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ABSTRACT

Library migration is a challenging problem, where most existing

approaches rely on prior knowledge. This can be, for example,

information derived from changelogs or statistical models of API

usage.

This paper addresses a different API migration scenario where

there is no prior knowledge of the target library. We have no histori-

cal changelogs and no access to its internal representation. To tackle

this problem, this paper proposes a novel approach (M
3
), where

probabilistic program synthesis is used to semantically model the

behavior of library functions. Then, we use an SMT-based code

search engine to discover similar code in user applications. These

discovered instances provide potential locations for API migrations.

We evaluate our approach against 7 well-known libraries from

varied application domains, learning correct implementations for

94 functions. Our approach is integrated with standard compiler

tooling, and we use this integration to evaluate migration oppor-

tunities in 9 existing C/C++ applications with over 1MLoC. We

discover over 7,000 instances of these functions, of which more

than 2,000 represent migration opportunities.
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1 INTRODUCTION

1.1 API Migration

Libraries are a fundamental feature of software development. They

allow the sharing of common code, separation of concerns and a

reduction in overall development time. However, libraries are not

static. They continually evolve to provide increased functionality,

security and performance. Unfortunately, upgrading software to

match library evolution is a significant engineering challenge for

large code bases.

Given the wide-scale nature of the problem, there is much prior

work in the area under various headings (e.g. library upgrade, API

evolution or library migration). Work in these areas aims to answer

the same question: when (and how) can a program using API X be

transformed to one that uses API Y while preserving its behavior?

This is a difficult problem evenwhenX andY have similar interfaces.

It becomes more challenging if their behaviors do not match, and

requires surrounding code to be factored in.

There are several approaches to this migration problem: if exam-

ples exist of previous successful migrations, then these examples

can be used to derive mapping rules [51]. This approach requires

that a full history of the application’s source code is available, anno-

tated with the libraries in use at each commit. Neural models have

been used successfully to predict properties of programs based on

learned vector-space embeddings [32]. However, these approaches

require large training sets and are imprecise with respect to pro-

gram semantics. A more precise (but less automatic) approach is to

use expert knowledge to encode known migration patterns [43, 53].

All these prior approaches require some knowledge of the API. In

this paper we tackle the challenging task of API migration without
any prior knowledge of the source or target libraries. Here, we

do not have access to the library’s source code, nor to a corpus

of example usages of the library. While this scenario may seem

draconian, it is often the case in practice [26]. Libraries may be

closed-source [50] or distributed in binaries for convenience [29],

and could even be implemented as hardware [10]. In this paper we

propose a novel approach which automatically learns pattern-based

semantic migrations, but without up-front expert knowledge.

1
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Figure 1: A summary of the M
3
workflow. Models for library functions are synthesized. Source functions are inlined while

synthesized target functions are generalized into constraint descriptions, which are then used to search compiled user code

for potential migrations.

1.2 M
3
: Model, Match and Migrate

The key to our approach is to derive a model that is actual exe-

cutable code. We call such an approach semantics-based migration.

Given a specification for a library function (type signature, function

name, library binary containing its implementation), M
3
attempts

to automatically Model its behavior using program synthesis and

checks correctness with respect to automatically generated input-

output examples. It inlines the learned program models, then uses

compiler-based constraint analysis to Match regions of application

code with compatible libraries. Finally, we Migrate these regions
by replacing application code with library calls.

A useful feature of this approach is that as well as library mi-

gration, it allows the refactoring of library-free user code to use

libraries. This is because the synthesized models are themselves

code, and are inlined and analyzed together with application code.

Complex refactorings that integrate contextual code around an API

call are enabled by this approach.

Our approach, while having the benefit of not requiring library

vendors to release their source code, relies on the ability to syn-

thesize programs in a reasonable time. We build on methods from

sketch-based synthesis [48] to discover program structure before

performing a directed enumerative search. We incorporate new

probabilistic models to more effectively navigate the large search

space. We evaluate our approach across 7 libraries, synthesizing

94 functions, and match them to over 7,000 old library calls across

10 applications with up to 1MLoC. We were able to successfully

migrate more than 2,000 of these calls to another library.

Summary of Contributions. We provide a novel and efficient pro-

gram synthesizer for real-world library functions. Additionally, we

detail a method for matching similar code in applications using

solver-aided techniques. Using this procedure, we are able to dis-

cover opportunities for usages of a source library L or application

code C to be migrated to a target library L’. Furthermore, we can

migrate source libraries with surrounding contextual code (C + L)

to target libraries. This is achieved without any knowledge about
the implementation of either library.

2 OVERVIEW

In this section, we first present a high-level summary of the M
3

workflow, then show an example of the type of migrations it enables

in practice.

2.1 M
3
Workflow

Figure 1 shows the flow of data through M
3
. It takes as input an

application, along with specifications for source and target library

APIs (currently used L and potential targets L’). The end result

is a modified application that references the target libraries. We

highlight the three distinct phases:Model,Match andMigrate.

2.1.1 Model. We assume that the source code for libraries is not

available, as is often the case in practice [26]. The first phase of

M
3
is Model: the synthesis of programs equivalent to functions in

both the source and target libraries. The programs we synthesize

are in the form of LLVM [27] intermediate representation; this

representation allows us to directly integrate synthesized programs

in existing compiler toolchains, and to benefit from robust program

manipulation libraries. The synthesis process is specified using

randomly-generated input-output examples (see Section 3.1.1).

2.1.2 Match. The second phase, Match, uses the synthesized im-

plementations of source and target library functions in two ways.

