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ABSTRACT

We provide methods for in-database support of decision mak-
ing under uncertainty. Many important decision problems
correspond to selecting a package (bag of tuples in a rela-
tional database) that jointly satisfy a set of constraints while
minimizing some overall cost function; in most real-world
problems, the data is uncertain. We provide methods for
specifying—via a SQL extension—and processing stochastic
package queries (SPQs), in order to solve optimization prob-
lems over uncertain data, right where the data resides. Prior
work in stochastic programming uses Monte Carlo meth-
ods where the original stochastic optimization problem is
approximated by a large deterministic optimization problem
that incorporates many scenarios, i.e., sample realizations of
the uncertain data values. For large database tables, how-
ever, a huge number of scenarios is required, leading to poor
performance and, often, failure of the solver software. We
therefore provide a novel SummarySearch algorithm that,
instead of trying to solve a large deterministic problem, seam-
lessly approximates it via a sequence of smaller problems
defined over carefully crafted summaries of the scenarios
that accelerate convergence to a feasible and near-optimal
solution. Experimental results on our prototype system show
that SummarySearch can be orders of magnitude faster than
prior methods at finding feasible and high-quality packages.

Matteo Brucato, Nishant Yadav, Azza Abouzied, Peter J. Haas, and
Alexandra Meliou. 2020. Stochastic Package Queries in Probabilistic
Databases*: Extended Version.

1 INTRODUCTION

Constrained optimization is central to decision making over
a broad range of domains, including finance [23, 27], trans-
portation [12], healthcare [20], the travel industry [14], ro-
botics [18], and engineering [2]. Consider, for example, the
following very common investment problem.

* This paper extends the paper with the same title published in SIGMOD
2020 by the same authors. This version includes fixes to the original paper
and an appendix with extra material.

Example 1 (Financial Portfolio). Given uncertain pre-
dictions for future stock prices based on financial models de-
rived from historical data, an investor wants to invest $1,000
in a set of trades (decisions on which stocks to buy and when to
sell them) that will maximize the expected future gain, while
ensuring that the loss (if any) will be lower than $10 with
probability at least 95%.

Suppose each row in a table contains a possible stock trade
an investor can make: whether to buy one share of a certain
stock, and when to sell it back, as shown in the left-hand
side of Figure 1. The investor wants a “package” of trades—a
subset of the input table, with possible repetitions (i.e., mul-
tiple shares)—that is feasible, in that it satisfies the given
constraints (total price at most $1,000 and loss lower than
$10 with probability at least 95%), and optimal, in that it
maximizes an objective (expected future gain). Although the
current price of a stock is known—i.e., price is a deterministic
attribute—its future price, and thus the gain obtained after
reselling the stock, is unknown. In the input table, Gain is a
stochastic attribute. If the future gains were known, Exam-
ple 1 would be a “package query” [3, 4], directly solvable
as an Integer Linear Program (ILP) using off-the-shelf linear
solvers such as IBM CPLEX [24], and declaratively express-
ible in the Package Query Language (PaQL). Because Gain
is stochastic, the investor is solving a stochastic ILP instead.
In this paper, we introduce stochastic package queries (SPQs),
a generalization of package queries that allows uncertainty
in the data, thereby allowing specification and solution of
stochastic ILP problems.
We first introduce a simple language extension to PaQL,

called sPaQL, that allows easy specification of package
queries with stochastic constraints and objectives. We show
the sPaQL query for Example 1 in Figure 1. The result of
the query, on the right-hand side of the figure, is a package
that informs the investor about how many trades to buy for
each individual stock, and when to plan reselling them to
the stock market.

Probabilistic databases [13, 40] enable the representation
of random variables in a database. The Financial Portfo-
lio, like many other real-world applications, typically uses
complex distributions to model uncertainty. For instance,
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Stock_Investments (Table)
id stock price sell_in Gain

1 AAPL 234 1 day ?
2 AAPL 234 1 week ?
3 MSFT 140 1 day ?
4 MSFT 140 1 week ?
5 TSLA 258 1 day ?
6 TSLA 258 1 week ?

Stochastic Package Query (sPaQL)

SELECT PACKAGE(∗) AS Portfolio
FROM Stock_Investments
SUCH THAT
SUM(price) ≤ 1000 AND
SUM(Gain) ≥ −10 WITH PROBABILITY ≥ 0.95

MAXIMIZE EXPECTED SUM(Gain)

Portfolio (Package)
id stock price sell_in Gain

3 MSFT 140 1 day ?
3 MSFT 140 1 day ?
6 TSLA 258 1 week ?

“Buy 2 MSFT shares, sell them tomorrow.
Buy 1 TSLA share, sell it in 1 week”.

Figure 1: Example input table for the Financial Portfolio (left), its stochastic package query expression in sPaQL

(center), and an example output package (right) with a description of its meaning for the investor. Stochastic

attributes (Gain, in this example) are denoted in small caps and their values are unknown (shown by a question

mark). Sample realizations of the uncertain ? values are generated by calls to VG functions.

future stock prices are sometimes forecast using lognormal
variates based on “geometric Brownian motion” [36] using
historical stock price data; alternatively, forecasts can incor-
porate complex stochastic predictive simulation or machine
learning models. For this reason, we base SPQs on the Monte
Carlo probabilistic data model [25, 26], which offers support
for arbitrary distributions via user-defined variable genera-
tion (VG) functions. To generate a sample realization of the
random variables in a database, the system calls the appropri-
ate VG functions. Whereas existing probabilistic databases
excel at supporting SQL-like queries under uncertainty, they
do not support package-level optimization, and therefore
cannot answer SPQs. PackageBuilder [3, 4], on the other
hand, only supports deterministic package queries and their
translation into deterministic ILPs.
The state of the art in solving stochastic ILPs (SILPs) has

been developed outside of the database setting, in the field
of stochastic programming (SP) [1, 10, 22]. SP techniques ap-
proximate the given SILP by a large deterministic ILP (DILP)
that simultaneously incorporates multiple scenarios. In a
Monte Carlo database, a scenario is obtained by generating
a realization of every random variable in the table, via a
call to each associated VG function; this procedure may be
repeated multiple times, generating a set of scenarios that
are mutually independent and identically distributed (i.i.d.).
Figure 2 shows an example of three possible scenarios for
the input investment table for Example 1. Roughly speak-
ing, expectations in the SILP are approximated by averages
over the scenarios and probabilities by relative frequencies
to form the DILP, which is then fed to a standard solver
(e.g., CPLEX). The obtained solution approximates the true
optimal solution for the SILP; the more scenarios, the better
the approximation.
The solution of the DILP, however, may not be feasible

with respect to the original SILP, especially if the approxima-
tion is based on only a small number of scenarios that do not
well represent the true uncertainty distribution. For exam-
ple, a financial package obtained by using too few scenarios

Scenario 1
id . . . gain

1 . . . 0.1
2 . . . 0.05
3 . . . -0.2
4 . . . 0.2
5 . . . 0.1
6 . . . -0.7

Scenario 2
id . . . gain

1 . . . -0.2
2 . . . -0.03
3 . . . 0.5
4 . . . 0.7
5 . . . -0.7
6 . . . -0.001

Scenario 3
id . . . gain

1 . . . 0.01
2 . . . 0.02
3 . . . -0.1
4 . . . -0.3
5 . . . 0.2
6 . . . 0.3

Figure 2: Three example scenarios for the

Stock_Investments table, each showing only the ids and

specific realizations for the stochastic attribute Gain.

might guarantee a loss less than $10 with a probability of
only 65%, rather then 95%, incurring more risk than desired.
There is no practical way to know how many scenarios

will be needed a priori; existing theoretical a-priori bounds—
see, e.g., [31]—are usually too conservative to be usable when
table sizes are large. For example, if the Stock_Investments
table contains 𝑁=50,000 rows, then to guarantee that the
DILP solution is feasible for the SILP with merely 0.1% prob-
ability (which is really no guarantee at all), one would need
690,000 scenarios, resulting in a DILP with 34.5 billion coeffi-
cients! SP solutions must therefore be “validated” a posteriori,
using a much larger, and out-of-sample, set of scenarios. In
Example 1, for instance, we would generate, say, 106 scenar-
ios and verify that the loss is less than $10 in at least 95%
of them; such validation is much faster than solving a DILP
with 106 scenarios.

The state-of-the-art algorithm thus works in a loop: the
optimization phase creates scenarios, combines them into
a DILP, and computes a solution; the validation phase vali-
dates the solution against the out-of-sample scenarios. If the
solution is feasible on the validation scenarios (validation-
feasible), the algorithm terminates, otherwise it creates more
scenarios and repeats. A solution that is validation-feasible
is highly likely to be truly feasible for the original SILP. Typ-
ically the ultimate number of scenarios used to compute



the optimal solution to the DILP is astronomically smaller
than the number prescribed by the conservative theoreti-
cal bounds (though it is still large enough to be extremely
computationally challenging).

Unfortunately, this process often breaks down in practice.
Uncertainty increases with increasing table size, and large
tables typically need a huge number of scenarios to achieve
feasibility. Thus the validation phase repeatedly fails, and the
scenario set—and hence the DILP—grows larger and larger
until the solver is overwhelmed. Even if the solver can ul-
timately handle the problem, many ever-slower iterations
may be required until validation-feasible solutions are found,
resulting in poor performance.
In this paper, we present an end-to-end system for SPQs,

seamlessly connecting SILP optimization with data manage-
ment and stochastic predictive modeling. Thus tasks related
to efficiently storing data, maintaining consistency, control-
ling access, and efficiently retrieving and preparing the data
for analysis can leverage the full power of a DBMS, while
avoiding the usual slow, cumbersome, and error-prone ana-
lytics workflowwhere we read a dataset off of a database into
main memory, feed it to stochastic-prediction and optimiza-
tion packages, and store the results back into the database.
We first introduce a Naïve query evaluation algorithm,

which embodies the state-of-the-art optimization/validation
technique outlined above, and thoroughly discuss its draw-
backs. (Although the Naïve technique is mentioned in the
SP literature, to our knowledge this is the first systematic im-
plementation of the approach.) We then introduce our new
algorithm, SummarySearch, that is typically faster than
Naïve by orders of magnitude and can handle problems that
cause Naïve to fail.
Our key observation is that the randomly selected set of

scenarios used to form the DILP during an iteration of Naïve
tend to be overly “optimistic”, leading the solver towards a
seemingly good solution that “in reality”—i.e., when tested
against the validation scenarios—turns out to be infeasible.
This problem is also known as the “optimizer’s curse” [39].

To overcome the optimizer’s curse, SummarySearch re-
places the large set of scenarios used to form the Naïve
DILP by a very small synopsis of the scenario set, called a
“summary”, which results in a “reduced” DILP that is much
smaller than the Naïve DILP. A summary is carefully crafted
to be “conservative” in that the constraints in the reduced
DILP are harder to satisfy than the constraints in the Naïve
DILP. Because the reduced DILP is much smaller than the
Naïve DILP, it can be solved much faster; moreover, the re-
sulting solution is much more likely to be validation-feasible,
so that the required number of optimization/validation it-
erations is typically reduced. Of course, if a summary is
overly conservative, the resulting solution will be feasible,
but highly suboptimal. Therefore, during each optimization

phase, SummarySearch implements a sophisticated search
procedure aimed at finding a “minimally” conservative sum-
mary; this search requires solution of a sequence of reduced
DILPs, but each can be solved quickly.

Our experiments (Section 6) show that, since its iterations
are much faster than those of Naïve, SummarySearch ex-
hibits a large net performance gain even when the number of
iterations is comparable; typically, the number of iterations
is actually much lower for SummarySearch than for Naïve,
further augmenting the performance gain.

