2002.12315v1 [cs.HC] 26 Feb 2020

arxXiv

Press’Em: Simulating Varying Button
Tactility via FDVV Models

Yi-Chi Liao Byungjoo Lee

Aalto University KAIST

Helsinki, Finland Daejeon, Republic of Korea
yi-chi.liao@aalto.fi byungjoo.lee@kaist.ac.krm
Sunjun Kim Antti Oulasvirta

Aalto University Aalto University

Helsinki, Finland Helsinki, Finland

KAIST antti.oulasvirta@aalto.fi
Daejeon, Republic of Korea

DGIST

Daegu, Republic of Korea
sunjun.kim@aalto.fi

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CHI "20 Extended Abstracts, April 25—-30, 2020, Honolulu, HI, USA.

© 2020 Copyright is held by the author/owner(s).

ACM ISBN 978-1-4503-6819-3/20/04.
http://dx.doi.org/10.1145/3334480.3383161

Abstract

Push-buttons provide rich haptic feedback during a press
via mechanical structures. While different buttons have
varying haptic qualities, few works have attempted to
dynamically render such tactility, which limits designers from
freely exploring buttons’ haptic design. We extend the
typical force-displacement (FD) model with vibration (V) and
velocity-dependence characteristics (V) to form a novel
FDVV model. We then introduce Press’Em, a 3D-printed
prototype capable of simulating button tactility based on
FDVV models. To drive Press’Em, an end-to-end simulation
pipeline is presented that covers (1) capturing any physical
buttons, (2) controlling the actuation signals, and (3)
simulating the tactility. Our system can go beyond
replicating existing buttons to enable designers to emulate
and test non-existent ones with desired haptic properties.
Press’Em aims to be a tool for future research to better
understand and iterate over button designs.

This demo accompanies a CHI "20 paper titled
“Button Simulation and Design via FDVV Models” [1].

Author Keywords

Button; haptic; modeling; simulation; tactility; force
feedback; vibration; input device; haptic rendering; FD
model; FDVV model.


http://dx.doi.org/10.1145/3334480.3383161

— 05mm/s Press
140 50 mm/s

100 mm/s
120
100{ —— 200 mm/s

—— activation
—— vibration

Force (cN)
©
3

0.0 05 1.0 15 2.0 25 3.0 35 4.0
Displacement (mm)

— 0.5mm/s Release
140 50 mm/s

—— 100 mm/s
120

—— 150 mm/s AN
100{ — 200 mm/s

—— activation

—— vibration

Force (cN)
3

0.0 05 1.0 15 2.0 25 30 35 4.0
Displacement (mm)

Figure 1: A force—displacement—
vibration—velocity (FDVV) model
represents speed-dependent
physical responses of a button
when pressed. We show methods
for capturing button presses as
FDVV models, rendering them in a
physical simulator, and editing and
optimizing these in software. The
press and release models shown
are for a 4 mm tactile button. Blue
curves represent the corresponding
(velocity-agnostic)
force—displacement model typically
measured by a probing machine
with static and slow velocity.

Introduction

Each push-button provides unique haptic characteristics
(tactility) during presses. Different haptic properties can
lead to distinct experiences and users’ performances; so
much that gamers, programmers, and typists are willing to
spend hundreds of dollars on keyboards just for the perfect
tactility. Nonetheless, enhancing the tactile properties of
buttons is tedious since testing different haptic profiles
typically require complete design and engineering of
physical buttons. A notable exception is button-simulator [2],
which models buttons using simple Force-Displacement
(FD) Curves (see blue curves in Figure 1) and recreate
force accordingly during a press. This approach falls short
for three reasons: First, since a button is a
spring-mass-damping system, the force rendered is a
function depends on not just displacement but also
velocity [3]. A single-FD model fails to capture the overall
reality. Second, the structural vibration caused by fast
tapping can not be recorded in FD models, either. Lastly,
during rendering, it applies no control for keeping the output
forces to meet the references.

We introduce force—displacement—vibration—velocity (FDVV)
model (Figure 1), which adds vibration response and
velocity-dependence on top of the FD model. We further
implemented Press’Em (Figure 2), a 3D-printed prototype
that overcomes the aforementioned limitations by an
end-to-end pipeline (Figure 3) covering capture physical
buttons, controlling, and simulation. As a result, Press’Em
provides designers with a complete platform for designing
and testing different haptic profiles.

