
This is a repository copy of From Java to real-time Java:A model-driven methodology with
automated toolchain.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/157050/

Version: Accepted Version

Proceedings Paper:
Chang, Wanli orcid.org/0000-0002-4053-8898, Zhao, Shuai, Wei, Ran et al. (2 more
authors) (2019) From Java to real-time Java:A model-driven methodology with automated
toolchain. In: LCTES 2019::Proceedings of the 20th ACM SIGPLAN/SIGBED International
Conference on Languages, Compilers, and Tools for Embedded Systems. 20th ACM
SIGPLAN/SIGBED International Conference on Languages, Compilers, and Tools for
Embedded Systems, 22 Jun 2019 ACM , USA , pp. 123-134.

https://doi.org/10.1145/3316482.3326360

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

From Java to Real-Time Java: A Model-Driven
Methodology with Automated Toolchain

(Invited Paper)

Wanli Chang
University of York

The United Kingdom

wanli.chang@york.ac.uk

Shuai Zhao
University of York

The United Kingdom

shuai.zhao@york.ac.uk

Ran Wei
University of York

The United Kingdom

ran.wei@york.ac.uk

Andy Wellings
University of York

The United Kingdom

andy.wellings@york.ac.uk

Alan Burns
University of York

The United Kingdom

alan.burns@york.ac.uk

Abstract

Real-time systems are receiving increasing attentionwith the

emerging application scenarios that are safety-critical, com-

plex in functionality, high on timing-related performance

requirements, and cost-sensitive, such as autonomous vehi-

cles. Development of real-time systems is error-prone and

highly dependent on the sophisticated domain expertise,

making it a costly process. There is a trend of the existing

software without the real-time notion being re-developed

to realise real-time features, e.g., in the big data technology.

This paper utilises the principles of model-driven engineer-

ing (MDE) and proposes the first methodology that automat-

ically converts standard time-sharing Java applications to

real-time Java applications. It opens up a new research direc-

tion on development automation of real-time programming

languages and inspires many research questions that can be

jointly investigated by the embedded systems, programming

languages as well as MDE communities.

CCS Concepts · Computer systems organization →

Real-time systems; · Software and its engineering →

Software notations and tools.

Keywords real-time programming languages, real-time spec-

ification for Java, model-driven engineering

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

LCTES ’19, June 23, 2019, Phoenix, AZ, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-6724-0/19/06. . . $15.00

https://doi.org/10.1145/3316482.3326360

ACM Reference Format:

Wanli Chang, Shuai Zhao, RanWei, AndyWellings, and Alan Burns.

2019. From Java to Real-Time Java: A Model-Driven Methodology

with Automated Toolchain (Invited Paper). In Proceedings of the

20th ACM SIGPLAN/SIGBED Conference on Languages, Compilers,

and Tools for Embedded Systems (LCTES ’19), June 23, 2019, Phoenix,

AZ, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.

1145/3316482.3326360

1 Introduction

Real-time systems often enclose stringent temporal require-

ments, where a real-time application must react to stimuli

from the environment (including the passage of physical

time) within time intervals dictated by the environment [10].

Such systems have been well practised in many fields, and

their application domains keep growing with emerging sce-

narios [15].

Although timing requirements are categorised as non-

functional requirements, they are essential to safety-related

systems. In [26], the author classifies system failure modes

into random failures and systematic failures, where system-

atic failures contribute to system hazards which could lead to

incidents with catastrophic consequences. Systematic failures

can be further classified into functional failures and timing

failures. It is imperative to ensure that a safety-related system

possesses correct timing requirements and at the same time,

that its timing behaviour satisfies these timing requirements.

Therefore, demonstrating real-time properties forms key ev-

idence in certifying the safety of a safety-related system.

Due to the high productivity, portability and relatively low

maintenance cost, the Java programming language has re-

ceived extensive attention in the real-time and safety-critical

domains [21, 45]. For instance, Java was adopted in [31]

and [30] to reduce distributed computing latency in an uni-

fied could-based platform for autonomous vehicles. However,

these works have been developed focusing on functionality

with limited consideration of timing and safety guarantee,

123

LCTES ’19, June 23, 2019, Phoenix, AZ, USA Wanli Chang, Shuai Zhao, Ran Wei, Andy Wellings, and Alan Burns

especially when the complex perception functions are in-

volved. As mandated by safety regulations, such as the ISO

26262 for automotive systems and IEC 61508 for functional

safety, hard real-time constraints are essential to guarantee

safety of the system (e.g., the vehicle) and its surrounding

environment. Thus, there is a need to push these existing

works towards the real-time regime.

There is a trend that matured Java techniques (which were

developed without the notion of real-time) are re-developed

to possess real-time guarantees (e.g., real-time big data sys-

tems [18] and real-time stream processing techniques [32]).

Themajor reason is that, those simple and conservativemeth-

ods (like leaving large safety margins) that were deployed

in practice are losing ground, with the ever more compli-

cated functionality, higher timing-related performance re-

quirements and limited resources on the emerging real-time

applications [3, 12ś14].

Despite its popularity, standard Java cannot be directly

applied to produce real-time software due to the lack of

facilities such as thread scheduling, resource sharing control,

memory management, etc., which are essential to achieve

predictability [11] in terms of temporal behaviour. This has

motivated the development of the Real-Time Specification for

Java (RTSJ) [8]. RTSJ reserves the intrinsic advantages of

Java, and provides plenty of real-time facilities to guarantee

the system temporal behaviour, but at the same time is harder

to be used by software engineers.