In summary, the contributions of our paper are as follows.
• We extend the PaQL language for deterministic package
queries (itself an extension of SQL); the resulting lan-
guage, sPaQL (Appendix A), allows specification of pack-
age queries with stochastic constraints and objectives.
• We provide a precise and concrete embodiment, theNaïve
algorithm, of the optimization/validation procedure sug-
gested by the SP literature (Section 3).
• We provide a novel algorithm, SummarySearch, that is

orders-of-magnitude faster than Naïve, and that can solve
SPQs that require too many scenarios for Naïve to han-
dle. This is a significant contribution and fundamental
extension to the known state-of-the-art in stochastic pro-
gramming (Section 4).
• We present techniques that allow SummarySearch to
optimize its parameters automatically, and we provide
theoretical approximation guarantees on the solution of
SummarySearch relative to Naïve (Section 5).
• We provide a comprehensive experimental study, which
indicates that SummarySearch always finds validation-
feasible solutions of high quality, evenwhenNaïve cannot,
with dramatic speed-ups relative to Naïve (Section 6).
Section 7 discusses related work, and we conclude in Sec-

tion 8. Our SPQ techniques represent a significant step to-
wards data-intensive decision making under uncertainty.

2 PRELIMINARIES

Our work lies at the intersection of package queries, proba-
bilistic databases, and stochastic programming. In this sec-
tion, we introduce some basic definitions from these areas
that we will use throughout the paper.

2.1 Deterministic Package Queries

A package P of a relation R is a relation obtained from R by
inserting𝑚P (𝑡) ≥ 0 copies of 𝑡 into P for each 𝑡 ∈ R; here
𝑚P is the multiplicity function of P. The goal of a package
query is to specify 𝑚P, and hence the tuples of the corre-
sponding package relation. A package query may include
a WHERE clause (tuple-level constraints), a SUCH THAT



clause (package-level constraints), a package-level objective
predicate and, possibly, a REPEAT limit, i.e., an upper bound
on the number of duplicates of each tuple in the package.
A deterministic package query can be translated into an

equivalent integer program [3]. For each tuple 𝑡𝑖 ∈ R, the
translation assigns a nonnegative integer decision variable 𝑥𝑖
corresponding to the multiplicity of 𝑡𝑖 in P, i.e., 𝑥𝑖 =𝑚P (𝑡𝑖 ). If
the objective function and all constraints are linear in the 𝑥𝑖 ’s,
the resulting integer program is an ILP. A cardinality con-
straint COUNT(∗) = 3 is translated into the ILP constraint∑𝑁
𝑖=1 𝑥𝑖 = 3. A summation constraint SUM(price) ≤ 1000

is translated into
∑𝑁
𝑖=1 𝑡𝑖 .price𝑥𝑖 ≤ 1000; this translation

works similarly for other linear constraints and objectives.
A REPEAT 𝑙 constraint is translated into bound constraints
𝑥𝑖 ≤ 𝑙 + 1,∀𝑖 ∈ [1..𝑁 ].

2.2 Monte Carlo Relations

We use the Monte Carlo database model to represent un-
certainty in a probabilistic database. Uncertain values are
modeled as random variables, and a scenario (a determin-
istic realization of the relation) is generated by invoking
all of the associated VG functions for the relation. In the
simplest case, where all random variables are statistically
independent, each random variable has its own VG func-
tion; in general, multiple random variables can share the
same VG function, allowing specification of various kinds
of statistical correlations. A Monte Carlo database system
such as MCDB [25] (or its successor, SimSQL [5]) facilitates
specification of VG functions as user-defined functions. We
assume that there exists a deterministic key column that is
the same in each scenario, so that each scenario contains
exactly 𝑁 tuples for some 𝑁 ≥ 1 and the notion of the “𝑖th
tuple 𝑡𝑖" is well defined across scenarios. For simplicity, we
focus henceforth on the case where a database comprises a
single relation. Our results extend to Monte Carlo databases
containing multiple (stochastic) base relations in which the
SPQ is defined in terms of a relation obtained via a query
over the base relations.

2.3 Stochastic ILPs

The field of stochastic programming (SP) [28, 37] studies
optimization problems—selecting values of decision vari-
ables, subject to constraints, to optimize an objective value—
having uncertainty in the data. We focus on SILPs with linear
constraints and linear objectives that are deterministic, ex-
pressed as expectations, or expressed as probabilities. Proba-
bilistic constraints are also called “chance” constraints in the
SP literature.
Linear constraints. Given random variables 𝜉1, . . . , 𝜉𝑁 , deci-
sion variables 𝑥1, . . . 𝑥𝑁 , a real number 𝑣 ∈ IR, and a relation
⊙ ∈ {≤, ≥}, a linear expectation constraint takes the form

E
(∑𝑁

𝑖=1 𝜉𝑖𝑥𝑖
)
⊙ 𝑣 , and a linear probabilistic constraint takes

the form Pr
(∑𝑁

𝑖=1 𝜉𝑖𝑥𝑖 ⊙ 𝑣
)
≥ 𝑝 , where 𝑝 ∈ [0, 1]. We refer to∑𝑁

𝑖=1 𝜉𝑖𝑥𝑖 ⊙ 𝑣 as the inner constraint of the probabilistic con-
straint, and to

∑𝑁
𝑖=1 𝜉𝑖𝑥𝑖 as its inner function. Constraints of

the form Pr (·) ≤ 𝑝 can be rewritten in the aforementioned
form by flipping the inequality sign of the inner constraint
and using 1 − 𝑝 instead. If for constants 𝑐1, . . . , 𝑐𝑁 ∈ IR we
have Pr(𝜉𝑖 = 𝑐𝑖 ) = 1 for 𝑖 ∈ [1..𝑁 ], then we obtain the de-
terministic constraint

∑𝑁
𝑖=1 𝑐𝑖𝑥𝑖 ⊙ 𝑣 as a special case of an

expectation constraint.
Objective. Without loss of generality, we assume through-
out that the objective has the canonical form min𝑥

∑𝑁
𝑖=1 𝑐𝑖𝑥𝑖

for deterministic constants 𝑐1, . . . , 𝑐𝑁 . Indeed, observe that
an objective in the form of an expectation of a linear func-
tion can be written in canonical form: min𝑥 E

(∑𝑁
𝑖=1 𝜉𝑖𝑥𝑖

)
=

min𝑥
∑𝑁
𝑖=1 E (𝜉𝑖 ) 𝑥𝑖 , and thus we take 𝑐𝑖 = E (𝜉𝑖 ). (This as-

sumes that each expectation E (𝜉𝑖 ) is known or can be accu-
rately approximated.) We call

∑𝑁
𝑖=1 𝜉𝑖𝑥𝑖 the inner function of

the expectation. Similarly, an objective in the form of a prob-
ability can be written in canonical form using epigraphic
rewriting [9]. For example, we can rewrite an objective of the
form min𝑥 Pr

(∑𝑁
𝑖=1 𝜉𝑖𝑥𝑖 ⊙ 𝑣

)
in canonical form as min𝑥,𝑦 𝑦

and add a new probabilistic constraint Pr
(∑𝑁

𝑖=1 𝜉𝑖𝑥𝑖 ⊙ 𝑣
)
≤ 𝑦.

Here 𝑐1 = · · · 𝑐𝑁 = 0 and 𝑦 is an artificial decision vari-
able added to the problem with objective coefficient 𝑐𝑦 = 1.
Throughout the rest of the paper, we will primarily focus
on techniques for minimization problems with a nonnega-
tive objective function; the various other possibilities can
be handled with suitable modifications and are presented
in Appendix B.

In our database setting, we assume for ease of exposition
that, in a given constraint or objective, each random variable
𝜉𝑖 corresponds to a random attribute value 𝑡𝑖 .A for some real-
valued attribute A; a different attribute can be used for each
constraint, and need not be the same as the attribute that
appears in the objective. Our methods can actually support
more general formulations: e.g., an expectation objective of
the form min𝑥 E

(∑𝑁
𝑖=1 𝑔(𝑡𝑖 )𝑥𝑖

)
, where 𝑔 is an arbitrary real-

valued function of tuple attributes; constraints can similarly
be generalized. Note that this general form allows categorical
attributes to be used in addition to real-valued attributes.

3 NAÏVE SILP APPROXIMATION

Recall that Naïve is the first systematic implementation of
the optimization/validation approach mentioned in the SP
literature. The pseudocode is given as Algorithm 1. As dis-
cussed previously, the algorithm generates scenarios (line 1),
combines them into an approximating DILP (line 3), solves
the DILP to obtain a solution 𝑥 (line 4), and then validates
the feasibility of 𝑥 against a large number of out-of-sample
validation scenarios (line 5). The process is iterated, adding



Algorithm 1 Naïve Monte Carlo Query Evaluation
Q : A stochastic package query
�̂� : Number of out-of-sample validation scenarios (e.g., 106)
𝑀 : Initial number of optimization scenarios (e.g., 100)
𝑚 : Iterative increment to𝑀 (e.g., 100)
output: A feasible package solution 𝑥 , or failure (no solution).
1: S← GenerateScenarios(Q, 𝑀) ⊲Optimization scenarios
2: repeat
3: SAAQ,𝑀 ← FormulateSAA(Q, S) ⊲Approximate DILP
4: 𝑥 ← Solve(SAAQ,𝑀 ) ⊲Solve SAA with𝑀 scenarios

5: 𝑣𝑥 ← Validate(𝑥,Q, �̂�) ⊲Validate 𝑥 using �̂� scenarios
6: if 𝑣𝑥 .is_feasible then ⊲𝑥 is feasible
7: return 𝑥

8: ⊲ Otherwise, use more optimization scenarios
9: S← S ∪ GenerateScenarios(Q,𝑚)
10: 𝑀 ← 𝑀 +𝑚

additional scenarios at each iteration (line 10) until the vali-
dation phase succeeds. We now describe these steps in more
detail.
As discussed in the Introduction, the optimization phase

for the DILP can be very slow, and often the convergence
to feasibility requires so many optimize/validate iterations
that the DILP becomes too large for the solver to handle,
so that Naïve fails. Our novel SummarySearch algorithm
in Section 4 uses “summaries” to speed up the optimization
phase and reduce the number of required iterations.

3.1 Sample-average approximation

As mentioned previously, we can generate a scenario by
invoking all of the VG functions for a table to obtain a real-
ization of each random variable, and can repeat this process
𝑀 times to obtain a Monte Carlo sample of 𝑀 i.i.d. scenar-
ios. In our implementation, Naïve generates scenarios by
seeding the random number generator once for the entire
execution, and accumulates scenarios in main memory.
We then obtain the DILP from the original SILP by re-

placing the distributions of the random variables with the
empirical distributions corresponding to the sample. That is,
the probability of an event is approximated by its relative fre-
quency in the sample, and the expectation of a random vari-
able by its sample average. In the SP literature, this approach
is known as Sample Average Approximation (SAA) [1, 31],
and we therefore refer to the DILP for the stochastic package
query Q as SAAQ,𝑀 .
More formally, suppose that we have 𝑀 scenarios

𝑆1, . . . , 𝑆𝑀 , each with 𝑁 tuples. Recall that 𝑡𝑖 .A de-
notes the random variable corresponding to attribute
A in tuple 𝑡𝑖 , and denote by 𝑠𝑖 𝑗 .A ∈ IR the realized
value of 𝑡𝑖 .A in scenario 𝑆 𝑗 . Then each expected sum

E
(∑𝑁

𝑖=1 𝑡𝑖 .A 𝑥𝑖
)

=
∑𝑁
𝑖=1 E (𝑡𝑖 .A) 𝑥𝑖 is approximated by∑𝑁

𝑖=1 𝑡𝑖 .𝜇A 𝑥𝑖 , where 𝑡𝑖 .𝜇A = (1/𝑀)∑𝑀
𝑗=1 𝑠𝑖 𝑗 .A.