First, we inline the synthesized code of the source library functions

into the user application at each call site. Secondly, we generalize

the synthesized code of the target library functions to a constraint-

based description that allows for matching code to be efficiently

searched for.

Performing inlining means that the behavior of the library func-

tion and the context in which it appears are unified; migrations that

require splitting, merging or moving functionality can be discov-

ered and performed.

2
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call + context

strncpy(fn_buf, argv[0], n);
fn_buf[n - 1] = '\0';

1

strlcpy(fn_buf, argv[0], n);

for(int i = 0; i < n; ++i) {
  fn_buf[i] = argv[0][i];
}
fn_buf[n - 1] = '\0';

user code + context2

strlcpy(fn_buf, argv[0], n);

strlcpy(fn_buf, argv[0], n);
strlcpy(pt_buf, argv[1], m);
// handle other buffers...

strncpy(fn_buf, argv[0], n);
strncpy(pt_buf, argv[1], m);
// handle other buffers...
fn_buf[n - 1] = '\0';
pt_buf[m - 1] = '\0';

interleaved context3

Figure 2: Example of three contexts in which M
3
is able to

perform contextual API migrations using only the behavior

of the source and target functions.

2.1.3 Migrate. Once matches are found, we verify whether or not

potential migrations are correct. First, we perform basic integration

testing using random examples on the new code. This helps to

eliminate false positive matches. At this stage, the migration can

be performed automatically, although in practice the user would be

asked to confirm themigration (as is usual with APImigration tools).

We perform integration testing to check correctness of Migrate.

2.2 Example

To demonstrate the types of migration that M
3
offers, we use a

running example taken from the Common Weakness Enumeration

(CWE) database [1]. If the standard strncpy function is used

to copy a C string, null-termination is not guaranteed. This can

lead to buffer over-reads, and so alternative functions often exist

to perform a terminated copy (for example, strlcpy on BSD,

StringCchCopy on Windows or application-specific implemen-

tations). CWE-126 identifies a common pattern of manually adding

string terminators that can be replaced by these functions; doing

so is a useful API migration task.

Figure 2 shows the three patterns identified in CWE-126 that can

be refactored for safety. The first case 1 is the simplest: a call to

strncpy is immediately followed by an explicit termination. This

migration could be performed using tools such as Refaster [53], but

would require an expert to encode it manually.

The second case 2 highlights the utility of M
3
: after performing

inlining, the code that explicitly calls strncpy is no different to

code that performs an explicit loop. Both of these patterns exist in

real code, and can bemigrated equivalently usingM
3
. Becausemany

different syntaxes might represent the same semantics, writing

source-code based tools that discover loops in this way is a hard

problem [20]; M
3
’s compiler integration and IR-level search allows

it to handle loops and other control flow statements seamlessly.

Finally, the third case 3 shows a complex migration where calls

to strncpy are interleaved with their respective terminations. By

operating at the IR level, M
3
is able to identify that no dependencies

exist between the calls, and so the migration is possible. In general,

source code-based tools, even with expert knowledge, are less able

to make this determination.

Unifying these different forms of migration without requiring up-

front expert knowledge or library source code is the key advantage

of M
3
.

3 MODEL

The Model phase of M
3
is a program synthesizer; it aims to gener-

ate functions that behave equivalently to target library functions.

Model uses component-based sketching [24] together with novel

learned probabilistic models to efficiently search for the most likely

structure for correct solutions. Then, a gradual refinement pro-

cess is used to instantiate working programs from these structures.

Candidates are tested against the target function using randomly-

generated inputs; the adequacy of this testing strategy is validated

using branch coverage.

3.1 Correctness

Providing a formal proof of total correctness for this type of syn-

thesis problem is extremely complex [15]. In this paper, we define

correctness using the standard formulation of observational equiva-
lence: a candidate is correct if it behaves identically to the target

over a particular set of input examples. Most work in synthesis

using input-output examples shares this formulation [14, 47].

This definition relies on a good enough set of input examples

being available. We cannot rely on the user knowing enough of the

target’s semantics to produce a set of minimal, interesting examples

[19, 33] (and in fact wish to abstract this process away from the

user). We therefore resort to random generation of input examples.

3.1.1 Generating Test Inputs. The Model phase supports the primi-

tive C types char, int and float, and pointers to these types.

Values of integer and floating-point types are generated by sam-

pling values uniformly in the range [−64, 64], and for characters

from their entire range. For pointer data, blocks of 4,096 elements

are allocated (to allow for large computed indices based on input

3
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data). Each element of these blocks is sampled according to the

appropriate scalar sampling method.

Existing work on fuzzing and automated testing [60] generally

observes that interesting behavior most often occurs at small input

values; our input range was selected to provide a varied distribu-

tion of values while also maintaining a reasonable probability of

generating small (and therefore interesting) inputs.

Our input generation methodology can be easily generalized to

more types; further primitive types (e.g. differently sized integers or

booleans) follow the same methodology, while aggregate types (e.g.

a C struct) can be generated compositionally over their individ-

ual elements. Generating data structures with internal invariants

or unusual distributions is an open problem [46].

3.1.2 Testing Coverage. It is important that the randomly gener-

ated inputs properly exercise the possible behaviors of both the

target and candidate. While it is not possible to measure coverage

for a black-box target in the absence of source code, we measure

branch coverage over each candidate during synthesis. New inputs

are generated until full coverage is achieved.

Our results in Section 7.2 show that random testing and coverage

measurement is an effective means to validate the behavior of

synthesized programs.

3.2 Specification

Two inputs fully specify a synthesis problem: the type signature

and name of the target function, and a library containing an im-

plementation with that name. There are no requirements on the

internal details of this implementation.

