predic-
tions for emulating physical simulations. However, their studies
only focused on spatial modeling without temporal dynamics.

In this paper, we investigate the problem of predicting the evo-
lution of spatiotemporal turbulent flow, governed by the high-
dimensional non-linear Navier-Stokes equations. In contrast to
modeling sea surface temperature or lake dynamics, turbulent flow
is highly chaotic. The temporal evolution of the turbulent flow is
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exceedingly sensitive to initial condition and there is no analyt-
ical theory to characterize its dynamics. Furthermore, turbulent
flow demonstrate multiscale behavior where chaotic motion of the
flow is forced at different length and time scale. Additionally, high-
resolution turbulent flow leads to high-dimensional forecasting
problem. For example, a discretized 128 × 128 × 100 velocity field
has 106 dimensions, which requires a large number of training data,
and is prone to error propagation.

We propose a hybrid learning paradigm that unifies turbulence
modeling and deep learning (DL). We develop a novel deep learning
model, Turbulent-Flow Net (TF-Net), that enhances the capability
of predicting complex turbulent flows with deep neural networks.
TF-Net applies scale separation to model different ranges of scales
of the turbulent flow individually. Building upon a promising and
popular CFD technique, the RANS-LES coupling approach [7], our
model replaces a priori spectral filters with trainable convolutional
layers. We decompose the turbulent flow into three components,
each of which is approximated by a specialized U-net to preserve
invariance properties. To the best of our knowledge, this is the
first hybrid framework of its kind for predicting turbulent flow. We
compare our method with state-of-the-art baselines for forecasting
velocity fields up to 60 steps ahead given the history. We observe
that TF-Net is capable of generating both accurate and physically
meaningful predictions that preserve critical quantities of relevance.

In summary, our contributions are as follows:

(1) We study the challenging task of turbulent flow prediction
as a test bed to investigate incorporating physics knowledge
into deep learning in a principled fashion.

(2) We propose a novel hybrid learning framework, TF-Net, that
unifies a popular CFD technique, RANS-LES coupling, with
custom-designed deep neural networks.

(3) When evaluated on turbulence simulations, TF-Net achieves
11.1% reduction in prediction RMSE, 30.1% improvement in
the energy spectrum, 21% turbulence kinetic energy RMSEs
and 64.2% reduction of flow divergence in difference from
the target, compared to the best baseline.

2 RELATEDWORK
Spatiotemporal Forecasting. Modeling the spatiotemporal dy-

namics of a system in order to forecast the future is of critical impor-
tance in fields as diverse as physics, economics, and neuroscience
[29, 33]. Methods in dynamical system literature from physics [11]
to neuroscience [37] describe the spatiotemporal dynamics with
differential equations and are physics-based. They often cannot be
solved analytically and are difficult to simulate numerically due
to high sensitivity to initial conditions. In data mining, most work
on spatiotemporal forecasting has been purely data-driven where
complex deep learning models are learned directly from data with-
out explicitly enforcing physical constraints, e.g. [16, 40, 43, 44]. A
few recent works [1, 12] tried to incorporate physical knowledge
into deep learning by explicitly regularising the loss function with
physical constraints. Still, regularization is quite ad-hoc and it is
difficult to tune the hyper-parameters of the regularizer. Perhaps
most related to ours is a hybrid framework in [45] which aims to
predict the evolution of the external forces/perturbations but they
did not try modeling turbulence.

Turbulence Modeling. Recently, machine learning models, es-
pecially DL models have been used to accelerate and improve the
simulation of turbulent flows. For example, [9, 17] studied tensor
invariant neural networks to learn the Reynolds stress tensor while
preserving Galilean invariance, but Galilean invariance only applies
to flows without external forces. In our case, RBC flow has gravity
as an external force. Most recently, [15] studied unsupervised gener-
ative modeling of turbulent flows but the model is not able to make
real time future predictions given the historic data. [27] applied
a Galerkin finite element method with deep neural networks to
solve PDEs automatically, what they call “Physics-informed deep
learning”. Though these methods have shown the ability of deep
learning in solving PDEs directly and deriving generalizable solu-
tions, the key limitation of these approaches is that they require
explicitly inputs of boundary conditions during inference, which
are generally not available in real-time. [2] proposed a purely data-
driven DL model for turbulence, compressed convolutional LSTM,
but the model lacks physical constraints and interpretability. [38]
and [34] introduced statistical and physical constraints in the loss
function to regularize the predictions of the model. However, their
studies only focused on spatial modeling without temporal dynam-
ics, besides regularization being ad-hoc and difficult to tune the
hyper-parameters.