To approximate a probabilistic constraint of the form

Pr
( 𝑁∑︁
𝑖=1

𝑡𝑖 .A 𝑥𝑖 ⊙ 𝑣
)
≥ 𝑝, (1)

we add to the problem a new indicator variable,𝑦 𝑗 ∈ {0, 1} for
each scenario 𝑗 ∈ [1..𝑀], along with an associated indicator
constraint: 𝑦 𝑗 = 1

(∑𝑁
𝑖=1 𝑠𝑖 𝑗 .A 𝑥𝑖 ⊙ 𝑣

)
, where the indicator

function 1 (·) equals 1 if the inner constraint is satisfied
and equals 0 otherwise. We say that solution 𝑥 “satisfies
scenario 𝑆 𝑗 ” (with respect to the constraint) if and only if
𝑦 𝑗 = 1. (Solvers like CPLEX can handle indicator constraints.)
Finally, we add the following linear constraint over the indi-
cator variables:

∑𝑀
𝑗=1 𝑦 𝑗 ≥ ⌈𝑝𝑀⌉, where ⌈𝑢⌉ is the smallest

integer greater than or equal to𝑢. That is, we require that the
solution𝑥 satisfies at least a fraction 𝑝 of the𝑀 scenarios. The
FormulateSAA() function applies these approximations to
create the DILP SAAQ,𝑀 .

Size complexity. With 𝐾 constraints, the size of SAAQ,𝑀 ,
measured with respect to the number of coefficients, is
Θ(𝑁𝑀𝐾): we have 𝑁 coefficients for each expectation
constraint and, for each probabilistic constraint, 𝑁 + 1
coefficients (for 𝑥1, . . . , 𝑥𝑁 , 𝑦 𝑗 ) for each scenario.

3.2 Out-of-sample validation

After using𝑀 scenarios to create and solve the DILP SAAQ,𝑀 ,
we check to see if the solution 𝑥 is validation-feasible in that
it is a feasible solution for the DILP SAAQ,�̂� that is con-
structed using �̂� ≫ 𝑀 out-of-sample scenarios. When �̂�
is sufficiently large, validation feasibility is a proxy for true
feasibility, i.e., feasibility for the original SILP; commonly,
�̂� = 106 or 107. This definition of validation-feasibility is
simple, but widely accepted [31]. Although there are other,
more sophisticated ways to use validation scenarios to obtain
confidence intervals on degree of constraint violation—see,
e.g., [9]—these are orthogonal to the scope of this paper.
Henceforth, we use the term “feasibility” to refer to “valida-
tion feasibility”, unless otherwise noted.

In our implementation, during a precomputation phase, we
actually average �̂� ≫ 𝑀 scenarios—the same number as the
number of validation scenarios—to estimate each E (𝑡𝑖 .A);
we then append these estimates, denoted 𝑡𝑖 .𝜇A, to the table.
We do this because such averaging is typically very fast to
execute, and is space-efficient in that we simply maintain
running averages. Thus a solution 𝑥 returned by a solver is
always feasible for every expectation constraint, and hence
is feasible overall if and only if, for every probabilistic con-
straint of the form (1), 𝑥 satisfies at least a fraction 𝑝 of the



validation scenarios. We can therefore focus attention on the
probabilistic constraints, which are the most challenging.

The procedure Validate(𝑥,Q, �̂�) checks the feasibility of
𝑥 , the solution to SAAQ,𝑀 ; we describe its operation on a
single probabilistic constraint Pr

(∑𝑁
𝑖=1 𝑡𝑖 .A 𝑥𝑖 ⊙ 𝑣

)
≥ 𝑝 , but

the same steps are taken independently for each probabilistic
constraint. It first seeds the system random number genera-
tor with a different seed than the one used to generate the
optimization scenarios. For each 𝑗 ∈ [1..�̂�], it generates a
realization 𝑠𝑖 𝑗 .A for each 𝑡𝑖 .A such that 𝑥𝑖 > 0 (i.e., for each
tuple that appears in the solution package), and computes the
“score” 𝜎 𝑗 =

∑
𝑖:𝑥𝑖>0 𝑠𝑖 𝑗 .A 𝑥𝑖 . It then sets𝑦 𝑗 = 1(𝜎 𝑗 ⊙𝑣). After

all scenarios have been processed, it computes 𝑌 =
∑�̂�
𝑗=1 𝑦 𝑗

and declares 𝑥 to be feasible if 𝑌 ≥ ⌈𝑝�̂�⌉. The algorithm
purges all realizations from main memory after each sce-
nario has been processed, and only stores the running count
of the 𝑦 𝑗 ’s, allowing it to scale to an arbitrary number of
validation scenarios. Moreover, a package typically contains
a realtively small number of tuples, so only a small number
of realizations need be generated.

4 SUMMARY-BASED APPROXIMATION

The Naïve algorithm has three major drawbacks. (1) The
overall time to derive a feasible solution to SAAQ,𝑀 can
be unacceptably long, since the size of SAAQ,𝑀 sharply in-
creases as𝑀 increases. (2) It often fails to obtain a feasible
solution altogether—in our experiments, the solver (CPLEX)
started failing with just a few hundred optimization scenar-
ios. (3) Naïve does not offer any guarantees on how close
the objective value 𝜔 of the solution 𝑥 to SAAQ,𝑀 is to the
true objective value �̂� of the solution 𝑥 to the DILP SAAQ,�̂�

that is based on the validation scenarios. (Recall that we use
SAAQ,�̂� as a proxy for the actual SILP.) A feasible solution
𝑥 that Naïve provides can be far from optimal.

Our improved algorithm, SummarySearch, which we
present in this section, addresses these challenges by ensur-
ing the efficient generation of feasible results through much
smaller “reduced” DILPs that each replace a large collection
of𝑀 scenarios with a very small number 𝑍 of scenario “sum-
maries”; in many cases it suffices to take 𝑍 = 1. We call
such a reduced DILP a Conservative Summary Approximation
(CSA), in contrast to the much larger sample average approx-
imation (SAA) used by Naïve. The summaries are carefully
designed to bemore “conservative” than the original scenario
sets that they replace: the constraints are harder to satisfy,
and thus the solver is induced to produce feasible solutions
faster. SummarySearch also guarantees that, for any user-
specified approximation error 𝜖 ≥ 𝜖min (where 𝜖min is defined
in Section 5.4), if the algorithm returns a solution 𝑥 , then
the corresponding objective value 𝜔 satisfies 𝜔 ≤ (1 + 𝜖)�̂� ;
in this case we say that 𝑥 is a (1 + 𝜖)-approximate solution.

Scenario 1 Scenario 3 0.66-Summary
id . . . gain id . . . gain id . . . gain

1 . . . 0.1 1 . . . 0.01 1 . . . 0.01
2 . . . 0.05 2 . . . 0.02 2 . . . 0.02
3 . . . -0.2 3 . . . -0.1 3 . . . -0.2
4 . . . 0.2 4 . . . -0.3 4 . . . -0.3
5 . . . 0.1 5 . . . 0.2 5 . . . 0.1
6 . . . -0.7 6 . . . 0.3 6 . . . -0.7

Figure 3: Using two out of the three scenarios of Fig-

ure 2, we derive a 0.66-summary.

(Recall that we focus on minimization problems with non-
negative objective functions; the other cases are discussed
in Appendix B.)

4.1 Conservative Summary Approximation

We first define the concept of an 𝛼-summary, and then de-
scribe how 𝛼-summaries are used to construct a CSA.
Summaries. Recall that a solution 𝑥 to SAAQ,𝑀 satisfies a
scenario 𝑆 𝑗 with respect to a probabilistic constraint of the
form of Equation (1) if 𝑦 𝑗 = 1

(∑𝑁
𝑖=1 𝑠𝑖 𝑗 .A 𝑥𝑖 ⊙ 𝑣

)
= 1, where

𝑠𝑖 𝑗 .A is the realized value of 𝑡𝑖 .A in 𝑆 𝑗 .

Definition 1 (𝛼-Summary). Let 𝛼 ∈ [0, 1]. An 𝛼-
summary 𝑆 = {𝑠𝑖 .A : 1 ≤ 𝑖 ≤ 𝑁 } of a scenario set
S = {𝑆1, . . . , 𝑆𝑀 } with respect to a probabilistic constraint
𝐶 of the form (1) is a collection of 𝑁 deterministic values
of attribute A such that if a solution 𝑥 satisfies 𝑆 in that∑𝑁
𝑖=1 𝑠𝑖 .A 𝑥𝑖 ⊙ 𝑣 , then 𝑥 satisfies at least ⌈𝛼𝑀⌉ of the scenarios

in S with respect to 𝐶 .

Constructing an 𝛼-summary, for 𝛼 > 0, is simple: Suppose
that the inner constraint of probabilistic constraint 𝐶 has
the form

∑𝑁
𝑖=1 𝑡𝑖 .A 𝑥𝑖 ≥ 𝑣 . Given any subset of scenarios

𝐺 (𝛼) ⊆ S of size exactly ⌈𝛼𝑀⌉, we define 𝑆 as the tuple-wise
minimum over 𝐺 (𝛼):

𝑠𝑖 .A B min
𝑆 𝑗 ∈𝐺 (𝛼)

𝑠𝑖 𝑗 .A

Proposition 1. 𝑆 is an 𝛼-summary of S with respect to 𝐶 .

Proof. Suppose 𝑥 satisfies 𝑆 , i.e.,
∑𝑁
𝑖=1 𝑠𝑖 .A 𝑥𝑖 ≥ 𝑣 . Then,

for every scenario 𝑆 𝑗 ∈ 𝐺 (𝛼),
∑𝑁
𝑖=1 𝑠𝑖 𝑗 .A𝑥𝑖 ≥

∑𝑁
𝑖=1 𝑠𝑖 .A𝑥𝑖 ≥ 𝑣 .

Since |𝐺 (𝛼) | = ⌈𝛼𝑀⌉, the result follows. □

Figure 3 illustrates an 𝛼-summary for the three scenarios
in Figure 2, where 𝛼 = 0.66 and 𝐺 (𝛼) comprises scenarios 1
and 3. The summary is conservative in that, for any choice
𝑥 of trades, the gain under the summary values will be less
than the gain under either of the two scenarios. Thus if
we can find a solution that satisfies the summary, it will
automatically satisfy at least scenarios 1 and 3. It might



also satisfy scenario 2, and possibly many more scenarios,
including unseen scenarios in the validation set. Indeed, if
we are lucky, and in fact our solution satisfies at least 100𝑝%
of the scenarios in the validation set, then 𝑥 will be feasible
with respect to the constraint on Gain.

Clearly, for an inner constraint with ≤, the tuple-wise
maximum of𝐺 (𝛼) yields an 𝛼-summary. While there may be
other ways to construct 𝛼-summaries, in this paper we only
consider minimum and maximum summaries, and defer the
study of other, more sophisticated summarization methods
to future work. Importantly, a summary need not coincide
with any of the scenarios in S; we are exploiting the fact that
optimization and validation are decoupled.

CSA formulation. A CSA is basically an SAA in which all
probabilistic constraints are approximated using summaries
instead of scenarios.1 The foregoing development implicitly
assumed a single summary (with respect to a given proba-
bilistic constraint𝐶) for all of the𝑀 scenarios in S. In general,
we use 𝑍 summaries, where 𝑍 ∈ [1..𝑀]. These are obtained
by dividing S randomly into 𝑍 disjoint partitions Π1, . . . ,Π𝑍 ,
of approximately𝑀/𝑍 scenarios each. Then the 𝛼-summary
𝑆𝑧 = {𝑠𝑖𝑧 .A : 1 ≤ 𝑖 ≤ 𝑁 } for partition Π𝑧 is obtained by
taking a tuple-wise minimum or maximum over scenarios
in a subset 𝐺𝑧 (𝛼) ⊆ Π𝑧 , where |𝐺𝑧 (𝛼) | = ⌈𝛼 |Π𝑧 |⌉.
For each probabilistic constraint 𝐶 of form (1), we add

to the DILP a new indicator variable, 𝑦𝑧 ∈ {0, 1}, and an
associated indicator constraint 𝑦𝑧 := 1

(∑𝑁
𝑖=1 𝑠𝑖𝑧 .A 𝑥𝑖 ⊙ 𝑣

)
.

We say that solution 𝑥 “satisfies summary 𝑆𝑧” iff 𝑦𝑧 = 1. We
also add the linear constraint

∑𝑍
𝑧=1 𝑦𝑧 ≥ ⌈𝑝𝑍 ⌉, requiring at

least 100𝑝% of the summaries to be satisfied. We denote the
resulting reduced DILP by CSAQ,𝑀,𝑍 .
Size complexity. Assuming 𝐾 probabilistic constraints, the
number of coefficients in CSAQ,𝑀,𝑍 is Θ(𝑁𝑍𝐾), which is
independent of𝑀 . Usually, 𝑍 takes on only small values, so
that the effective size complexity is only Θ(𝑁𝐾).