Press’Em: the Button Simulator

Press’Em is a physical simulator (in Figure 2) capable of
high-fidelity rendering of FDVV models. Our first design goal
was to provide high-frequency response and high-resolution

T
Vibrotactile
voice coil
Travel Range
Control

Microprocessor:
Arduino Uno

12C ?
Protocol

Microprocessor:
ItsyBitsy MO

l

.1 D position

Reading Displacement pensor

e [

Figure 2: The simulator, Press’Em, includes a 1D sensor that
tracks displacement, a 1D force actuator delivering various levels
of forces, and a servo motor drives the travel-range control. These
components are controlled by a microprocessor (ltsyBitsy M0).
The other microprocessor (Arduino Uno) drives a vibrotactile
motor which is mounted near the keycap.

rendering of forces and vibrations typical of buttons. The
second was to enable full control from the software side.

Sensors and actuators: Figure 2 presents the four main
components: (1) a linear force actuator (Moticont
HVCM-025-022-003-01), (2) a linear position sensor (LVDT
MHR 250), (3) a voice coil acting as a vibrotactile motor
(Tectonic Teax13C02-8), and (4) a servo motor (Tower Pro
Micro Servo). The force actuator, the sensor, and the servo
motor are controlled by an Adafruit ItsyBitsy MO Express
board. The vibrotactile voice coil is driven by an Arduino
Uno board and wave shield (Adafruit Wave Shield for
Arduino Kit). These two boards are connected via the 12C



Force sensor
with a conical ti

Retroreflective
marker

< Micrthon

Figure 4: Button capture of an
example real button (4 mm tactile
button). A force sensor is worn on
the fingertip. Reflective markers
(for motion tracking) and
microphone (for vibration detection)
are attached on the keycap.

Force sensor wit
a conical tip

Figure 5: During the iterative
compensation, a force sensor is
worn on the participantaAZs
fingertip while pressing Press’Em.
The sensor gathered force data
and sent it to the controller. Which

then calculates the errors between
reference and sensed values, and
tune the actuation signals
accordingly until convergence.

Button capture FDVV model

 — osmms

50 mm/s
—— 100 mmis

150 mmys
—— 200 mms
—— activation
— vibration

Button simulation

Actuation signals

lowest velocity
highest velocity
— activation

Force, displacement, B-spline
vibration, velocity data Filtering, models - Iterative ) - I’hysical
— ] > < >
Model Fitting 4 A Compensation A Simulator
Force, displacement,
H : i vibration, velocity data
Design 100| trrrsasssssssmrssersssssssssasssnnsannann Optimization <====+- H

Figure 3: An end-to-end approach to button simulation. To capture an FDVV model of a button, sensors are placed on the finger, and the button
is pressed multiple times. The resulting force, displacement, vibration, and velocity data are filtered and modeled. A designer can edit the
model produced. To render the model with a given physical plant, an iterative compensation process computes how to cancel the plant’s own

transfer function. The resulting actuation signals drive the simulator.

protocol. When adjustments to the overall travel range are
required, ItsyBitsy sends a command to the servo motor to
adjust the location of the Travel Range Control, which
further alters the lowest reachable displacement of the
Travel Range Limiter and produces varying travel.

Microprocessor design: Before simulation, the actuation
signals (see Pipeline, step 2) are uploaded to ItsyBitsy and
it automatically sets the button travel range. During a
simulation, the linear sensor constantly sends the reading
value to the microprocessor. A moving-average filter is
applied for denoising the reading from the position sensor.
After the microprocessor has processed the values sent, it
calculates the current displacement of the button and
estimates the user’s pressing velocity. Then, it determines
the corresponding pulse-width modulation (PWM) signal

and sends it to the linear force actuator. At the displacement
where vibration starts, the microprocessor sends a
command to the Arduino Uno for emitting the vibration. A
high operating frequency is used (1 kHz) for the ItsyBitsy
MO board.

End-to-end Simulation Pipeline
Press’em replicates tactilities through the following steps:

1. Capture a Button with Different Pressing Velocities:
In previous works, probing machines were used to press
buttons with static and slow velocity and summarize the
forces as a single-FD model. In contrast, in our approach, a
user wears a force sensor on their fingertip and presses the
button with different velocities (Figure 4). Meanwhile, the
force, vibration, and displacement data are collected and



120

—— target
100 initial sensed force
—— optimal

80

60

Force (cN)

40

20

05 10 15 20 25 30 35 4
Displacement (mm)

initial actuate signals
100/ — optimal

807

601

Force (cN)

401

20 [

05 10 15 20 25 30 35 4.
Displacement (mm)

0

Figure 6: An example iterative
compensation process from which
we can see: (a) the sensed force
from the sensor on the fingertip
converges with the reference after
compensation is complete, and (b)
the actuation signals of the same
example starting at a random force
level and being gradually tuned.