Fluid Animation. In parallel, the computer graphics commu-
nity has also investigated using deep learning to speed up numerical
simulations for generating realistic animations of fluids such as
water and smoke. For example, [35] used an incompressible Euler’s
equation with a customized Convolutional Neural Network (CNN)
to predict velocity update within a finite difference method solver.
[6] propose double CNN networks to synthesize high-resolution
flow simulation based on reusable space-time regions. [39] and
[13] developed deep learning models in the context of fluid flow
animation, where physical consistency is less critical. [31] proposed
a method for the data-driven inference of temporal evolutions of
physical functions with deep learning. However, fluid animation
emphases on the realism of the simulation rather than the physical
consistency of the predictions or physics metrics and diagnostics
of relevance to scientists.

Video Prediction. Our work is also related to future video pre-
diction. Conditioning on the observed frames, video prediction
models are trained to predict future frames, e.g., [4, 10, 18, 36, 42].
Many of these models are trained on natural videos with complex
noisy data from unknown physical processes. Therefore, it is dif-
ficult to explicitly incorporate physical principles into the model.
The turbulent flow problem studied in this work is substantially
different from natural video prediction because it does not attempt
to predict object or camera motions. Instead, our approach aims to
emulate numerical simulations given noiseless observations from
known governing equations. Hence, some of these techniques are
perhaps under-suited for our application.

3 BACKGROUND IN TURBULENCE
MODELING

Most fluid flows in nature are turbulent, but theoretical understand-
ing of solutions to the governing equations, the NavierâĂŞStokes



equations, is incomplete. Turbulent fluctuations occur over a wide
range of length and time scales with high correlations between
these scales. Turbulent flows are characterized by chaotic motions
and intermittency, which are difficult to predict.

Figure 1: A snapshot of the Rayleigh-Bénard convection
flow, the velocity fields along x direction (top) and y direc-
tion (bottom) [5]. The spatial resolution is 1792 x 256 pixels.

The physical system we investigate is two-dimensional Rayleigh-
Bénard convection (RBC), a model for turbulent convection, with
a horizontal layer of fluid heated from below so that the lower
surface is at a higher temperature than the upper surface. Turbulent
convection is a major feature of the dynamics of the oceans, the
atmosphere, as well as engineering and industrial processes, which
has motivated numerous experimental and theoretical studies for
many years. The RBC system serves as an idealized model for
turbulent convection that exhibits the full range of dynamics of
turbulent convection for sufficiently large temperature gradients.

Letw(t) be the vector velocity field of the flow with two compo-
nents (u(t),v(t)), velocities along x and y directions, the governing
equations for this physical system are:

∇ ·w = 0 Continuity Equation
∂w

∂t
+ (w · ∇)w = − 1

ρ0
∇p + ν∇2w + f Momentum Equation

∂T

∂t
+ (w · ∇)T = κ∇2T Temperature Equation

where p and T are pressure and temperature respectively, κ is the
coefficient of heat conductivity, ρ0 is density at temperature at
the beginning, α is the coefficient of thermal expansion, ν is the
kinematic viscosity, f the body force that is due to gravity. In this
work, we use a particular approach to simulate RBC that uses a
Boussinesq approximation, resulting in a divergence-free flow, so
∇ ·w should be zero everywhere [5]. Figure 1 shows a snapshot in
our RBC flow dataset.