Our results (Section 6) show that in most cases Summary-
Search finds good solutions with only one summary, i.e.,
𝑍 = 1. Because 𝑍 is small, the solution to CSAQ,𝑀,𝑍 can
be rapidly computed by a solver. The CSA formulation is
also more robust to random fluctuations in the sampled data
values, and less prone to “overfit” to an unrepresentative set
of scenarios obtained by luck of the draw.

An important observation is that as𝑍 increases, CSAQ,𝑀,𝑍

approaches the SAAQ,𝑀 formulation: at𝑍 = 𝑀 each partition
will contain exactly one scenario, which will also coincide
with the summary for the partition. Since CSAQ,𝑀,𝑍 encom-
passes SAAQ,𝑀 , we can always do at least as well as Naïve
with respect to the feasibility and optimality properties of

1As with the SAA formulation, expectations are approximated as averages
over a huge number �̂� of independent scenarios.

Algorithm 2 SummarySearch Query Evaluation
Q : A stochastic package query with 𝐾 probabilistic constraints
Q0 : Q devoid of all probabilistic constraints
�̂� : Number of out-of-sample validation scenarios (e.g., 106)
𝑀 : Initial number of optimization scenarios (e.g., 100)
𝑚 : Iterative increment to𝑀 (e.g., 100)
𝑧 : Iterative increment to 𝑍 (e.g., 1)
𝜖 : User-defined approximation error bound, 𝜖 ≥ 𝜖min
output: A feasible package solution 𝑥 , or failure (no solution).
1: ⊲ Solve probabilistically-unconstrained problem
2: 𝑥 (0) ← Solve(SAA(Q0, �̂�))
3: 𝑍 = 1 ⊲Initial number of summaries
4: repeat
5: (𝑥, 𝑣𝑥 ) ← CSA-Solve(Q, 𝑥 (0) , 𝑀, 𝑍 )
6: if 𝑣𝑥 .is_feasible and 𝑣𝑥 .upper_bound ≤ 𝜖 then
7: return 𝑥 ⊲𝑥 is feasible and (1 + 𝜖)-approximate
8: else if 𝑣𝑥 .is_feasible and 𝑍 < 𝑀 then

9: 𝑍 ← 𝑍 +min{𝑧,𝑀 − 𝑍 } ⊲Use more summaries
10: else

11: 𝑀 ← 𝑀 +𝑚 ⊲Use more scenarios

our solution, given𝑀 scenarios. We address the issue of how
to choose 𝑍 , 𝛼 , and each 𝐺𝑧 (𝛼) below and in Section 5, and
also discuss how to generate summaries efficiently.

4.2 Query Evaluation with CSA

Algorithm 2 shows query evaluation with SummarySearch.
The goal is to find a feasible solution whose objective value
is as close as possible to �̂� , the objective value of the SAA
based on the �̂� validation scenarios. In the algorithm, Q0
denotes the SPQ obtained from Q by removing all of the
probabilistic constraints. At the first step, SummarySearch
computes 𝑥 (0) , the solution to the DILP SAAQ0,�̂�

; the only
constraints are deterministic constraints and expectation
constraints, with the latter estimated from �̂� scenarios in
the usual way. This corresponds to the “least conservative”
solution possible, and is effectively equivalent to solving a
CSA using summaries constructed with 𝛼 = 0, because 0%
(i.e., none) of the scenarios are required to be satisfied. For
some problems, 𝑥 (0) might have an infinite objective value, in
which case we simply ignore this solution and incrementally
increase 𝛼 until we find a finite solution.
Like Naïve, the SummarySearch algorithm starts with

an initial number of optimization scenarios, 𝑀 ≥ 1, and it-
eratively increments it while solutions are infeasible. In the
optimization phase, the algorithm uses a CSA formulation,
which replaces the 𝑀 real scenarios with 𝑍 conservative
summaries. Initially, the algorithm uses 𝑍 = 1, replacing the
set of𝑀 scenarios with a single summary. After feasibility
is achieved for a solution 𝑥 with objective value 𝜔𝑥 , the al-
gorithm tries to check whether the ratio 𝜖𝑥 = (𝜔𝑥 − �̂�)/�̂�



is less than or equal to the user-defined error bound 𝜖; al-
though �̂� , and hence 𝜖𝑥 , is unknown, we can conservatively
check whether 𝜖 ′𝑥 ≤ 𝜖 , where 𝜖 ′𝑥 is an upper bound on 𝜖𝑥 that
we develop in Section 5.4, If the solution is unsatisfactory,
SummarySearch increases 𝑍 , and iterates again. The algo-
rithm stops if and when a feasible and (1 + 𝜖)-approximate
solution is found. In practice, because of the conservative na-
ture of summaries, SummarySearch typically finds feasible
solutions in drastically fewer iterations than Naïve.

5 OPTIMAL SUMMARY SELECTION

The key component of SummarySearch is CSA-Solve, de-
scribed in this section. With𝑀 and 𝑍 fixed, CSA-Solve finds
the best CSA formulation, i.e., the one having, for each con-
straint, the optimal value of 𝛼 and the best set 𝐺𝑧 (𝛼) of sce-
narios for each summary. CSA-Solve thus determines the best
solution 𝑥 achievable with 𝑀 scenarios and 𝑍 summaries,
and also computes metadata 𝑣𝑥 used by SummarySearch
for checking feasibility and optimality.

5.1 CSA-Solve Overview

Algorithm 3 depicts the iterative process of CSA-Solve: at
each iteration 𝑞 it produces a solution 𝑥 (𝑞) to a problem
CSAQ,𝑀,𝑍 based on an 𝛼 (𝑞)

𝑘
-summary for each constraint

𝐶𝑘 . Initially, 𝛼 (0)𝑘 = 0 for all 𝑘 , and thus the solution to
CSAQ,𝑀,𝑍 is simply 𝑥 (0) , which has already been computed
by SummarySearch prior to calling CSA-Solve. Then CSA-
Solve stops in two cases: (1) if it finds a feasible (1 + 𝜖)-
approximate solution; (2) if it enters a cycle, producing the
same solution twice with the same 𝛼𝑘 values. In case (2),
it returns the “best” solution found so far: if one or more
feasible solutions have been found, it returns the one with
the best objective value, otherwise it returns an infeasible
solution, and SummarySearch will increase 𝑀 in its next
iteration.

5.2 Choosing 𝜶
Larger 𝛼 leads to more conservative 𝛼-summaries, as we
take the tuple-wise minimum (or maximum) over more and
more scenarios. Thus a high value of 𝛼 increases the chances
of finding a feasible solution. On the other hand, if the con-
straints are more restrictive than necessary, then the solution
can have a seriously suboptimal objective value because we
are considering fewer candidate solutions, possibly missing
the best ones. Thus, CSA-Solve seeks the minimally conser-
vative value of 𝛼 that will suffice.

How can we measure the true conservativeness of 𝛼 with
respect to a constraint𝐶 B Pr(∑𝑁

𝑖=1 𝑡𝑖 .A 𝑥𝑖 ⊙ 𝑣) ≥ 𝑝? As dis-
cussed previously, the solution 𝑥 to a formulation SAAQ,𝑀

based on 𝛼-summaries is guaranteed to satisfy at least 100𝛼%

of the 𝑀 optimization scenarios, but the actual true prob-
ability of satisfying the constraint—or more pragmatically,
the fraction of the �̂� validation scenarios satisfied by 𝑥—
will usually differ from 𝛼 . Thus, we look at the difference
between the fraction of validation scenarios satisfied by 𝑥
and the target value 𝑝 . We call this difference the 𝑝-surplus,
and define it as:

𝑟 = 𝑟 (𝛼) B
{
(1/�̂�)

�̂�∑︁
𝑗=1

1
( 𝑁∑︁
𝑖=1

𝑠𝑖 𝑗 .A 𝑥𝑖 ⊙ 𝑣
)}
− 𝑝

We expect the function 𝑟 (𝛼) to be increasing in 𝛼 with high
probability.
Observe that 𝑥 essentially satisfies the constraint 𝐶 ′ B

Pr(∑𝑁
𝑖=1 𝑡𝑖 .A 𝑥𝑖 ⊙ 𝑣) ≥ 𝑝 + 𝑟 . Clearly, if 𝑟 < 0, then 𝑥 is infea-

sible for constraint 𝐶 , whereas if 𝑟 > 0, then 𝑥 satisfies the
inner constraint with a probability that exceeds 𝑝 , and so is
conservative and therefore likely suboptimal. Thus the opti-
mal value 𝛼∗ satisfies 𝑟 (𝛼∗) = 0. Solutions that achieve zero
𝑝-surplus may be impossible to find, and therefore CSA-Solve
tries to choose 𝛼 = (𝛼1, . . . , 𝛼𝐾 ) to minimize the 𝑝-surplus
for each of the K constraints, while keeping it nonnegative.
The search space is finite (hence the possibility of cycles)
since 𝛼𝑘 ∈ {𝑍/𝑀, 2𝑍/𝑀, . . . , 1} for 𝑘 ∈ [1..𝐾].
At each iteration 𝑞, CSA-Solve updates 𝛼 (𝑞−1) to 𝛼 (𝑞) ,

creates the corresponding CSA problem, and produces a
new solution 𝑥 (𝑞) . For simplicity and ease of computation,
our initial implementation updates each 𝛼 (𝑞)

𝑘
individually

by fitting a smooth curve 𝑅 (𝑞)
𝑘
(𝛼𝑘 ) to the historical points

(𝛼 (0)
𝑘
, 𝑟
(0)
𝑘
), . . . , (𝛼 (𝑞−1)

𝑘
, 𝑟
(𝑞−1)
𝑘
) and then solving the equation

𝑅
(𝑞)
𝑘
(𝛼𝑘 ) = 0. In our experiments, we observed that (1) fitting

an arctangent function provides the most accurate predic-
tions and (2) this artificial decoupling with respect to the
constraints yields effective summaries; we plan to investigate
other methods for jointly updating (𝛼 (𝑞−1)

1 , . . . , 𝛼
(𝑞−1)
𝐾
).

5.3 Choosing Gz

So far, we have assumed that the subset 𝐺𝑧 (𝛼 (𝑞)𝑘 ) used to
build the summary is any set containing 𝑛 (𝑞)

𝑘
= ⌈𝛼 (𝑞)

𝑘
|Π𝑧 |⌉

scenarios. SummarySearch employs a simple greedy heuris-
tic to determine 𝐺𝑧 (𝛼 (𝑞)𝑘 ): it chooses the 𝑛

(𝑞)
𝑘

scenarios that
produce the summary most likely to keep the previous solu-
tion feasible in the current iteration, so that the new solution
will likely have a higher objective value. For an inner ≥ (≤)
constraint, this is achieved by sorting the scenarios in Π𝑧 ac-
cording to their “scenario score”

∑𝑁
𝑖=1 𝑠𝑖 𝑗 .A 𝑥

(𝑞−1)
𝑖

and taking
the first 𝑛 (𝑞)

𝑘
in descending (ascending) order.