No further information about the target function is required. For

example, base cases or semantic annotations (such as those used by

λ2 [19] or in the type-directed synthesis procedure demonstrated

by Collie et al. [11]) are not required by our implementation, and we

do not require manually created inputs to test candidate programs

as other synthesizers such as Simpl [47] or SketchAdapt [33] do.

3.3 Fragment-Based Sketching

Program synthesis commonly divides the search for a solution into

two phases. The first, sketching, aims to establish the structure of
a solution. In its initial formulation, sketches were provided by

the user based on their insight into the problem [48]. By doing so,

search for programs with complex control flow could be reduced to

more tractable problems. More recent approaches aim to synthesize

the sketch as well [17, 33, 52]. Our approach falls into this group

as it does not require the user to provide any sketch information.

Instead, it uses a novel probabilistic approach.

We aim to build sketches compositionally from smaller fragments,
which represent independent elements of program structure. For

example, a program that performs a linear search may comprise a

loop fragment composed with a conditional test fragment. Some

fragments are parameterized; in these cases different variants of the

fragment are instantiated depending on the available information

for a given problem. The full set of fragments used byM
3
to perform

synthesis are listed below, along with C-like pseudocode describing

their semantics.

3.3.1 Fragment Corpus. The library of fragments used by Model

is given below. The use function represents code generated that

may use a particular value, ? is possible composition, and _P is a

placeholder value of appropriate type.

Linear A basic block into which instructions should later be syn-

thesized.

Fixed Loop Template for a loop with known upper bound, param-

eterized on an optional pointer ptr and an integer x:
for(int i = 0;i < x;++i) { ? }
for(int i = 0;i < x;++i) { use(ptr[i]);? }

Delimiter Loop Template parameterized on a pointer ptr:
while(*ptr++ != _P) { use(*ptr); ? }

Loop A catch-all for iterations not covered by the two more spe-

cialized fragments:

while(_P) { ? }
If, If-Else Conditional control flow:

if(_P) { ? }
if(_P) { ? } else { ? }

Seq Execute two fragments, one after the other:

? ; ?
Affine, Index Synthesize affine and general index expressions re-

spectively, parameterized on ptr. For example:

int a_v = ptr[_P * _P + _P]; // e.g.
int v = ptr[_P - _P]; // e.g.

The available set of fragments for a synthesis problem depends

on which ones can be properly instantiated; we write F for this set.

In this work we use only the fragments described above, but it is

possible for users to extend the corpus of fragments (for example,

to specialize for a particular problem domain with partially-known

structure).

3.3.2 Composition. We define an intuitive composition operation

between any two fragments, with ◦ the left-associative composition

operator.

3.4 Probabilistic Models

The set of possible fragment compositions for some problems is very

large. Model uses two cooperating probabilistic models to reduce

the size of the search space. The first predicts which fragments

from the available set are most likely to appear anywhere in a

correct solution, and the second uses a Markov model to identify

compositions of fragments most likely to yield a correct program.

3.4.1 Fragment Likelihood. We use a random forest classification

model to predict, for each fragment f ∈ F, whether it appears in a

correct solution program. The classifierC takes as input a fragment

f and type signature τ , and outputs a prediction of whether this

fragment will appear in a correct solution for a function with that

type signature. Applying the classifierC to every fragment produces

a predicted set of fragments F0 ⊆ F:

F0 ≜ { f ∈ F | C(f ,τ )}

We achieved a mean Jaccard score of 0.82 between F and F0 using
this predictor; this means that the predictor does not significantly

over- or under-approximate.

3.4.2 Composition Sampling. There are a large number of potential

compositions over F0 that produce a sketch. It is therefore important

4
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to predict which compositions are the most likely to produce a

correct solution.

We equate the linear sequence of fragments f1, f2, . . . , fn with

the composition f1 ◦ f2 ◦ · · · ◦ fn . This allows us to sample compo-

sitions using a simple Markov model. To do so, we add start and

end symbols to the fragment vocabulary, and sample fragments

according to the probability P(fn | fn−1) until the end symbol is

sampled.

The conditional probability P(fn | fn−1) is trained using observed
fragment composition bigrams. For example, if a sketch from com-

position f ◦д ◦h produces a correct solution, then the bigrams f ◦д
and д ◦ h are both observed. Based on a matrix w of observation

counts (wherew(f , f ′) is the observed count of f ◦ f ′), we define:

w ′(fi , fj ) ≜

{
w(fi , fj ) if fj ∈ F0
0 otherwise

s(f ) ≜
∑
f ∈F0

w(f , f ′)

s ′(f ) ≜
∑
f ∈F0

w ′(f , f ′)

Then, the Markov probabilities can be given as:

P(fn | fn−1) ≜ b
w ′(fn , fn−1)

s ′(fn−1)
+ (1 − b)

w(fn , fn−1)

s(fn−1)

where b ∈ [0, 1]

3.4.3 Training. To train these models, a 25% subset of our evalua-

tion library functions was selected randomly. Ground truth sketches

were constructed by hand for each target function in this subset and

used to train both models. A 25% training set split was identified

through manual parameter search; there is enough redundancy

among the functions to enable the use of a small training propor-

tion.

We do not believe the construction of such a training dataset

to be particularly onerous when compared to statistical migration

techniques, which often entail cleaning and preprocessing millions

of lines of code. Additionally, it is possible to bootstrap our training

set starting from the synthesized solutions to simple problems.

Doing so provides no benefit to the model performance (only to the

collection of training data), and so in this paper we do not examine

the process.

3.5 Instruction Search

The final step in Model’s synthesis process is to perform an enumer-

ative search for candidate programs based on predicted sketches.