CFD allows simulating complex turbulent flows, however, the
wide range of scales makes it very challenging to accurately resolve
all the scales. More precisely, fully resolving a complex turbulent
flow numerically, known as direct numerical simulations (DNS),
requires a very fine discretization of space-time, which makes the
computation prohibitive even with advanced high-performance
computing. Hence most CFD methods, like Reynolds-Averaged
Navier-Stokes and Large Eddy Simulations ([21, 22, 25], resort to
resolving the large scales whilst modeling the small scales, using
various averaging techniques and/or low-pass filtering of the gov-
erning equations. However, the unresolved processes and their
interactions with the resolved scales are extremely challenging to

Figure 2: Three level spectral decomposition of velocity w ,
E(k) is the energy spectrum and k is wavenumber.

model. CFD remains computationally expensive despite decades of
advancements in turbulence modeling and HPC.

Deep learning (DL) is poised to accelerate and improve turbulent
flow simulations because well-trained DL models can generate real-
istic instantaneous flow fields with physically accurate spatiotem-
poral coherence, without solving the complex nonlinear coupled
PDEs that govern the system [19, 20, 35]. However, DL models are
hard to train and are often used as "black boxes" as they lack knowl-
edge of the underlying physics and are very hard to interpret. While
these DL models may achieve low prediction errors they often lack
scientific consistency and do not respect the physics of the systems
they model. Therefore, it is critical to infusing known physics laws
and design efficient turbulent flow prediction DL models that are
not only accurate but also physically meaningful.

4 METHODOLOGY
We aim to design physics-informed deep learning models by in-
fusing CFD principles into deep neural networks. The global idea
behind our method is to decompose the turbulent flow into com-
ponents of different scales with trainable modules for simulating
each component. First, we provide a brief introduction of the CFD
techniques which are built on this basic idea.

4.1 Computational Fluid Dynamics
Computational techniques are at the core of present-day turbulence
investigations. Direct Numerical Simulation (DNS) are accurate
but not computationally feasible for practical applications. Great
emphasis was placed on the alternative approaches including Large-
Eddy Simulation (LES) and Reynolds-averaged NavierâĂŞStokes
(RANS). See the book on turbulence [21] for details.

Reynolds-averaged NavierâĂŞStokes (RANS) decomposes
the turbulent floww into two separable time scales: a time-averaged
mean flow w̄ and a fluctuating quantity w ′. The resulting RANS
equations contain a closure term, the Reynolds stresses, that re-
quire modeling, the classic closure problem of turbulence modeling.
While this approach is a good first approximation to solving a tur-
bulent flow, RANS does not account for broadband unsteadiness
and intermittency, characteristic of most turbulent flows. Further,
closure models for the unresolved scales are often inadequate, mak-
ing RANS solutions to be less accurate. n here is the moving average



Figure 3: Turbulent FlowNet: three identical encoders to learn the transformations of the three components of different scales,
and one shared decoder that learns the interactions among these three components to generate the predicted 2D velocity field
at the next instant. Each encoder-decoder pair can be viewed as a U-net and the aggregation is weighted summation.

window size.

w(x , t) = w̄(x , t) +w ′(x , t), w̄(x , t) = 1
n

∫ t

t−n
T (s)w(x , s)ds (1)

Large Eddy Simulation (LES) is an alternative approach based
on low-pass filtering of the Navier-Stokes equations that solves a
part of the multi-scale turbulent flow corresponding to the most
energetic scales. In LES, the large-scale component is a spatially
filtered variable w̃ , which is usually expressed as a convolution
product by the filter kernel S . The kernel S is often taken to be a
Gaussian kernel. Ωi is a subdomain of the solution and depends on
the filter size [30].

w(x , t) = w̃(x , t) +w ′(x , t), w̃(x , t) =
∫
Ωi

S(x |ξ )w(ξ , t)dξ (2)

The key difference between RANS and LES is that RANS is based
on time averaging, leading to simpler steady equations, whereas
LES is based on a spatial filtering process which is more accurate
but also computationally more expensive.