Algorithm 3 CSA-Solve
Q : A stochastic package query with 𝐾 probabilistic constraints
𝑥 (0) : Solution of probabilistically-unconstrained problem
𝑀 : Number of optimization scenarios
𝑍 : Number of summaries, 1 ≤ 𝑍 ≤ 𝑀
𝜖 : User-defined approximation error bound, 𝜖 ≥ 𝜖min
output: A feasible and (1 + 𝜖)-approximate solution, or an
infeasible solution
1: 𝑞 ← 0 ⊲Iteration count
2: H← ∅ ⊲Initialize validation history

3: 𝛼 (𝑞) = (𝛼 (𝑞)1 , . . . , 𝛼
(𝑞)
𝐾
) ← (0, . . . , 0) ⊲Initial conservativeness

4: repeat
5: ⊲ If entered a cycle, return best solution from history
6: if (𝑥 (𝑞) , 𝛼 (𝑞) ) ∈ H then

7: return Best({𝑥 : (𝑥, 𝛼) ∈ H})
8: H← H ∪ {(𝑥 (𝑞) , 𝛼 (𝑞) )} ⊲Update validation history
9: 𝑣 (𝑞) ← Validate(𝑥 (𝑞) ,Q, �̂�) ⊲Validate & compute metadata
10: 𝜖 (𝑞) ← 𝑣 (𝑞) .upper_bound ⊲Validation upper bound on 𝜖
11: for 𝑘 = 1, . . . , 𝐾 do

12: 𝑟
(𝑞)
𝑘
← 𝑣

(𝑞)
𝑘

.surplus ⊲Validation 𝑝-surplus

13: ⊲ Termination with feasible (1 + 𝜖)-approximate solution

14: if 𝜖 (𝑞) ≤ 𝜖 and ∀𝑘 : 𝑟 (𝑞)
𝑘
≥ 0 then

15: return (𝑥 (𝑞) , 𝑣 (𝑞) )
16: 𝑞 ← 𝑞 + 1 ⊲Iterate again with a new set of summaries
17: 𝛼 (𝑞) ← GuessOptimalConservativeness(H)
18: for 𝑘 = 1, . . . , 𝐾 do

19: 𝑆𝑘 ← Summarize(𝑥 (𝑞) , 𝛼 (𝑞)
𝑘
,𝐶𝑘 ,H)

20: CSAQ,𝑀,𝑍 ← FormulateSAA(Q, {𝑆1, . . . , 𝑆𝐾 })
21: 𝑥 (𝑞) ← Solve(CSAQ,𝑀,𝑍 )

5.4 Approximation Guarantees

If 𝑥 (𝑞) is feasible, SummarySearch can terminate if it can
determine that 𝑥 (𝑞) is (1 + 𝜖)-approximate relative to the
optimal feasible solution 𝑥 based on the validation scenarios,
i.e., that 𝜔 (𝑞) ≤ (1 + 𝜖)�̂� , where 𝜔 (𝑞) and �̂� are the objective
values for 𝑥 (𝑞) and 𝑥 , respectively, and 𝜖 is an accuracy pa-
rameter specified by the user. Without loss of generality, we
assume below that the objective function is an expectation;
should the objective be deterministic, nesting it within an
expectation does not change its value.
This termination check proceeds as follows. During

the 𝑞th iteration of SummarySearch, the function Vali-
date(𝑥 (𝑞) ,Q, �̂�) computes 𝑝-surplus values 𝑟 (𝑞)1 , . . . , 𝑟

(𝑞)
𝐾

,
one for each probabilistic constraint in the query. Further,
it computes 𝜖 (𝑞) (as defined below). We show below that
if 𝜖 (𝑞) ≤ 𝜖 and ∀𝑘 : 𝑟 (𝑞)

𝑘
≥ 0, then 𝑥 (𝑞) is a feasible

(1 + 𝜖)-approximate solution, and SummarySearch can
immediately return 𝑥 (𝑞) and terminate. As usual, we focus
on minimization problems with nonnegative objective
values, and take the optimal solution 𝑥 and objective value

�̂� of SAAQ,�̂� as proxies for those of the original SILP. We
start with the following simple but important result.

Proposition 2 (General Approximation Guarantee).
Let 𝜖 ≥ 0 and let 𝜔 be a positive constant such that 𝜔 ≤ �̂� . Set
𝜖 (𝑞) = (𝜔 (𝑞)/𝜔) − 1. If 𝜖 (𝑞) ≤ 𝜖 , then 𝜔 (𝑞) ≤ (1 + 𝜖)�̂� .

Proof. Suppose that 𝜖 (𝑞) ≤ 𝜖 . Since �̂�/𝜔 ≥ 1, we have

𝜔 (𝑞) ≤
( �̂�
𝜔

)
𝜔 (𝑞) =

(
1+

(𝜔 (𝑞)
𝜔
−1

))
�̂� =

(
1+𝜖 (𝑞)

)
�̂� ≤ (1+𝜖)�̂�,

and the result follows. □

We obtain a specific formula for 𝜖 (𝑞) by choosing a specific
bound 𝜔 . Clearly, we would like to choose 𝜔 as large as pos-
sible, since this maximizes the likelihood that 𝜖 (𝑞) ≤ 𝜖 . One
simple choice that always works is to set 𝜔 = 𝜔 (0) , where
𝜔 (0) is the objective value of the SAA problem correspond-
ing to the original SILP but with all probabilistic constraints
removed—see line 2 of Algorithm 2. If all random variables
are lower-bounded by a constant 𝑠 > 0 and the size of any
feasible package is lower-bounded by a constant 𝑙 > 0, then∑𝑁
𝑖=1 𝑠𝑖 𝑗 .A 𝑥𝑖 ≥ 𝑠𝑙 , ∀𝑗 ∈ [1..�̂�], so that

�̂� =
1
�̂�

�̂�∑︁
𝑗=1

𝑁∑︁
𝑖=1

𝑠𝑖 𝑗 .A 𝑥𝑖 ≥
1
�̂�

�̂�∑︁
𝑗=1

𝑠𝑙 = 𝑠𝑙,

which yields an alternative lower bound. Yet another bound
can be sometimes obtained by exploiting the relation of the
constraints to the objective.

Definition 2 (Objective-Constraint Interaction).
Let the objective be min E(∑𝑁

𝑖=1 𝜉𝑖𝑥𝑖 ), for random variables
{𝜉𝑖 }𝑖∈[1..𝑁 ] . The objective is said to be supported by a con-
straint of the form Pr

(∑𝑁
𝑖=1 𝜉𝑖𝑥𝑖 ≤ 𝑣

)
≥ 𝑝 and counteracted

by a constraint of the form Pr(∑𝑁
𝑖=1 𝜉𝑖𝑥𝑖 ≥ 𝑣) ≥ 𝑝 . All other

forms of constraint are said to be independent of the objective.

Intuitively, a supporting probabilistic constraint “supports”
the objective function in the same “direction” of the opti-
mization (≤ for minimization, ≥ for maximization), whereas
a counteracting constraint goes against the optimization. If
there exists a counteracting constraint with 𝑣 ≥ 0, it can be
shown (Appendix B) that �̂� ≥ 𝑝𝑣 .
Finally, we take 𝜔 to be the maximum of all applicable

lower bounds. Similar formulas can be derived for other
possible cases—maximization problems, negative objective
values, and so on; see Appendix B.

Note that if (�̂�/𝜔) − 1 > 𝜖 , then 𝜖 (𝑞) = (𝜔 (𝑞)/𝜔) − 1 > 𝜖 ,
∀𝑞 ≥ 0, so that SummarySearch cannot terminate with a
feasible (1 + 𝜖)-approximate solution. To avoid this problem,
we require that 𝜖 ≥ 𝜖min, where 𝜖min = (𝜔/𝜔) − 1. Here 𝜔 is
any upper bound on �̂� . It can be shown, for example, that
if (1) all random variables are upper-bounded by a constant



𝑠 > 0, (2) the size of any feasible package is upper-bounded by
a constant 𝑙 > 0, and (3) there exists a supporting constraint
with 𝑣 ≥ 0, then �̂� ≤ 𝑣 + (1 − 𝑝)𝑠𝑙 ; see Appendix B. If we
have available a feasible solution 𝑥 with objective value 𝜔𝑥 ,
then we can take 𝜔 = 𝜔𝑥 . We choose 𝜔 to be the minimum
of all applicable bounds.

5.5 Implementation Considerations

We now discuss several implementation optimizations.
Efficient summary generation. Recall that summariza-
tion has two steps: (1) computing the scenario scores to sort
scenarios by the previous solution, and (2) computing the
tuple-wise minimum (or maximum) of the first 𝛼% of the
scenarios in sorted order. The fastest way to generate an 𝛼-
summary is if all𝑀 scenarios are generated and kept in main
memory at all times. In this case, computing the tuple-wise
minimum (or maximum) is trivial. However, the Θ(𝑀𝑁𝐾)
memory requirement for this may exceed the memory limits
if𝑀 is large. We devise two possible strategies for memory-
efficient summary generation with optimal Θ(𝑁𝑍𝐾) space
complexity: tuple-wise summarization and scenario-wise sum-
marization. Tuple-wise summarization uses a unique random
number seed for each tuple (𝑖 = 1, . . . , 𝑁 ) and it generates
all𝑀 realizations, one tuple at a time. Scenario-wise summa-
rization uses a unique seed for each scenario ( 𝑗 = 1, . . . , 𝑀),
and it generates one realization for all tuples, one scenario
at a time.

With tuple-wise summarization, sorting the scenario only
requiresΘ(𝑃𝑀) time, where 𝑃 =

∑𝑁
𝑖=1 𝑥𝑖 is the size of the cur-

rent package; usually, 𝑃 ≪ 𝑁 . However, generating the sum-
maries is more costly, as it requires Θ(𝑁𝑀) time, as all𝑀 re-
alizations must be constructed for all 𝑁 tuples. The total time
is Θ(𝑀 (𝑃 + 𝑁 )). With scenario-wise summarization, gener-
ating summaries has lower time complexity of Θ(𝛼𝑁𝑀), as
it only generates scenarios in 𝐺𝑧 (𝛼), but sorting has higher
complexity Θ(𝑁𝑀), with total time Θ(𝑁𝑀 (𝛼 + 1)).
It follows that if 𝛼 ≥ 𝑃/𝑁 , tuple-wise summarization is

generally faster than scenario-wise summarization. However,
other factors may affect the runtime, e.g., some random num-
ber generators, such as Numpy, generate large quantities of
random numbers faster if generated in bulk using a single
seed. In this case, tuple-wise summarization may suffer con-
siderably in the summary generation phase, as it needs to
re-seed the random number generator for each tuple. In our
experiments, we observed that tuple-wise summarization
is better when the input table is relatively small, but worse
than scenario-wise for larger tables. In general, a system
should implement both methods and test the two in situ.

Convergence acceleration. When 𝛼 (𝑞)
𝑘

is obtained by de-

creasing 𝛼 (𝑞−1)
𝑘

, the solution 𝑥 (𝑞−1) typically is feasible, and

our goal is for 𝑥 (𝑞) to strictly improve in objective value. CSA-
Solve achieves this by slightly modifying the generation of
summaries in order to ensure that the previous solution is
still feasible for the next CSA problem. This is done by using
the tuple-wise maximum (instead of minimum) in the sum-
mary generation for all tuples 𝑡𝑖 such that 𝑥 (𝑞−1)

𝑖
> 0 (tuples

in the previous solution). For all other tuples, we set the sum-
mary as usual. We have found that ensuring monotonicity
of the objective values promotes faster convergence.

6 EXPERIMENTAL EVALUATION

In this section, we present an experimental evaluation of
our techniques for stochastic package queries on three
different domains where uncertainty naturally arises:
noise in sensor data, uncertainty in future predictions,
uncertainty due to data integration [17]. Our results show
that: (1) SummarySearch is always able to find feasible
solutions, while Naïve cannot in most cases—when both
SummarySearch and Naïve can find feasible solutions,
SummarySearch is often faster by orders of magnitude;
(2) The packages produced by SummarySearch are of high
quality (low empirical approximation ratio), sometimes
even better than Naïve when they both produce feasible
solutions; (3) Increasing 𝑀 , the number of optimization
scenarios, helps SummarySearch find feasible solutions,
and the value of 𝑀 required by SummarySearch to start
producing feasible solutions is much smaller than Naïve,
explaining the orders of magnitude improvement in running
time; (4) Increasing 𝑍 , the number of summaries, helps
SummarySearch find higher-quality solutions; (5) Increas-
ing 𝑁 , the number of input tuples, impacts the running time
of both algorithms, but SummarySearch is still orders of
magnitude faster than Naïve, and finds feasible solutions
with better empirical approximation ratios than Naïve.