Each fragment specifies a set of typed placeholder values; these

identify where computation can be performed within that fragment.

For example, in the LLVM code below, the values %0 and %2 repre-

sent (possibly distinct) values of type i32. Placeholders may also

be untyped (%1 below).

%0 = call i32 @ph_i32()
%1 = call void @ph()
%2 = call i32 @ph_i32()
%3 = call i1 @ph_i1()

To search for candidate programs based on a sketch with place-

holders, Model assigns concrete values to each placeholder in turn;

different choices of values produce different programs. As values

are selected, the potential choices for other values may be restricted.

The result of this is a lightweight constraint-solving problem (for

example, if the value add i32 %0, %1 were selected for %2,
then the type of %1 would be restricted to i32). Precise details

of how this constraint problem can be implemented by the com-

piler are given in prior work [12]. To optimize the traversal of a

potentially large search space, Model uses the following heuristics:

• Placeholders of known type are assigned first.

• When selecting operands for unary or binary operators,

operands located closer to the operator are prioritized.

• More common operators are prioritized (e.g. addition is at-

tempted before division).

• A threshold for the total number of instructions is set and

iteratively relaxed (e.g. initially programs of 3 concretized

instructions are considered, then 4 if no successful candidate

is found, etc.).

By assigning values in this way, a concrete program is gradually

refined from a sketch. Fragments are not required to enforce con-

crete types on their constituent values, but can enforce constraints

when they do (e.g. a conditional fragment requires a boolean value).

Once we have a complete program, we can compile and execute

it using randomly generated input values.

4 MATCH

Once Model has synthesized a program with behavior equivalent

to a target library function, the next step is Match: we aim to

discover regions of code that are equivalent to the synthesized

implementation.

4.1 Searching for Code Using CAnDL

Efficiently searching for sections within an application that satisfy

particular criteria is a hard problem to express using traditional

programming languages. The CAnDL language [20] allows for

declarative specification of search patterns, which are compiled

to constraint-satisfaction problems that can be efficiently resolved

using backtracking search (in a manner similar to SMT solvers [4]).

CAnDL patterns specify dataflow relationships between values

in LLVM IR programs, as well as properties of individual values. For

example, the property “x is an add instruction, and y is a multiply

with x as one of its operands” is a simple CAnDL pattern. These

patterns amount to a set of constraints on the program that must be

satisfied for the pattern to match it; searching for matching code is

therefore a constraint satisfaction problem.

We use the standard CAnDL toolchain to efficiently solve such

constraint problems over LLVM. Full details of the search algo-

rithms can be found in [20]; in this paper we take as given an

efficient solution procedure for CAnDL-compatible constraint prob-

lems over LLVM IR programs.

4.2 Translating LLVM to Constraints

In [20] the authors write CAnDL constraints by hand to match

specific computational idioms (for example, polyhedral control

flow or stencil codes) of interest to a domain-specific optimizer. By

comparison, we aim to generate constraints automatically from

synthesized code. Automatic generation of constraints is not a use

5
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%iter = phi i64 [%new_iter,%loop], [0,%entry]
%addr = getelementptr i64,

i64* %array, i64 %iter
%elem = load i64, i64* %addr
%niter = add i64 %iter, 1

(a) Fragment of LLVM code extracted from a function that computes

the sum of an array of integers.

1 Constraint Generated
2 ( opcode{iter} = phi
3 & opcode{addr} = gep
4 & opcode{elem} = load
5 & opcode{niter} = add
6 & ir_type{0} = literal
7 & ir_type{1} = literal
8 & {niter} = {iter}.arg[0]
9 & {0} = {iter}.arg[1]
10 & {array} = {addr}.arg[0]
11 & {iter} = {addr}.arg[1]
12 & {addr} = {elem}.arg[0]
13 & {iter} = {new_iter}.arg[0]
14 & {1} = {new_iter}.arg[1])
15 End

(b) CAnDL constraints generated from the LLVM code above. These

constraints capture the structure of the code and can be efficiently

searched for in large LLVM code bases.

Figure 3: LLVM code sample and its corresponding CAnDL

constraints, as generated by Match.

case envisioned by the original authors, and so we contribute a

novel algorithm for emitting constraint descriptions from example

LLVM programs.

Figure 3a shows a small fragment of LLVM IR; the code is in SSA

form and can be described by a directed acyclic graph. Below, Fig-

ure 3b gives a set of CAnDL constraints that describe this fragment.

Each instruction (as well as constants and function parameters)

occurs as a variable name in the constraints; the constraint pro-

gram serves as a description of the data flow. The data flow graph

is serialized by classifying individual variables (lines 2–10), and

then the interactions between them (lines 11–21). This description

is passed to the CAnDL solver to efficiently find satisfying code.

Our constraint descriptions are built from a dataflow graph rep-

resentation of LLVM IR, where vertices are instructions and edges

capture the argument relation. Algorithm 1 shows how we generate

a description of this graph structure.

Looping over the graph vertices (lines 4–17), the instruction

opcode constraints are emitted, as well as the constraints that deal

specifically with constant and function argument values. In a second

loop (lines 18–20), the data flow graph is serialized by iterating over

the graph edges and emitting positional argument constraints. The

remaining lines of the algorithm generate the logical conjunctions

holding the individual constraints together (lines 5–9) and produce

the boilerplate CAnDL code (lines 2 and 21).