Hybrid RANS-LES Coupling combines both RANS and LES
approaches in order to take advantage of both methods [3, 7]. It
decomposes the flow variables into three parts: mean flow, resolved
fluctuations and unresolved (subgrid) fluctuations. RANS-LES cou-
pling applies the spatial filtering operator S and the temporal aver-
age operator T sequentially. We can define w̄ in discrete form with
usingw∗ as an intermediate term,

w∗(x, t) = S ∗w =
∑
ξ

S(x |ξ )w(ξ , t) (3)

w̄(x, t) = T ∗w∗ =
1
n

t∑
s=t−n

T (s)w∗(x , s) (4)

then w̃ can be defined as the difference betweenw∗ and w̄ :

w̃ = w∗ − w̄, w ′ = w −w∗ (5)

Finally we can have the three-level decomposition of the velocity
field.

w = w̄ + w̃ +w
′

(6)

Figure 2 shows this three-level decomposition in wavenumber space
[7]. k is the wavenumber, the spatial frequency in the Fourier do-
main. E(k) is the energy spectrum describing how much kinetic
energy is contained in eddies with wavenumber k . Small k corre-
sponds to large eddies that contain most of the energy. The slope of
the spectrum is negative and indicates the transfer of energy from
large scales of motion to the small scales. This hybrid approach
combines computational efficiency of RANS with the resolving
power of LES to provide a technique that is less expensive and
more tractable than pure LES.

4.2 Turbulent Flow Net
Inspired by techniques used in hybrid RANS-LES Coupling to sep-
arate scales of a multi-scale system, we propose a hybrid deep
learning framework, TF-Net, based on the multi-level spectral de-
composition of the turbulent flow.

Specifically, we decompose the velocity field into three compo-
nents of different scales using two scale separation operators, the
spatial filter S and the temporal filter T . In traditional CFD, these
filters are usually pre-defined, such as the Gaussian spatial filter.
In TF-Net, both filters are trainable neural networks. The spatial
filtering process is instantiated as one layer convolutional neural
network with a single 5×5 filter to each input image. The temporal
filter is also implemented as a convolutional layer with a single
1×1 filter applied to every T images. The motivation for this de-
sign is to explicitly guide the DL model to learn the non-linear
dynamics of both large and small eddies as relevant to the task of
spatio-temporal prediction.

We design three identical encoders to encode the three scale
components separately. We use a shared decoder to learn the in-
teractions among these three components and generate the final
prediction. Each encoder and the decoder can be viewed as a U-net



without duplicate layers and middle layer in the original architec-
ture [24]. The encoder consists of four convolutional layers with
double the number of feature channels of the previous layer and
stride 2 for down-sampling. The decoder consists of one output
layer and four deconvolutional layers with summation of the corre-
sponding feature channels from the three encoders and the output
of the previous layer as input. Figure 3 shows the overall architec-
ture of our hybrid model TF-Net.

To generate multi-step forecasts, we perform one-step ahead pre-
diction and roll out the predictions autoregressively. Furthermore,
we also consider a variant of TF-Net by explicitly adding physical
constraint to the loss function. Since the turbulent flow under in-
vestigation has zero divergence (∇ ·w should be zero everywhere),
we include | |∇ ·w | |2 as a regularizer to constrain the predictions,
leading to a constrained TF-Net, or Con TF-Net.

5 EXPERIMENTS
5.1 Dataset
The dataset for our experiments comes from two dimensional tur-
bulent flow simulated using the Lattice Boltzmann Method [5]. We
use only the velocity vector fields, where the spatial resolution
of each image (snapshots in time) is 1792 x 256. Each image has
two channels, one is the turbulent flow velocity along x direction
and the other one is the velocity along y direction. The physics
parameters relevant to this numerical simulation are: Prandtl num-
ber = 0.71, Rayleigh number = 2.5 × 108 and the maximum Mach
number = 0.1. We use 1500 images for our experiments. The task is
to predict the spatiotemporal velocity fields up to 60 steps ahead
given 10 initial frames.