6.1 Experimental Setup

We now describe the software and runtime environment,
and the three workloads we used in the experiments.
Environment. We implemented our methods in Python
2.7, used Postgres 9.3.9 as the underlining DBMS, and IBM
CPLEX 12.6 as the ILP solver. We ran our experiments on
servers equipped with two 24 2.66GHz cores, 15GB or RAM,
and a 7200 RPM 500GB hard drive.
Datasets and queries. We constructed three workloads:
Noisy sensor measurements: The Galaxy datasets vary be-
tween 55,000 and 274,000 tuples, extracted from the Sloan
Digital Sky Survey (SDSS) [41]. Each tuple contains the color
components of a small portion of the sky as read by a tele-
scope. We model the uncertainty in the telescope readings
as Gaussian or Pareto noise.
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Figure 4: End-to-end results of SummarySearch vs. Naïve. Plotting the average time (and 95% confidence inter-

vals) to reach 100% feasibility rate. Of the 23 feasible queries (TPC-H Q8 is infeasible), SummarySearch always

reaches 100% feasibility rate, whileNaïve in only 7 queries. In 15 queries, when SummarySearch succeeds,Naïve

is still at 0% feasibility. SummarySearch can be orders of magnitude faster even when both reach 100% feasibility.

Financial predictions: The Portfolio dataset contains 6,895
stocks downloaded from Yahoo Finance [43]. The initial price
of each stock is set according to its actual value on January 2,
2018, and future prices are generated according to a geomet-
ric Brownian motion. We consider selling stocks in one day
or in one week, as in Figure 1; the dataset for the short-term
(resp., long-term) trades contains 14,000 (resp., 48,000) tuples.
For each prediction type, we also extracted a subset corre-
sponding to the 30% most volatile stocks to construct some
of the hardest queries. Tuples referring to the same stock are
correlated to one another. For example, in Figure 1, tuples
1 and 2 are correlated to each other but are independent of
the other tuples.

Data integration: The TPC-H dataset consists of about
117,600 tuples extracted from the TPC-H benchmark [42].
We simulate the result of hypothetically integrating several
data sources to form this data set: we model uncertainty in
each attribute’s value with discrete probability distributions.
For each original (deterministic) value in the TPC-H dataset,
we generate 𝐷 possible variations thereof, where 𝐷 is the
number of data sources that have been integrated into one.
The mean of these 𝐷 values is anchored around the original
value; each source value is sampled from an exponential,
Poisson, uniform or Student’s t-distribution.

For each of the three datasets, we constructed a workload
of eight sPaQL queries; all 24 queries, except one in TPC-H,
are feasible. The workloads span seven different distribu-
tions for the uncertain data attributes, including a complex
VG function to predict future stock prices. The objective
functions are supported by the constraints for the Portfo-
lio queries, independent for the TPC-H queries and either

supported or counteracted for the Galaxy queries (see Defi-
nition 2 for supported/counteracted/independent objectives).
The Portfolio workload tests high- and low-risk, high- and
low-VaR (Value at Risk)—i.e., 𝑝 and 𝑣 in Equation (1)—as well
as short- and long-term trade predictions. The TPC-H work-
load is split into queries with 𝐷 = 3 and 𝐷 = 10 (number of
integrated sources). For all queries there are two constraints,
one of which is probabilistic with 𝑝 ≥ 0.9. Examples include:
(1) for Galaxy, we seek a set of five to ten sky regions that
minimizes total expected radiation flux while avoiding total
flux levels higher than 40 with high probability, and (2) for
TPC-H, we seek a set of between one and ten transactions
having maximum expected total revenue, while containing
less than 15 items total with high probability. A detailed
description of the workloads can be found in Appendix C.

Evaluation metrics. We measure response time (in seconds
and logarithmic scale) across 10 i.i.d runs using different
seeds for generating the optimization scenarios, and evalu-
ate feasibility and the objective value on an out-of-sample
validation set with 106 scenarios (107 for the Portfolio work-
load). We plot the average across the 10 runs, and its 95%
confidence interval in a shaded area. For each run of an al-
gorithm, we set a time limit of four hours. When the time
limit expires, we interrupt CPLEX and get the best solution
found by the solver until then. We measure feasibility rate
as the fraction, out of the 10 runs, in which a method pro-
duces a feasible solution (including, for all methods, when
the time limit expired). Because the true optimal solution
for any of the queries is unknown, we measure accuracy by
1 + 𝜖 , where 𝜖 B 𝜔/𝜔∗ − 1 and 𝜔∗ is the objective value of
the best feasible solution found by any of the methods.
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Figure 5: Scalability of Naïve and SummarySearch with increasing number of optimization scenarios. Naïve

struggles to find feasible solutions even with a large number of scenarios and often fails completely (missing

points in the plot). SummarySearch quickly finds feasible solutionswith few scenarios. The approximation ratios

of SummarySearch’s solutions are generally low when the number of scenarios is small.

6.2 Results and Discussion

We evaluate four fundamental aspects of our algorithms:
(1) query response time to reach 100% feasibility rate; (2) scal-
ability with increasing number of scenarios (𝑀); (3) scala-
bility of SummarySearch with increasing number of sum-
maries (𝑍 ); (4) scalability with increasing dataset size (𝑁 ).

6.2.1 Response time to reach 100% feasibility rate. Both
Naïve and SummarySearch increase 𝑀 (the number of
scenarios) up to when solutions start to be feasible. We
report the cumulative time for all iterations the algorithm
took to reach a certain feasibility rate, from 0%, up to 100%
(when the algorithm produces feasible solutions for all
10 runs). For SummarySearch, 𝑍 is fixed (1 for Galaxy
and Portfolio, 2 for TPC-H). We set 𝑍 to the lowest value
(per workload) such that SummarySearch could reach
100% feasibility rate. Figure 4 shows the results of the
experiment. For all (23) feasible queries across all workloads,
SummarySearch is always able to reach 100% feasibility
rate, while Naïve can only reach 100% feasibility for only
7 queries. Even then, SummarySearch is usually orders
of magnitude faster than Naïve (e.g., Galaxy Q6, TPC-H
Q2, Q6, and Q7). Moreover, in 15 out of the 23 feasible
queries, SummarySearch reached 100% feasibility while
Naïve was still at 0%. The conservative nature of summaries
allows higher feasibility rates for SummarySearch even

with fewer scenarios. As the number of scenarios increases,
SummarySearch solves a much smaller problem than
Naïve, leading to orders-of-magnitude faster response time.
The only case where SummarySearch is slower than

Naïve at reaching 100% feasibility rate is Galaxy Q7, which
was an easy query for both methods: both solved it with
only 10 scenarios. This query has a supported objective
function over data with minimal uncertainty described by
a Pareto distribution with “scale” and “shape” both equal to
1. For this query, the summarization process and solving a
probabilistically-unconstrained problem are overheads for
SummarySearch. TPC-H Q8 is an infeasible query. Both
methods increase𝑀 up to 1000 before declaring infeasibility,
but again SummarySearch is faster than Naïve in doing so.

6.2.2 Effect of increasing the number of optimization scenar-
ios. We evaluate the scalability of our methods when the
number of optimization scenarios𝑀 increases; 𝑍 is fixed as
described above. For each algorithm, we group feasibility
rates into 5 groups: 0%, 25%, 50%, 75% and 100%, and use
different shadings to distinguish each case.
Figure 5 gives scalability results for the three workloads.

Generally, with low𝑀 , Naïve executes very quickly to pro-
duce infeasible solutions with low objective values (opti-
mizer’s curse); as Naïve increases 𝑀 , the running time in-
creases exponentially—note the logarithmic scale—up to a
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Figure 6: Effects of increasing number of summaries (𝑍 ) on the Portfolio workload, as a percentage of the num-

ber of scenarios, from 1 summary up to 𝑀 summaries (100%). Increasing 𝑍 improves the approximation ratio of

the solution produced by SummarySearch. Increasing 𝑍 too far results in infeasible solutions as, when 𝑍 = 𝑀 ,

SummarySearch is identical to Naïve, and it thus overfits, like Naïve, to a bad set of scenarios.

point where it fails altogether (missing Naïve points in the
plots). On the other hand, SummarySearch finds feasible
solutions even with as little as 10 scenarios.
SummarySearch produces high quality solutions as

demonstrated by the low approximation ratio (1 + 𝜖), close
to 1 for most queries. However, with the hardest Portfolio
queries (Q5 and Q6), the worst approximation ratio for
SummarySearch is quite high for feasible solutions: this is
an indicator that the number of summaries, 𝑍 = 1 is too low
and should be increased.

6.2.3 Effect of increasing the number of summaries. In this
experiment, we show how increasing the number of sum-
maries (𝑍 ) helps improve the approximation ratio in the
Portfolio queries. We increase 𝑍 from 1 up to 𝑀 (number
of scenarios), where 𝑀 is set to where the feasibility rate
of SummarySearch was 100% in the previous experiment,
and we show the running time and approximation ratio com-
pared to Naïve with𝑀 scenarios. Figure 6 shows the results
of this experiment. First, the response time with increasing
𝑍 is in most cases independent of 𝑍 . In fact, while increas-
ing 𝑍 adds more scenarios to the CSA formulation, each
summary becomes less and less conservative, making the
problem a bit larger but always easier; in the limit (𝑍 = 𝑀),
each summary is identical to an original scenario, and thus
SummarySearch only pays the extra overhead, compared to
Naïve, of solving the probabilistically-unconstrained prob-
lem first. On the other hand, Naïve is always faster, but its
solutions are infeasible. For most queries, the approximation
ratio closely approaches 1, while still maintaining a high fea-
sibility rate. Increasing 𝑍 too far eventually causes feasibility
to drop, reaching that of Naïve in the limit (𝑍 = 𝑀).

Finally, even though infeasible solutions tend to have bet-
ter objective values than feasible ones, we find that Naïve’s
infeasible solutions to Q7 and Q8 haveworse objective values.
These queries proved quite challenging for Naïve as they
involved stock price predictions for a week in the future.

6.2.4 Effect of increasing the dataset size. In this experiment,
we increase the Galaxy dataset up to five times from 55,000
tuples to 274,000 tuples. For all queries except Q8 we fix𝑀 =

56 (for both algorithms) and 𝑍 = 1. In general, Summary-
Search scales well with increasing data set size: it finds
feasible solutions with good approximation ratios. Naïve,
however, times out for several queries (Q1, Q2, Q5, Q6, &
Q8) and its response time sharply increases as dataset size
increases (Q1, Q2, Q6, Q8). Except for three queries (Q3,
Q4, Q7), most of Naïve’s solutions are infeasible; even then,
SummarySearch produces feasible solutions in orders of
magnitude less time with better approximation ratios.

In Q8, we set𝑀 = 562 to enable SummarySearch to still
produce feasible solutions (75% feasibility at 274K tuples),
without causing Naïve to fail. Q8 is a challenging query
as each data value is sampled from a Pareto distribution
with different parameters leading to high variability across
scenarios.
To further increase the data size scalability of Summary-

Search, we hope to combine it with partitioning and divide-
and-conquer approaches similar to SketchRefine [3].

7 RELATEDWORK

Probabilistic databases and package queries. Probabilis-
tic databases [13, 40] have focused mainly on modeling
discrete data uncertainty; the Monte Carlo Database
(MCDB) [25] supports arbitrary uncertainty, via VG
functions. Probabilistic databases support SQL queries, but
lack support for optimization. Package query engines [3, 38]
offer support only for deterministic optimization.

Stochastic optimization. Stochastic optimization [22] stud-
ies approximations for stochastic constraints and objectives.
Probabilistic constraints are very hard to handle in general,
because the feasible region of the inner constraint may be
non-convex [1, 7, 10, 16, 22, 32, 34]. In this work, we study
stochastic optimization problems with objective functions
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Figure 7: Scalability of Naïve and SummarySearchwith increasing dataset size (𝑁 ) on the Galaxy workload. The

running times of both algorithms degrades with increasing 𝑁 , but SummarySearch scales up well in comparison

with Naïve.

and constraints defined in terms of linear functions of the
tuple attributes.