Algorithm 1 Emit Constraint Description

1: function EmitConstraints(V ,E)
2: emit("Constraint Generated (")

3: f irst ← true
4: for v in V do

5: if f irst then
6: f irst ← f alse
7: else

8: emit("&")

9: end if

10: if op(v) = parameter then

11: emit("ir_type", name(v), " = argument")

12: else if op(v) = const then

13: emit("ir_type", name(v), " = literal")

14: else

15: emit("opcode", name(v), " = ", op(v))
16: end if

17: end for

18: for n,a,b in E do

19: emit(name(a), " = ", name(b), ".args[", n, "]")
20: end for

21: emit(") End")

22: end function

4.3 Post-Processing Constraints

This approach results in a constraint program that searches for

exact sub-graph matches in user code, but is often too specific. We

therefore apply a careful weakening of the constraints to produce

a more general matching.

Firstly, constraints that specify values to be function arguments

are counterproductive; these constraints will not hold after inlining,

so they are removed in post-processing. Secondly, some operators

are commutative and therefore the positional argument constraints

on them are too strict. They are replaced with a logical disjunc-

tion between the corresponding permutations. Finally, we remove

instructions that correspond only to compiler-specific code genera-

tion idioms.

5 MIGRATE

Model and Match make up the bulk of the work done by M
3
. The

final step is to leverage the synthesized programs and generated

constraints to generate appropriate API migrations. We produce

source-level substitutions that can be appliedmanually to the source

code, as well as automatically-tested IR transformations.

5.1 IR-level Replacements

Migrate is able to automatically apply a potential migration within

an application being compiled. To do this, the IR values thatmatched

against a library function’s parameters and return value are iden-

tified. A call to the function is inserted with the appropriate argu-

ments given, and uses of the matched return value are replaced

with the new call’s return value.

6
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Table 1: Corpora used to evaluate M
3
.

(a) Application source code for which migrations were tested.

Software Description LoC

ffmpeg Media processing 1,061,655

texinfo Typesetting 76,755

xrdp Remote access protocol 75,921

coreutils Utilities 66,355

gems Graphics helpers 46,619

darknet Deep learning 21,299

caffepresso Deep learning 14,602

nanvix Operating system 11,226

etr Game 2,399

androidfs Filesystem 1,840

(b) Library APIs for which synthesized implementations were

learned and used to drive migration.

Library Description

string.h C standard library string handling

StrSafe.h Safety-focused C string handling

glm Graphics functions

mathfu Mathematical functions

BLAS Linear algebra

Ti DSP DSP Kernels

ARM DSP DSP Kernels

By doing this, we obtain a modified version of the application’s

code. Regions that match the generated constraints for library func-

tions are replaced with calls to those library functions. Migrate

extends the functionality used in the original CAnDL paper [20] by

not requiring the migration process to be implemented manually

for every relevant library function; having the synthesized code

available to map values allows us to do this.

5.2 Validation

The primary usage of automated IR replacement is to validate mi-

grations (i.e. to check whether or not performing the migration will

result in a correct program). While formally proving this is unlikely

to be possible for any API migration tool, Migrate performs two

validation steps that provide some assurance that its suggestions

are correct. First, we ensure that no dependencies to intermediate

values in the pre-replacement code exist later in the function. Then,

we test the code post-replacement with random IO examples using

the same methodology as Model uses; our results in Section 7.4

show that this validation is effective.

Beyond these checks, the user is likely to still perform their

own validation (e.g. running unit or integration tests). Other API

migration tools share this characteristic; no changes suggested by

refactoring tools to any codebase are likely to go untested.

5.3 Source-level Suggestions

Our methodology for this paper operates at the IR level, within

the compiler; migrations are applied mechanically by performing

substitutions of SSA values. Doing so allows us to automatically

test applied migrations, but changes made at the IR level can be

difficult for a user to understand.

We implemented a prototype tool that used LLVM’s debugging

libraries to generate source-level suggestions instead. Source-level

suggestions are harder to apply mechanically, but allow for easier

user insight into what changes have been made by the migration.

Evaluating this tool is outside the scope of the paper (as its usage

was not necessary for any of our research questions), but we hope

to implement it more fully and perform a user study as future work.

6 EXPERIMENTAL DESIGN

To evaluate the success of M
3
, we identify four research questions:

(RQ1) Feasibility and effectiveness of the Model phase: Can pro-

gram synthesis be used effectively to learn the behavior of

black-box library functions?

(RQ2) Correctness of synthesized programs: Do the synthe-

sized programs behave the same as the target program over

a particular set of inputs? The inputs used for this correctness

check are randomly generated. To assess the adequacy of

the random inputs in checking behaviors of the synthesized

and target programs, we measure branch coverage achieved

by the random inputs over them.

(RQ3) Accuracy of Match phase: Given synthesized implemen-

tations for library functions, can compatible instances in

application code be accurately discovered? In this research

question, we focus on ability and accuracy of the Match

phase to discover inlined implementations of the same syn-
thesized library functions in application code.

(RQ4) Accuracy of Migrate phase: Given instances of user code

that match the constraints generated from a library func-

tion, can API migrations be correctly implemented? This

research question investigates ability and accuracy of the

Migrate phase in matching and migrating implementations

in application code to different library functions.

6.1 Evaluation Corpora

6.1.1 Applications. We selected 9 widely-used applications to eval-

uate our approach against; they are listed in Table 1a. Each applica-

tion is written in C or C++, and they cover a wide range of problem

domains.

We selected these applications by manually searching GitHub

and similar online repositories
1
for code that matched the following

criteria: most importantly, we required a build system that permit-

ted easy interposition of our compiler toolchain. For our purposes,

this ruled out applications not written in C or C++, although with

some additional engineering work any language with an LLVM

frontend could be integrated.