We divided each 1792 by 256 image into 7 square sub-regions of
size 256 x 256, then downsample them into 64 x 64 pixels sized im-
ages. We use a sliding window approach to generate 9,870 samples
of sequences of velocity fields: 6,000 training samples, 1,700 valida-
tion samples and 2,170 test samples. The DL model is trained using
back-propagation through prediction errors accumulated over mul-
tiple steps. We use a validation set for hyper-parameters tuning
based on the average error of predictions up to six steps ahead.
The hyper-parameters tuning range can be found in Table 2 in the
appendix. All results are averaged over three runs with random
initialization.

5.2 Baseline
We compare our model with a series of state-of-the-art baselines
for turbulent flow prediction.

(1) ResNet [14]: a 34-layer residual convolutional neural net-
works by replacing the final dense layer with a convolutional
layer with two output channels.

(2) ConvLSTM [41]: a 3-layer Convolutional LSTM model used
for spatiotemporal precipitation nowcasting.

(3) U-Net [24]: Convolutional neural networks developed for
image segmentation, also used for video prediction.

(4) GAN: U-Net trained with a convolutional discriminator.

(5) SST [8]: hybrid physics-guided deep learning model using
warping scheme for linear energy equation to predict sea sur-
face temperature, which is also applicable to the linearized
momentum equation that governs the velocity fields.

(6) DHPM [26]: Deep Hidden Physics Model is to directly approx-
imate the solution of partial differential equations with fully
connected networks using space time location as inputs. The
model is trained twice on the training set and the test set
with boundary conditions. This model can be formulated as,
Loss = | |w−ŵ| |+ | |∇·ŵ| |+ | |ŵt +(ŵ·∇)ŵ−ν∇2ŵ− f | |, where
ŵ = NN(x ,y, t), and f = NN(x ,y, t , û, v̂, ûx , v̂x , ûy , v̂y ).

Here ResNet, ConvLSTM, U-net and GAN are pure data-driven spa-
tiotemporal deep learning models for video predictions. SST and
DHPM are hybrid physics-informed deep learning that aim to in-
corporate prior physical knowledge into deep learning for fluid
simulation.

5.3 Evaluation Metrics
Even though Root Mean Square Error (RMSE) is a widely accepted
metric for quantifying the prediction performance, it only mea-
sures pixel differences. We need to check whether the predictions
are physically meaningful and preserve desired physical quanti-
ties, such as Turbulence Kinetic Energy, Divergence and Energy
Spectrum. Therefore, we include a set of additional metrics for
evaluation.

Root Mean Square Error We calculate the RMSE of all pre-
dicted values from the ground truth for each pixel.

Divergence Since we investigate incompressible turbulent flows
in this work, whichmeans the divergence,∇·w, at each pixel should
be zero, we use the average of absolute divergence over all pixels
at each prediction step as an additional evaluation metric.

Turbulence Kinetic Energy In fluid dynamics, turbulence ki-
netic energy is the mean kinetic energy per unit mass associated
with eddies in turbulent flow. Physically, the turbulence kinetic
energy is characterised by measured root mean square velocity
fluctuations,

((u′)2 + (v′)2)/2, (u′)2 = 1
T

T∑
t=0

(u(t) − ū)2 (7)

where t is the time step. We calculate the turbulence kinetic energy
for each predicted sample of 60 velocity fields.

Energy Spectrum The energy spectrum of turbulence, E(k), is
related to the mean turbulence kinetic energy as∫ ∞

0
E(k)dk = ((u′)2 + (v′)2), (8)

where k is the wavenumber, the spatial frequency in 2D Fourier
domain. We calculate the Energy Spectrum on the Fourier transfor-
mation of the Turbulence Kinetic Energy fields. The large eddies
have low wavenumbers and the small eddies correspond to high
wavenumbers. The spectrum indicates how much kinetic energy is
contained in eddies with wavenumber k .



Models TF-net U_net GAN ResNet ConvLSTM SST DHPM

#params(10^6) 15.9 25.0 26.1 21.2 11.8 49.9 2.12

input length 25 25 24 26 27 23 \

#accumulated errors 4 6 5 5 4 5 \

time for one epoch(min) 0.39 0.57 0.73 1.68 45.6 0.95 4.591

Table 1: The number of parameters, the best number of input frames, the best number of accumulated errors for backpropoga-
tion and training time for one epoch on 8 V100 GPUs for each model.