OurNaïvemethod is derived from the numerous “scenario
approximations” from the SP literature [7, 8, 10, 22, 28, 31,
33, 34]. Choosing the number of scenarios (𝑀) a priori is one
of the most studied problems. Campi et al. [10] show that the
optimal solution of a Monte Carlo formulation that satisfies
exactly𝑀 i.i.d. scenarios is feasible with probability at least 𝛿
if𝑀 ≥ 2

1−𝑝 𝑗
(
ln

( 1
1−𝛿

)
+ 𝑁

)
. A-priori bounds quickly become

impractical in a database setting, where 𝑁 is also the number
of tuples, and thus typically large. For example, with a table
of size 𝑁 = 50,000, 𝑝 𝑗 = 0.9, 𝛿 = 0.95, at least𝑀 ≥ 1,000,060
scenarios must be generated and all satisfied.

Scenario removal studies techniques for removing scenar-
ios after sampling [6, 8, 19, 29, 31]. Empirically, these meth-
ods generally provide a reduction factor of only 50% or less,
which is insufficient for our setting. Our 𝛼-summary can be
viewed as removing 100(1 − 𝛼)% of the scenarios, where 𝛼
is usually very small (below 0.01); not only do we remove
scenarios, but we replace them with conservative summaries.

Similar to our setting, distributionally robust optimization
(DRO) [15, 21, 30] attempts to mitigate the optimizer’s curse
when the uncertainty distribution is unknown but is assumed
to lie in some set of candidate distributions; the original prob-
ability constraints are replaced with worst-case probability
constraints based on this set. In contrast, SummarySearch
uses deterministic worst-case constraints, which are sim-
pler and avoid assumptions on the uncertainty distribution.
DRO methods also show limited scalability in the number of
variables 𝑁 , e.g., 𝑁 is at most 20 in the experiments in [30].

The goal of wait-and-judge optimization [9, 11] is to per-
form a-posteriori feasibility analysis. Existing approaches
help provide bounds on the quality of a solution, but do not
provide algorithms that dynamically adapt in response to
poor solutions. SummarySearch, instead, adjusts the con-
servativeness of the summaries to obtain feasible solutions
with minimum computational cost. SummarySearch can po-
tentially use wait-and-judge during out-of-sample validation
to decide when to stop increasing the number of scenarios.

8 CONCLUSION AND FUTUREWORK

In this paper, we addressed single-stage decision making un-
der uncertainty, in which decisions are made before the val-
ues of the random variables become known. In many cases,
however, uncertainty is revealed over time, in stages, allow-
ing for remedial actions. We plan to explore these dynamic
settings, referred to as stochastic programmingwith recourse.
Another goal is to extend our methods to problems that in-
volve probabilistic constraints where the inner constraints
must jointly be satisfied with a given probability; such an
extension is highly nonntrivial. We also plan to work on
further algorithmic improvements, including (i) developing
more sophisticated summarization methods than minimum
and maximum summaries; (ii) scaling up SummarySearch
to very large datasets (e.g., millions of tuples) by combining
summaries with divide-and-conquer approaches like Sketch-
Refine [3]; (iii) parallelizing CSA-Solve and summary gen-
eration; and (iv) fully integrating stochastic package queries
into a probabilistic database to handle multi-table queries.
We plan to further develop our theory on SummarySearch
to formally prove its convergence to feasible solutions as the
number of scenarios increases. Finally, we plan to explore
ways to “open the black box” of optimization software to
allow for further performance improvements, in analogy to
the way MCDB re-engineered query operations to efficiently
handle uncertain tuple attributes.
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A SPAQL: LANGUAGE SUPPORT

In this appendix, we provide additional details about our
language sPaQL. Figure 8 shows the syntax diagram for
sPaQL, constructed using the Railroad Diagram Genera-
tor [35]. sPaQL extends PaQL [3] to support expectation
and probabilistic constraints and objectives in the following
ways. In PaQL, a linear constraint has the general form:

(SELECT SUM(𝑓 (R)) WHERE <selection-predicate> FROM P) ≥ 𝑣

where P is a reference name (alias) to the result package, 𝑓 (R)
a function of the attributes of R (e.g., 𝑓 (R) = 3A2

1 − 2
√
A2 + 1

for a table R with two attributes A1 and A2), and 𝑣 ∈ IR.
Syntactic sugar for a simple single-attribute, no-selection
constraint is SUM(A) ≥ 𝑣 , where 𝑓 (R) = A, for some at-
tribute A. For example, SUM(price) ≤ 1000 from the query
in the introduction is a single-attribute summation constraint
on price. A cardinality constraint is a special case of a sum-
mation constraint, COUNT(∗) = SUM(1), where 𝑓 (R) = 1.
If any of the attributes in 𝑓 (R) are stochastic, sPaQL

allows users to write either an expected or a probabilistic
version of the constraint. An expected constraint simply
prepends the keyword EXPECTED to a deterministic
constraint, e.g., EXPECTED SUM(A) ≥ 𝑣 . Similarly,
an expected minimization objective can be expressed as
MINIMIZE EXPECTED SUM(A). For example, the objective
function of query Q from the introduction maximizes the
EXPECTED SUM(Gain).

A probabilistic constraint can be expressed by appending
WITH PROBABILITY ≥ 𝑝 to a deterministic constraint,
for some 𝑝 ∈ (0, 1). For example, SUM(Gain) ≥ −10
WITH PROBABILITY ≥ 0.95. The language also allows
for opposite constraints (≤ 𝑝) for convenience, but, as
noted earlier, they can always be equivalently rewritten
in the other form. A probabilistic objective is expressed
by prepending PROBABILITY OF to a constraint, e.g.,
MAXIMIZE PROBABILITY OF SUM(Gain) ≥ −10.

B APPROXIMATION GUARANTEES

In this section, we provide more details about our theoretical
approximation guarantees (Section 5.4), including proofs
that were omitted in the main body of the paper, and all the
remaining cases that were skipped for space constraints.

B.1 Objective types and signs

Recall that in Proposition 2we assumed aminimization query
with nonnegative objective values. The following proposi-
tions replace Proposition 2 under different conditions.
Minimization with negative objective values.

Proposition 3. Let 𝜖 ≥ 0 and let 𝜔 be a negative constant
such that 𝜔 ≤ �̂� . Set 𝜖 (𝑞) = (𝜔/𝜔 (𝑞) ) − 1. If 𝜖 (𝑞) ≤ 𝜖 , then
�̂� ≥ (1 + 𝜖)𝜔 (𝑞) .

Proof. Suppose that 𝜖 (𝑞) ≤ 𝜖 . We have

�̂� ≥ 𝜔 =

(
1+

( 𝜔

𝜔 (𝑞)
−1

))
𝜔 (𝑞) =

(
1+𝜖 (𝑞)

)
𝜔 (𝑞) ≥ (1+𝜖)𝜔 (𝑞) ,

and the result follows. □

Maximization with nonnegative objective values.

Proposition 4. Let 𝜖 ≥ 0 and let 𝜔 be a positive constant
such that �̂� ≤ 𝜔 . Set 𝜖 (𝑞) = (𝜔/𝜔 (𝑞) ) − 1. If 𝜖 (𝑞) ≤ 𝜖 , then
�̂� ≤ (1 + 𝜖)𝜔 (𝑞) .

Proof. Suppose that 𝜖 (𝑞) ≤ 𝜖 . We have

�̂� ≤ 𝜔 =

(
1+

( 𝜔

𝜔 (𝑞)
−1

))
𝜔 (𝑞) =

(
1+𝜖 (𝑞)

)
𝜔 (𝑞) ≤ (1+𝜖)𝜔 (𝑞) ,

and the result follows. □

Maximization with negative objective values.

Proposition 5. Let 𝜖 ≥ 0 and let 𝜔 be a negative constant
such that �̂� ≤ 𝜔 . Set 𝜖 (𝑞) = (𝜔 (𝑞)/𝜔) − 1. If 𝜖 (𝑞) ≤ 𝜖 , then
𝜔 (𝑞) ≥ (1 + 𝜖)�̂� .

Proof. Suppose that 𝜖 (𝑞) ≤ 𝜖 . Since �̂�/𝜔 ≥ 1 and 𝜔 (𝑞) <
0, we have

𝜔 (𝑞) ≥
( �̂�
𝜔

)
𝜔 (𝑞) =

(
1+

(𝜔 (𝑞)
𝜔
−1

))
�̂� =

(
1+𝜖 (𝑞)

)
�̂� ≥ (1+𝜖)�̂�,

and the result follows. □

B.2 Upper and lower bounds on �̂�

Our theory uses upper and lower bounds on the optimal ob-
jective value �̂� to derive approximation bounds. We provide
bounds under the following assumptions: (A1) there exist
bounds on the values of the validation scenarios, (A2) there
exist package size bounds. These two assumptions are not
too restrictive since we can almost always find such bounds
by analyzing the query, or the validation scenarios produced
by the VG functions. The following are examples of simple
bounds for (A1) and (A2):
(A1) Validation scenarios bounds. We assume the avail-
ability of upper and lower bounds on the values of the val-
idation scenarios across the tuples in the optimal package.
That is, there should exist 𝑠 and 𝑠 such that 𝑠 ≤ 𝑠𝑖 𝑗 .A ≤ 𝑠 ,
for all 𝑖 ∈ [1..𝑁 ] : 𝑥𝑖 > 0, and 𝑗 ∈ [1..�̂�]. We can eas-
ily derive (possibly loose) bounds, by taking the minimum
and maximum scenario values across all input tuples, i.e.,
by setting 𝑠 B min{𝑠𝑖 𝑗 .A | 𝑖 ∈ [1..𝑁 ], 𝑗 ∈ [1..�̂�]}, and
𝑠 B max{𝑠𝑖 𝑗 .A | 𝑖 ∈ [1..𝑁 ], 𝑗 ∈ [1..�̂�]}. In principle, tighter
bounds might exist. For example, if we could identify tuples
that cannot be part of the optimal solution, we could take
them out of the min and max in the above formulas. In this
work, we do not explore ways to derive better bounds.
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Figure 8: Syntax (railroad) diagram of sPaQL.

(A2) Package size bounds. We also assume there exist up-
per and lower bounds on the size of the optimal package.
That is, there exist 𝑙 and 𝑙 such that 𝑙 ≤ ∑𝑁

𝑖=1 𝑥𝑖 ≤ 𝑙 . An
obvious value for 𝑙 , always true, is 𝑙 = 0. If the package
query includes a cardinality constraint (i.e., a constraint on
the COUNT(∗)), this might be used directly to derive 𝑙 , 𝑙 ,
or both. If the query includes deterministic summation con-
straints (i.e., on SUM(A), for a deterministic attribute A),
we can derive bounds following the derivations presented
in [4]. Again, in this work we do not study ways to derive
tighter bounds than the obvious ones.

We provide two types of bounds on �̂� : (B1) constraint-
agnostic bounds, which are always available regardless of
the probabilistic constraints; (B2) constraint-specific bounds,
which depend on the probabilistic constraint and on whether
the constraint supports or counteracts the objective function,
or it is independent of it (see Definition 2). In cases where
both (B1) and (B2) are available, the final bound is the best
of the two.

(B1) Constraint-agnostic bounds. In Table 1, we show
bounds on the optimal objective value of the form 𝜔 ≤ �̂� ≤
𝜔 .

Proofs. The proof for 𝜔 for case 𝑠 ≥ 0 was provided in Sec-
tion 5.4. Similar derivations can be used for 𝜔 under 𝑠 < 0
and for 𝜔 . For example, for 𝜔 under 𝑠 < 0, we have:

�̂� =
1
�̂�

�̂�∑︁
𝑗=1

𝑁∑︁
𝑖=1

𝑠𝑖 𝑗 .A 𝑥𝑖 ≥
1
�̂�

�̂�∑︁
𝑗=1

𝑠𝑙 = 𝑠𝑙,

using the fact that
∑𝑁
𝑖=1 𝑥𝑖 ≤ 𝑙 . The other derivations follow

a similar reasoning.
(B2) Constraint-specific bounds. Another class of bounds
exist for an objective function that is supported or counter-
acted by at least one probabilistic constraint of the form
Pr
(∑𝑁

𝑖=1 𝜉𝑖𝑥𝑖 ⊙ 𝑣
)
≥ 𝑝 . We first set the followings:

𝑆 ⊙
𝑥
B { 𝑗 ∈ [1..�̂�] | ∑𝑁

𝑖=1 𝑠𝑖 𝑗 .A 𝑥𝑖 ⊙ 𝑣},
𝑆 ⊗
𝑥
B [1..�̂�] \ 𝑆 ⊙

𝑥
,

�̂� ⊙ B
1
�̂�

∑︁
𝑗 ∈𝑆⊙

�̂�

𝑁∑︁
𝑖=1

𝑠𝑖 𝑗 .A 𝑥𝑖 ,

�̂� ⊗ B
1
�̂�

∑︁
𝑗 ∈𝑆⊗

�̂�

𝑁∑︁
𝑖=1

𝑠𝑖 𝑗 .A 𝑥𝑖 .