When selecting applications, large, popular and real-world code

was prioritized.We selected projects in active development, or those

for which significant distribution and usage could be identified. We

1
Using https://searchcode.com/
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Figure 4: Proportion of each library’s API that we were able

to successfully synthesize, across all functions in the library

as well as those with compatible type signatures. Results are

also shown for TypeDirect [11].

aimed for a diverse range of application domains with minimal

duplication. No pre-selection of applications based on knowledge

of their source code was performed; the authors were not familiar

with these applications in advance.

6.1.2 Libraries. We selected 7 libraries to target for migration,

from two broad problem domains: string processing and math-

ematical operations. Similar domains are commonly targeted by

other migration tools (with different tooling and language contexts).

We required libraries that could be called easily from C/C++ for

compatibility with the synthesizer.

For string processing, our starting point was the standard C

string.h header along with BSD extensions. We additionally se-

lected the Microsoft StrSafe.h library that extends the standard

functions with safer alternatives that avoid common security issues.

We then selected five mathematical libraries with slightly different

areas of application and platform support in order to evaluate the

ability of M
3
to discover cross-vendor or cross-platform migrations.

Other work [11] identifies the usefulness of this type of migration.

Full details of the selected libraries are given in Table 1b.

7 RESULTS

7.1 RQ1: Feasibility and Effectiveness of Model

7.1.1 Library Coverage. Figure 4 shows the proportion of each

library’s API we were able to synthesize correctly across all func-

tions in the library (shown as blue bars). As expected, we could not

synthesize every function from each library. The primary reason

for a synthesis failure was a function’s type signature not being

compatible with Model, for example those using pointers to point-

ers or complex structure types. Beyond these failures, there were

a number of cases where internal data structure usage meant that

Model’s control flow fragments were not able to express the nec-

essary structure (e.g. the control flow required to operate on the

packed matrices in strsm from BLAS).

Model successfully synthesizes implementations for an average

of 37% of the functions in each library evaluated (blue bars in Fig-

ure 4). Considering only functions with type signatures compatible

with Model (brown bars in Figure 4), we were able to synthesize

Figure 5: Distribution of synthesis times for each library

API.

Figure 6: Corpus branch coverage achieved using randomly

generated inputs. Coverage values are reported as the mean

of three separate runs.

implementations for nearly 50% on average. This represents a sig-

nificant proportion of each library’s behavior—even in our worst

performing case (BLAS), we are able to synthesize nearly 20% of all

functions in the library. Performance on the BLAS library is limited

by the high complexity of many of its constituent functions (e.g.

solving systems of equations on packed matrix structures).

For each synthesis failure in our set of evaluation functions, we

examined the reference function by hand to determine why it could

not be synthesized. In some cases (e.g. strtok from string.h),
the function demonstrated stateful behavior. Modeling this type

of function is an open problem in program synthesis, with recent

work addressing limited contexts such as heap manipulation [39].

Our synthesis methodology presumes that target functions are

idempotent, and so does not support stateful functions. Doing so is

interesting future work. A small number of functions (e.g. ssyr2k
from blas) exhibit unusual control flow idioms not expressible

using our set of fragments. However, the majority of failures are

timeouts resulting from long required sequences of instructions in

target functions.

Program synthesis over an entire library API is a challenging

problem; the programs that we were able to synthesize are consid-

erably more complex than comparable work in program synthesis

while requiring less information to do so. [41, 47].

8
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7.1.2 Difficulty. Figure 5 shows the distribution of candidate func-

tions evaluated for the synthesis problems in each library. From

these distributions we see that the majority (84%) of functions were

synthesized in less than 2 minutes. We were able to evaluate ap-

proximately 1,000 candidates per second on an 8-core desktop-class

machine.

The distribution of synthesis times is long-tailed; only two func-

tions from the BLAS library took more than 2 hours to synthesize.

These synthesis times are comparable to existing work in program

synthesis, and could be further improved by using techniques such

as hill-climbing to guide the search process.

7.1.3 Comparison to TypeDirect. Wewere only able to identify one

other program synthesizer with library functions and migrations as

an explicitly stated goal. In that work, partial semantic knowledge

and type information is used to guide a synthesizer (TypeDirect)

towards synthesized implementations of performance bottleneck

functions [11]

Evaluation of TypeDirect is limited to 12 such functions, with

synthesis guided by annotations that specify semantic properties of

the target functions [11]. We restated our set of synthesis problems

for TypeDirect and recorded how many it could synthesize. These

results are compared to those achieved by Model in Figure 4 (green

bars); Model performs significantly better across all the libraries

evaluated, with TypeDirect failing to synthesize any function in

four of the seven libraries. Additionally, TypeDirect took longer to

synthesize the functions for which it was successful (up to 4 hours

in some cases).

In sum, compared to TypeDirect, we find Model is (1) automated

and easy to use, not relying on annotations to guide synthesis and

(2) more widely applicable with better synthesis coverage across

different libraries. This is due primarily to TypeDirect’s focus on

synthesis for specific accelerator libraries rather than general API

migration.

7.2 RQ2: Correctness of Synthesis

For every synthesized library function, we automatically generated

random and boundary value inputs and checked if outputs matched

those from the target black-box function.

Random Testing. We generated test inputs for every synthesized

candidate by uniformly sampling values in the range of the input

data types, as described in Section 3.1.1. We found all the synthe-

sized library implementations were behaviorally equivalent to the

target functions with respect to the random inputs generated for

them.

Manual Check. As well as testing using random IO examples, we

examined each synthesized solution manually using our knowledge

of their intended behavior. Only one program was judged to be

incorrect: the memmove function from string.h. If the mem-

ory regions passed as arguments aliased (i.e. they overlapped), the

synthesized implementation would exhibit incorrect behavior. Our

testing methodology did not generate aliased memory. We gener-

ated a set of aliased inputs manually and were able to correctly

synthesize memmove.