Figure 4: Root mean square errors of
different models’ predictions at varying
forecasting horizon

Figure 5: Mean absolute divergence of
different models’ predictions at varying
forecasting horizon

Figure 6: The Energy Spectrum of
TF-Net, U-net and ResNet on the left-
most square sub-region.

Figure 7: Turbulence kinetic energy of all models’ predictions at the leftmost square field in the original rectangular field

Figure 8: Average time to produce one 64 × 448 2D velocity
field for all models on single V100 GPU.

5.4 Accuracy and Efficiency
Figure 4 shows the growth of RMSE with prediction horizon up to
60 time steps ahead. TF-Net consistently outperforms all baselines,
and constraining it with divergence free regularizer can further
improve the performance. We also found DHPM is able to overfit
the training set but performs poorly when tested outside of the
training domain. Neither Dropout nor regularization techniques
can improve its performance. Also, the warping scheme of the [8]
relies on the simplified linear assumption, which was too limiting
for our non-linear problem.

Figure 5 shows the averages of absolute divergence over all
pixels at each prediction step. TF-Net has lower divergence than
other models even without additional divergence free constraint
for varying prediction step. It is worth mentioning that there is
a subtle trade-off between RMSE and divergence. Even though
constraining model with the divergence-free regularizer can reduce
the divergence of the model predictions, too much constraint also



Figure 9: Ground truth (target) and predicted u velocities by TF-Net and three best baselines (U-Net, ResNet and GAN) at time
T + 10, T + 20, T + 30 to T + 60 (suppose T is the time step of the last input frame).

Figure 10: Learned spatial and temporal filters in TF-Net

has the side effect of smoothing out the small eddies, which results
in a larger RMSE.

Table 1 displays the number of parameters, the best number of
input frames, the best number of accumulated errors for backpro-
pogation and training time for one epoch on 8 V100 GPUs for each

model. Our model has significantly smaller number of parameters
than most baselines yet achieves the best performance. About 25
historic images are enough for our model to generate reasonable
predictions, and ConvLSTM require large memory and training
time, especially when the number of historic input frames is large.
Additionally, Table 2 in appendix displays the hyper-parameters
tuning range.

Figure 8 shows the average time to produce one 64 × 448 2d
velocity field for all models on single V100 GPU. We can see that
TF-net, U_net and GAN are faster than the numerical method. The
reason why speed up is not significant is that the numerical model
is highly optimized at the bit level and the LBM method used to
generate these fields is already an highly optimized approximation
to the Navier Stokes equations that may be difficult/unfair to beat
from a runtime perspective. We believe that TF-Net will show



Figure 11: Ablation study: From top to bottom are the target,
the predictions of TF-Net, and the outputs of each small U-
net of TF-Netwhile the other two encoders are zeroed out at
time T + 40

greater advantage of speed on higher resolution data, and unlike
the numerical method, it can generalize to different datasets.

5.5 Prediction Visualization
Figure 7 displays predicted TKEs of all models at the leftmost square
field in the original rectangular field. Figure 6 shows the energy
spectrum of our model and two best baseline at the leftmost square
sub-field.While the turbulence kinetic energy of TF-Net, U-net and
ResNet appear to be similar in Figure 7, from the energy spectrum in
Figure 6, we can see that TF-Net predictions are in fact much closer
to the target. Extra divergence free constraint does not affect the
energy spectrum of predictions. By Incorporating physics principles
in deep learning, TF-Net is able to generate predictions that are
physically consistent with the ground truth.

During Inference, we apply the trained TF-Net to the entire
input domain instead of square sub-regions. Figure 9 and Fig-
ure 12 shows the ground truth and the predicted u and v veloc-
ity fields from all models from time step 0 to 60. We also pro-
vide videos of predictions by TF-Net and several best baselines in
https://www.youtube.com/watch?v=80U8lcIZYe4 and https://www.
youtube.com/watch?v=7J0RNiou5-4, respectively. We see that the
predictions by our TF-Net model are the closest to the target based
on the shape and the frequency of the motions. Baselines gener-
ate smooth predictions and miss the details of small scale motion.
U-net is the best performing data-driven video prediction baseline.
[23] also found the U-net architecture is quite effective in modeling
dynamics flows. Nevertheless, there is still room for improvement
in long-term prediction for all the models.