Case 𝜔 𝜔

𝑠 ≥ 0 or 𝑠 ≥ 0 𝑠𝑙 𝑠𝑙

𝑠 < 0 or 𝑠 < 0 𝑠𝑙 𝑠𝑙

Table 1: Constraint-agnostic bounds on the optimal

objective value (𝜔 ≤ �̂� ≤ 𝜔) that lead to (1 + 𝜖)-
approximations. These bounds are defined over exist-

ing bounds on the validation scenarios and package

size: 𝑠 ≤ 𝑠𝑖 𝑗 ≤ 𝑠, for all 𝑖 ∈ [1..𝑁 ] and 𝑗 ∈ [1..�̂�], and
0 ≤ 𝑙 ≤ ∑𝑁

𝑖=1 𝑥𝑖 ≤ 𝑙 .

Intuitively, 𝑆 ⊙
𝑥
is the set of validation scenarios satisfied by

the optimal solution 𝑥 , and 𝑆 ⊗
𝑥
is the set of validation sce-

narios not satisfied by 𝑥 . Notice that the optimal value is
�̂� = �̂� ⊙ + �̂� ⊗ .

We provide bounds in the form 𝜔 ⊙ +𝜔 ⊗ ≤ �̂� ≤ 𝜔 ⊙ +𝜔 ⊗ .
They are implied by the following conditions:

(C1) 𝜔 ⊙ ≤ �̂� ⊙ (C2) 𝜔 ⊗ ≤ �̂� ⊗,
(C3) �̂� ⊙ ≤ 𝜔 ⊙ (C4) �̂� ⊗ ≤ 𝜔 ⊗ .

Table 2 shows all the available bounds for (C1-4) under
different cases. Recall, from Section 5.4, that our algorithm
uses the best available bounds (i.e., maximum lower bound,
and minimum upper bound) among all the available ones,
including the ones in Table 1.

Proofs. Consider a counteracting probabilistic constraint
Pr(∑𝑁

𝑖=1 𝜉𝑖𝑥𝑖 ⊙ 𝑣) ≥ 𝑝 . We prove that �̂� ≥ 𝜔 ⊙ + 𝜔 ⊗ un-
der condition 𝑣 ≥ 0, which was mentioned in Section 5.4 for
a minimization objective with a counteracting constraint.
Following the table for case 𝑣 ≥ 0, we have to prove �̂� ≥ 𝑝𝑣 :

�̂� = �̂� ⊙ + �̂� ⊗ =
1
�̂�

∑︁
𝑗 ∈𝑆⊙

�̂�

𝑁∑︁
𝑖=1

𝑠𝑖 𝑗 .A 𝑥𝑖 +
1
�̂�

∑︁
𝑗 ∈𝑆⊗

�̂�

𝑁∑︁
𝑖=1

𝑠𝑖 𝑗 .A 𝑥𝑖

≥ 1
�̂�

∑︁
𝑗 ∈𝑆⊙

�̂�

𝑣 =
1
�̂�
|𝑆 ⊙
𝑥
|𝑣 ≥ 𝑝𝑣,

where we used the facts that |𝑆 ⊗
𝑥
| ≥ 0 and |𝑆 ⊙

𝑥
| ≥ 𝑝�̂� . We

now prove that �̂� ≤ 𝜔 ⊙ + 𝜔 ⊗ under conditions 𝑠 ≥ 0 and
𝑣 ≥ 0, which was also mentioned in Section 5.4 for a min-
imization objective with supporting constraint. Following
the table, one possible such bound under these conditions is

Galaxy query template (counteracted objective)

SELECT PACKAGE(∗) FROM Galaxy SUCH THAT
COUNT(∗) BETWEEN 5 AND 10 AND
SUM(Petromag_r) ≥ {v} WITH PROBABILITY ≥ {p}

MINIMIZE EXPECTED SUM(Petromag_r)

Galaxy query template (supported objective)

SELECT PACKAGE(∗) FROM Galaxy SUCH THAT
COUNT(∗) BETWEEN 5 AND 10 AND
SUM(Petromag_r) ≤ {v} WITH PROBABILITY ≥ {p}

MINIMIZE EXPECTED SUM(Petromag_r)

Portfolio query template (supported objective)

SELECT PACKAGE(∗) FROM Stock_Investments SUCH THAT
SUM(price) ≤ 1000 AND
SUM(Gain) ≥ {v}WITH PROBABILITY ≥ {p}

MAXIMIZE EXPECTED SUM(Gain)

TPC-H query template (independent objective)

SELECT PACKAGE(∗) FROM Tpch_{D} SUCH THAT
COUNT(∗) BETWEEN 1 AND 10 AND
SUM(Quantity) ≤ {v}WITH PROBABILITY ≥ {p}

MAXIMIZE PROBABILITY OF SUM(Revenue) ≥ 1000

Figure 9: Query templates for the three workloads

used in the experimental evaluation of Summary-

Search and Naïve. Each parameter in a template is

indicated in curly brackets.

�̂� ≤ 𝑣 + (1 − 𝑝)𝑠𝑙 , which follows from:

�̂� = �̂� ⊙ + �̂� ⊗ =
1
�̂�

∑︁
𝑗 ∈𝑆⊙

�̂�

𝑁∑︁
𝑖=1

𝑠𝑖 𝑗 .A 𝑥𝑖 +
1
�̂�

∑︁
𝑗 ∈𝑆⊗

�̂�

𝑁∑︁
𝑖=1

𝑠𝑖 𝑗 .A 𝑥𝑖

≤ 1
�̂�

∑︁
𝑗 ∈𝑆⊙

�̂�

𝑣 + 1
�̂�

∑︁
𝑗 ∈𝑆⊗

�̂�

𝑁∑︁
𝑖=1

𝑠 𝑥𝑖 ≤
1
�̂�
|𝑆 ⊙
𝑥
|𝑣 + 1

�̂�
|𝑆 ⊗
𝑥
|𝑠𝑙

≤ 𝑣 + (1 − 𝑝)𝑠𝑙,

where we used the facts that |𝑆 ⊙
𝑥
| ≤ �̂� and |𝑆 ⊗

𝑥
| ≤ (1 − 𝑝)�̂� .

All other bounds in the table are easily derivable following a
similar approach.

C WORKLOAD DETAILS

In this section, we provide additional details about the work-
loads used in our experiments to evaluate SummarySearch
and Naïve (Section 6). Figure 9 shows the sPaQL query tem-
plates for each dataset. The parameters in the templates are
indicated under curly brackets. Table 3 provides all the re-
maining details for the datasets and queries, including all
the query parameters.



Objective-Constraint Interaction Case 𝜔 ⊙ 𝜔 ⊗ 𝜔 ⊙ 𝜔 ⊗

(a) Independent 𝑠 ≥ 0 or 𝑠 ≥ 0 𝑝𝑠𝑙 0 𝑠𝑙 (1 − 𝑝)𝑠𝑙
𝑠 < 0 or 𝑠 < 0 𝑠𝑙 (1 − 𝑝)𝑠𝑙 𝑝𝑠𝑙 0

(b) Supporting/counteracting

∑𝑁
𝑖=1 𝜉𝑖𝑥𝑖 ≥ 𝑣 ≥ 0 𝑝𝑣 0 — —∑𝑁
𝑖=1 𝜉𝑖𝑥𝑖 ≥ 𝑣, 𝑣 < 0 𝑣 (1 − 𝑝)𝑣 — —∑𝑁
𝑖=1 𝜉𝑖𝑥𝑖 ≤ 𝑣, 𝑣 ≥ 0 — — 𝑣 (1 − 𝑝)𝑣∑𝑁
𝑖=1 𝜉𝑖𝑥𝑖 ≤ 𝑣 < 0 — — 𝑝𝑣 0

Table 2: Constraint-specific bounds for an objective with inner function

∑𝑁
𝑖=1 𝜉𝑖𝑥𝑖 subject to a probabilistic con-

straint with right-hand side 𝑝. For group (a) in this table, the probabilistic constraint is independent of the objec-

tive function; for group (b), the constraint supports or counteracts the objective: Pr(∑𝑁
𝑖=1 𝜉𝑖𝑥𝑖 ⊙ 𝑣) ≥ 𝑝. The final

bounds on the optimal objective value are of the form 𝜔 ⊙ + 𝜔 ⊗ ≤ �̂� ≤ 𝜔 ⊙ + 𝜔 ⊗. An entry with — means that no

bound exists for that case. The final bound is the best bound from this table where any of the cases are true. For

example, for 𝜔 ⊙, the final bound is the maximum of 𝑝𝑠𝑙 (or 𝑠𝑙) and 𝑝𝑣 (or 𝑣). Notice how there is always at least

one available bound from group (a), and possibly one additional bound from group (b), so that at least one bound

for each column of the table always exists.

Dataset Query

𝑁 Uncertainty Feasible? Objective Supportiveness 𝑝 𝑣 Other features

G
a
l
a
x
y

55, 000 to
274, 000

Normal(𝜎=2) Q1

Yes min E (·)

Counteracted

0.9

40
Normal(𝜎∗=3) Q2 43
Normal(𝜎=2) Q3 Supported 50
Normal(𝜎∗=3) Q4 52
Pareto(𝜎=𝛼=1) Q5 Counteracted 65
Pareto(𝜎∗=𝛼=1) Q6 65
Pareto(𝜎=𝛼=1) Q7 Supported 109
Pareto(𝜎∗=3, 𝛼=1) Q8 90

P
o
r
t
f
o
l
i
o

4, 000 to
14, 000

Geometric
Brownian
Motion

Q1

Yes max E (·) Supported

0.9 −10 2-day, All stocks
Q2 0.95 −10 2-day, All stocks
Q3 0.9 −10 2-day, Most volatile
Q4 0.95 −10 2-day, Most volatile
Q5 0.9 −1 2-day, Most volatile
Q6 0.95 −1 2-day, Most volatile
Q7 0.9 −10 1-week, Most volatile
Q8 0.9 −1 1-week, Most volatile

T
P
C
-
H

117, 600

Exponential(𝜆=1) Q1

Yes max Pr (·) Independent

0.9 15 D=3
Exponential(𝜆=1) Q2 0.95 7 D=10
Poisson(𝜆=2) Q3 0.9 15 D=3
Poisson(𝜆=1) Q4 0.9 10 D=10
Uniform(0,1) Q5 0.9 15 D=3
Uniform(0,1) Q6 0.95 7 D=10
Student’s t(𝜈=2) Q7 0.9 29 D=3
Student’s t(𝜈=2) Q8 No 0.95 7 D=10

Table 3: Detailed description of datasets and queries. For Galaxy, the means of the distributions are always the

original data values, and we thus only indicate the other distribution parameters (standard deviation 𝜎 and shape

𝛼); The standard deviations can be of two kinds: all identical (indicated by 𝜎), or all different and randomly gener-

ated (indicated by 𝜎∗); In the second case, the standard deviations of the tuples were generated randomly using a

normal distribution with mean zero and standard deviation 𝜎∗, and by then taking their absolute values. For Port-

folio, “2-day” indicates predictions made only for the following two days, and “1-week” indicates predictions for

an entireweek; “Most volatile” indicates that the dataset only includes the 30%most volatile stocks. For TPC-H,we

indicate the distribution used to model the data integration uncertainty, and 𝐷 , the number of integrated sources.
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