Table 2: Number of call sites where synthesized functions

were inlined in each application, along with the proportion

of these that were successfully rediscovered using Match.

Application

Inlined Calls (L→L) # User Code

#Instances Matched (%) Matches (C→L)

ffmpeg 4,976 100% 24

texinfo 586 100% 1

xrdp 686 100% 0

coreutils 623 100% 16

gems 46 100% 61

darknet 128 100% 13

caffepresso 189 100% 0

nanvix 0 100% 16

etr 4 100% 45

androidfs 0 100% 2

Total 7,238 178

Boundary Value Testing. We additionally tested each synthesized

candidate using boundary and outside range values for inputs. In

every case, the synthesized candidate conformed to the expected

behavior on these inputs.

Adequacy of testing. We assessed the adequacy of the generated

inputs in exercising behaviors of the synthesized implementations

by measuring the branch coverage achieved. Figure 6 shows the

branch coverage achieved across the full set of library functions

evaluated. With as few as 10 distinct inputs, more than 98% of the

branch choices in our corpus of synthesized programs are evaluated.

Typically, at most around 30 random inputs are needed to provide

100% branch coverage for a synthesized candidate. The numerical

libraries we evaluate most often contain loops as their primary

control flow; branch coverage is less difficult to achieve over looping

code than over conditionals.

These results provide confidence that the synthesized candidates

behave equivalently to the target program with respect to inputs

that exercise the complete control flow in the candidates.

Inside the Black Box. In many cases, we had the source code for

libraries, making it possible to directly compare our synthesized

programs to the original code by “looking inside” the black-box.

These programs were compiled to LLVM IR and used as input to

the Match and Migrate phases as if they had in fact been synthe-

sized. We did not identify any meaningful divergence in results;

we achieved similar per-library branch coverage, and the compiled

IR for synthesized and handwritten implementations was almost

identical in most cases. No behavioral differences were observed.

7.3 RQ3: Accuracy of Match

We assessed if the constraint descriptions of every synthesized

library implementation was able to match the inlined implementa-

tion of the same library in application code (L→L). Match is able

to successfully identify every instance of inlined code across all

the applications we evaluated; the number of inlined instances for

each application is given in Table 2. This is because the same code

is inlined at each site, and because inlining does not change the

9
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Table 3: Migration opportunities discovered in each appli-

cation, broken down by the category of the source context

(source library calls L or user code C).

Application Migrations

Category

L→L’ C→L’ L+C→L’

ffmpeg 655 629 24 2

texinfo 431 413 1 17

xrdp 274 269 0 5

coreutils 649 633 16 0

gems 107 46 61 0

darknet 40 7 13 20

caffepresso 24 24 0 0

nanvix 16 0 16 0

etr 49 4 45 0

androidfs 2 0 2 0

Total 2,247 2,025 178 44

structure of the code from which the constraint description was

generated.

As well as being able to successfully identify inlined calls, Match

is able to identify locations in the application code where equivalent

functionality to a library function is implemented, C→L (number

of instances shown in Table 2). We performed a manual search for

further instances not discovered by Match based on these results.

A combination of several techniques was used to perform this

search: we used handwritten CAnDL constraints for significantly

abstracted versions of each function to guide an initial search, as

well as textual similarity and heuristic exploration of the code.

For example, where a re-implementation of one string-processing

functionwas discovered, we searched by hand for similar re-implementations

that were not discovered by Match. For a region to be classified as

a re-implementation, we required that on well-formed inputs (i.e.

not accounting for “exceptional” control flow), the region performs

the same task as the original function.

No further instances of this kind were identified by this search,

confirming with reasonable certainty that there were no false nega-

tives from Match (though no technique can verify this formally).

The constraints generated by Match were specific enough that none

of the application code matches represented false positives.

Running the CAnDL solver takes additional time during compila-

tion; approximately the same as compilation itself for each pattern

to be searched for [20]. This time is not a bottleneck when using

M
3
practically.

7.4 RQ4: Accuracy of Migrate

For every synthesized target library function, we assessed in how

many cases the generated constraints for that function matched

application code that was not originally a call to that function. This

quantifies the number of possible migrations enabled byM
3
. Table 3

gives the total number of migrations found in each application, as

well as a breakdown into three categories:

• Replacement of a source function with a semantically identi-

cal target function from a different library (L→L’).

• Identification and replacement of redundant application code

that could be better expressed as a target library function

call (C→L’).

• Replacement of code that combines a source library call and

handwritten code with a target function (L+C→L’).

The most common migrations were L→L’, where two libraries

implemented the same function (for example, delimited string copy-

ing or a vector dot product). Some functions did not produce migra-

tion opportunities, even though they could be inlined and matched.

memcpy is an example of this; applications like ffmpeg and xrdp
that frequently perform buffer copies show far fewer migrations

than inlined matches.

Note that the category C→L’ corresponds exactly to the number

of matches in user code (C→L) quoted in Table 2. This is because

anymatching instance of a function in application code represents a

migration opportunity; there is no original function whose matches

we are not interested in.

These results demonstrate that M
3
is able to successfully identify

distinct classes of migration (other tools are often limited to one

of these classes only, and L+C→L’ migrations generally require

expert knowledge to express). The migrations we identify are useful

and would be difficult to identify with existing tools.