5.6 Ablation Study
We also perform an additional ablation study of TF-Net to un-
derstand each component of TF-Net and investigate whether the
TF-Net has actually learned the flow with different scales. During
inference, we applied each small U-net in TF-Net with the other
two encoders removed to the entire input domain. Figure 11 (The

full video can be found on https://www.youtube.com/watch?v=
ysdrMUfdhe0) includes the predictions of TF-Net, and the outputs
of each small U-net while the other two encoders are zeroed out at
T + 40. We observe that the outputs of each small u-net are the flow
with different scales, which demonstrates that TF-Net can learn
multi-scale behaviors of turbulent flows. We visualize the learned
filters in Figure 10. We only found two types of spatial and temporal
filters from all trained TF-Net models.

5.7 Generalization Capability
We also did the same experiments on an additional dataset (Rayleigh
number = 105) to demonstrate the generalization ability of TF-Net.
Figure 13 in appendix shows the performances of TF-net, U-net
and ResNet on an additional dataset. From left to right are: RMSE
of different modelsâĂŹ predictions at varying forecasting horizon,
Mean absolute divergence of modelsâĂŹ predictions at varying
forecasting horizon, Energy Spectrum, and Turbulence kinetic en-
ergy fields of three modelsâĂŹ predictions. We can see that TF-Net
outperforms the best two baselines, U-net and ResNet across all
metrics. This demonstrate that TF-Net generalizes well to turbulent
flows with a different Rayleigh number.

6 DISCUSSION AND FUTUREWORK
We presente a novel hybrid deep learning model, TF-Net, that
unifies representation learning and turbulence simulation tech-
niques. TF-Net exploits the multi-scale behavior of turbulent flows
to design trainable scale-separation operators to model different
ranges of scales individually. We provide exhaustive comparisons
of TF-Net and baselines and observe significant improvement in
both the prediction error and desired physical quantifies, including
divergence, turbulence kinetic energy and energy spectrum. We ar-
gue that different evaluation metrics are necessary to evaluate a DL
model’s prediction performance for physical systems that include
both accuracy and physical consistency. A key contribution of this
work is the combination of state-of-the-art turbulent flow simula-
tion paradigms with deep learning. Future work includes extending
these techniques to very high-resolution, 3D turbulent flows and
incorporating additional physical variables, such as pressure and
temperature, and additional physical constraints, such as conser-
vation of momentum, to improve the accuracy and faithfulness of
deep learning models.

https://www.youtube.com/watch?v=80U8lcIZYe4
https://www.youtube.com/watch?v=7J0RNiou5-4
https://www.youtube.com/watch?v=7J0RNiou5-4
https://www.youtube.com/watch?v=ysdrMUfdhe0
https://www.youtube.com/watch?v=ysdrMUfdhe0
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Appendix

Figure 12: Ground truth and predicted v velocities by models, suppose T is the time step of the last input image.(suppose T is
the time step of the last input frame).

Figure 13: The performances of TF-net, U-net and ResNet on an additional dataset(Ra = 10000). From left to right (a) Root
mean square errors of different modelsâĂŹ predictions at varying forecasting horizon, (b) Mean absolute divergence over
forecasting horizon, (c) Energy Spectrum ,and (d) Turbulence kinetic energy fields of three modelsâĂŹ predictions.

learning rate Batch size #Errors for backprop #Input frames Temporal filter size Spatial filter size

1e-1 ∼1e-6 16 ∼128 1 ∼10 1 ∼30 2∼10 3∼9
Table 2: Hyper-parameters tuning ranges, including learning rate, batch size, the number of accumulated errors for backpro-
pogation, the number of input frames, the moving average window size and the spatial filter size
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