Figure 7: Users in the
identity-matching study rated
FDVV-based simulations as more
realistic than FD simulations.
Significant differences were found
for all the buttons (p < 0.05). The
target buttons are Cherry MX Clear
& Brown (4mm, tactile), Red &
Black (4mm, linear) switches, HP
PR1101U (3.6mm, tactile), and
MacBook Pro 2011 (2.2mm,
tactile). Error bar is 1 STD.

profiled. As plotted in Figure 1 green lines, the resulting
FDVV models show obvious differences between
human-pressing curves and the static-machine-press ones.

2. Derive the Actuation Signals by lterative
Compensation: Any force actuator has its own transfer
function in play that must be canceled out if an FDVV model
is to be simulated correctly. Thus, we apply lterative
Compensation to control the rendered force to keep them
aligned with the reference, i.e., the models made in previous
step. The idea is to observe the errors between reference
and detected responses at each displacement point of each
press, then tune the actuation signals until the error is
smaller than a threshold. Figure 6 shows an example with
10 iterations of tuning. Press’Em generates force that's
close to the reference with average 2.27 cN error-offset
after the iterations.

3. Real-time Simulate Button Tactilities: In real-time
simulation, everytime the key is pressed, Press’Em detects
the displacement and velocity, then send the corresponding
force actuation signals and emit recorded vibration that had
been derived in the previous steps. A 12-participants study
was conducted and showed our FDVV models with
Press’Em achieves higher perceived realism than traditional
FD models to the original buttons (Figure 7).

Application: Innovative Buttons
Press’Em further allows designers to freely explore designs,
even those can not be realized by mechanical structures.

1. A Fast Tapping Button: While humans can reach about 4
presses per second in tapping tasks, Press’Em can
increase such human capability. The principle is once a
press is detected, the button will drop to bottom and return
automatically. This could be useful for contents requiring
high-frequency and rhythmic tapping, such as music games.

2. A Dynamically Returning Button: In certain situations,
one button might be desired to avoid fast repetition. Take
fighting games as an example, many attacks come with a
cooldown time, i.e., the minimum duration before next time
using the same skill. Press’Em can render such buttons
with dynamic returning time according to the contents.

3. Rich Vibration Cues: Press’Em can deliver rich temporal
information through continuous vibration cues while being
pressed. This interaction can enhance the efficiency of
dwell-press applications. For instance, when the shutter
button on a camera is pressed and the camera is
continuous shooting, the vibration ticks help the user easily
count the number of shots via human’s haptic channel.

REFERENCES
[1] Yi-Chi Liao, Sunjun Kim, Byungjoo Lee, and Antti
Oulasvirta. 2020. Button Simulation and Design via
FDVV Models. In Proceedings of the 2020 CHI
Conference on Human Factors in Computing Systems
(CHI 4AZ20). Association for Computing Machinery.
DOI:http://dx.doi.org/10.1145/3313831.3376262

[2] Yi-Chi Liao, Sunjun Kim, and Antti Oulasvirta. 2018.
One Button to Rule Them All: Rendering Arbitrary
Force-Displacement Curves. In The 31st Annual ACM
Symposium on User Interface Software and
Technology Adjunct Proceedings (UIST 18 Adjunct).
ACM, New York, NY, USA, 111-113. D0OI:
http://dx.doi.org/10.1145/3266037.3266118

[3] Richard W. Marklin and Mark L. Nagurka. 2000.
Measurement of Stiffness and Damping
Characateristics of Computer Keyboard Keys.
Proceedings of the Human Factors and Ergonomics
Society Annual Meeting 44, 6 (2000), 678—681. DOI:
http://dx.doi.org/10.1177/154193120004400637


http://dx.doi.org/10.1145/3313831.3376262
http://dx.doi.org/10.1145/3266037.3266118
http://dx.doi.org/10.1177/154193120004400637

	Introduction
	Press'Em: the Button Simulator
	End-to-end Simulation Pipeline
	Application: Innovative Buttons
	REFERENCES 