7.5 Threats to Validity

We find M
3
is able to identify and perform a large number of useful

migrations using real-world applications and libraries, in contexts

not well served by existing tools. The primary threats to internal
validity are: (1) The fragment vocabulary used byModel is a limiting

factor; the variety of programs that can be synthesized depends on

this vocabulary. However, this is a limitation shared by all sketching

program synthesizers. (2) Our CAnDL constraint generation is not

formally verified; we rely on testing with different library functions

to check constraints always match their source programs. (3) We

check the correctness of the synthesized implementations against

target functions using test inputs that achieve branch coverage.

Proving total correctness is known to be challenging [15], especially

when the target source code is not visible.

The main threat to external validity lies in the subject libraries

chosen and the restriction to two problem domains: string pro-

cessing and mathematical operations. These domains have also

been targeted by other migration tools and we used these to fa-

cilitate comparison. Our synthesis technique is not restricted to

these domains and we will apply our techniques to other domains

in the future; extending the vocabulary of fragments to include

more expressive computations will allow us to scale synthesis to

more complex APIs and functions.

8 RELATEDWORK

8.1 Library Migration

(Semi-)automatic rewriting of application code to use new libraries

has beenwell studied, particularly for Java and other object-oriented

languages [55, 59]. Robillard et al. [40] partition migration tech-

niques into 3 sub-areas: library upgrade [16, 56], API evolution

[13, 44] and library migration [31, 54, 61]. Many schemes rely on a

large corpus of programs using the old and new libraries, frequently

focusing on change logs [51]. This ongoing need is highlighted by

10
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Alrubaye and Mkaouer [2], whose work aims to automatically iden-

tify key changes that produce a migration.

8.1.1 Automatic. Different levels of abstraction delineate auto-

matic approaches. Similarity of text description has been used to

map old to new APIs [36], while others [30, 32, 38] use a syn-

tactic view of programs to build a learned vector-space encoding

[28] for migration given an initial parallel mapping. Although the

embedding-based approach taken by API2Vec [32] is flexible, the

resulting ambiguity is in fact a hindrance when performing migra-

tions. More recent work attempts to generate mappings between

APIs based on their usage [7].

Other work [57, 58] goes beyond simple replacement of library

API calls. Xu et al. [57] use syntactic program differencing and pro-

gram dependency analysis to target actual edits and replacements.

Although it is a syntactic rather than semantic approach, they are

able to add new code to help migration of libraries. EdSynth [58]

synthesizes candidate API calls to fill partial program using infor-

mation from test executions and method constraints. Unlike our

synthesis approach, their work requires white-box information

on candidate methods, exact locations to insert API calls, and a

user-provided test suite to serve as a correctness specification.

Closer to our aim of not relying on prior API mapping examples

is the approach taken by Bui [6]. It uses GANs to generate initial mi-

grations (seeds) rather than using human knowledge to do so [5]. To

achieve this, it makes the assumption that use of APIs when migrat-

ing remains roughly the same. It has significantly lower precision

than our approach, relies on lexical similarity and cannot perform

C→L’ migrations. Other work uses specific semantic knowledge

of functions to perform refactoring with semantic guarantees [45].

8.1.2 Expert-Driven. A different approach to API migration is to

use expert knowledge to encode migration patterns by hand, then

compile them to a searchable representation to perform migrations.

This approach is taken by tools like ReFaster (Java) [53] and No-

Brainer (C / C++) [43]; they permit complex migrations but require

experts to create the migration patterns initially. Similarly, IDL

[21] implements migrations of computational “idioms” to target

heterogeneous computing platforms. The underlying code search

mechanism for M
3
(CAnDL [20]) can be used to implement this

style of migration tool in a portable way. M
3
extends prior work by

adding a learning phase that creates migration patterns automati-

cally.

8.2 Program Synthesis

M
3
uses program synthesis as a technique formodeling the behavior

of library functions. We give a brief overview of related work in

synthesis.

Prior work in imperative synthesis frequently focuses on straight-

line code [23, 42] or has to make special provision for control-flow

[22]. Simpl overcomes this problem by assuming a partial program

is already provided (such as a loop structure) [47]. Other work

aims to complete suggested sketches [49] of programs to provide

programmer abstraction and auto-parallelization [18]

Type signatures and information are often used to direct pro-

gram synthesis, most commonly for functional programs [34, 35].

Other work uses extended type information as a means of accessing

heterogeneous accelerators [11]. Our work considers a much wider,

more diverse class of libraries and applications without additional

annotation.

Others have used neural components to improve the perfor-

mance of an existing synthesizer. For example, both DeepCoder

[3] and PCCoder [62] aim to learn from input-output examples;

both require fixed-size inputs and outputs and use a small DSL to

generate training examples. Learned programs are limited to list

processing tasks; the DSLs targeted by these (and similar implemen-

tations such as SketchAdapt [33]) also rely on high level primitive

including (for example) primitives to tokenize strings or perform

list manipulations.

Operating under the assumption of a black-box API means that

many existing approaches in program synthesis do not apply or fail

to generalize to our context [8, 9]. By using a black-box oracle we

are able to avoid issues of generalization across datasets [25, 37].

9 CONCLUSION

In this paper we have proposed a novel API migration problem that

matches real-world problem contexts. Our approach, M
3
, uses the

behavior of library functions to discover migrations without expert

knowledge, changelogs, or access to the library’s source code.

We successfully applied this approach to 7 large, widely-used

libraries and were able to successfully synthesize nearly 40% of their

functions. We discovered over 7,000 instances of these functions

in 10 well-known C/C++ applications, and were able to discover a

number of missed optimizations and bugs.

Using constraint-based search for API migration allows for the

semantics of the code in question to be accounted for, rather than

just the contexts in which they appear; this results in more precise

migrations. Future work applying these methods to more domains

is likely to be interesting.
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