Compared to the generic time-sharing applications in

Java, developing real-time applications using RTSJ depends

highly on the expertise in the real-time systems design and

requires thorough understanding of the specification. It is

also error-prone due to the complexity. All of these above

make development of real-time applications a costly process.

Although there have been system analysis and verification

techniques [35] to ensure correctness in the design phase,

in terms of both logical and temporal behaviour, it remains

an open and challenging problem how to eliminate human-

related erroneous factors (e.g., caused by limited understand-

ing of the real-time concepts and insufficient experience with

RTSJ facilities). The safety-critical nature in many real-time

systems domains amplifies the impact of such concerns.

Model-driven engineering (MDE) is a contemporary soft-

ware development paradigm, which promotesmodels as first-

class artefacts. Based on models, developers are able to per-

form a series of model management operations in an auto-

mated manner, and eventually produce software artefacts,

such as documentation and working code. This reduces the

amount of time required to develop a system and thus im-

proves the productivity of software engineers, by at least

a factor of 10 in many cases [23, 25]. Adopting MDE also

reduces the number of errors throughout the development

process and improves consistency [51]. In addition, MDE

can be applied to any domain to achieve automation, due to

the concept of domain-specific modelling and the interoper-

ability provided by model management operations, which

can be executed in an automated manner.

In this paper, we apply the principles of MDE in the do-

main of real-time programming with Java. We propose the

first methodology that is able to automatically convert ex-

isting time-sharing Java applications to real-time applica-

tions in RTSJ, through a series of model management op-

erations. The output software is in full compliance to the

RTSJ specification, with dependencies to the RTSJ runtime

environment supporting scheduling, memory management,

resource sharing, asynchrony, etc. This enables the develop-

ers with limited real-time background to perform temporal

analysis on their non-real-time base code and convert it to

source code written in RTSJ. Due to the application of MDE

techniques, the productivity and consistency throughout

the development. Human errors are eliminated in the au-

tomation. We describe an automated toolchain associated

with the proposed methodology. All the functional blocks

in the toolchain and the involved technical approaches are

explained. The scientific challenges addressed and hidden

issues discovered towards automatic generation of real-time

applications with MDE techniques are discussed. We also

point out future research directions beyond this paper.

The rest of the paper is organised as follows. Section 2

provides a review of the MDE technology and its applica-

tion in the real-time systems development. Section 3 de-

scribes the real-time Java, The proposed methodology and

toolchain are reported in Section 4 with detailed transfor-

mation approaches. Section 5 outlines open questions and

possible research directions that are introduced by the pro-

posed methodology. Finally, Section 6 gives the conclusion.

2 Model-Driven Engineering

Modelling is an essential part of any system engineering

process. Engineers of all disciplines construct models of the

systems they intend to build to capture, test and validate

their system design ideas with other stakeholders before

committing to a long and costly production process.

MDE is a software engineering methodology that aims

to reduce the accidental complexity of software systems by

promoting models that focus on the essential complexity

of systems, as the first-class artefacts of the software devel-

opment process. In contrast to those traditional software

development methodologies, where models are mainly used

for communication and post-mortem documentation process,

in MDE models are the main living and evolving artefacts

from which concrete software development artefacts can be

produced in an analysable and automated fashion.

MDE was proposed at the time when object-oriented tech-

niques reached a point of exhaustion [7, 37]. MDE constitutes

the latest paradigm shift in software engineering as it raises

124

From Java to Real-Time Java: A Model-Driven Methodology . . . LCTES ’19, June 23, 2019, Phoenix, AZ, USA

the level of abstraction beyond that provided by 3rd gener-

ation programming languages. In recent studies, MDE has

been shown to increase productivity by as much as a factor

of 10 [23, 25], and significantly enhance important aspects

of the software development process such as maintainability,

consistency and traceability [33].

There are two important aspects of MDE Ð (i) domain-

specific modelling, where domain experts create their own

domain-specific modelling languages (DSMLs) to capture

the concepts in their domain (and create instances of their

DSMLs to model their systems); (ii) model management op-

erations, which are programs performed on models in an

automated manner to generate software engineering arte-

facts. Model management operations typically include, but

are not limited to:

• Text-to-Model Transformation (T2M): to convert text

(such as source code) into models based on parsing

rules defined in the transformation;

• Model Validation: to check the well-formedness of

models, as well as custom constraints against the ele-

ments in models;

• Model-to-Model Transformation (M2M): to interoper-

ate between different modelling technologies, where

one type of model is transformed into another type;

• Model-to-Text Transformation (M2T): to generate text

based on the contents of the model (e.g., documenta-

tion generation and source code generation);

• Model Comparison: to compare different versions of a

model to find out what is changed;

• Model Merging: to integrate models defined by differ-

ent parties but share model elements.

MDE has been applied to a variety of domains, with proven

benefits. In [28] MDE is applied to transform model query

languages to MySQL queries to reduce the effort and error

rates in manually creating MySQL queries. In [51], MDE is

applied to automatically generate fully functional graphical

editors for UML profiles. In [5], MDE is applied to trans-

form natural languages to database query languages to form

complex query using simple natural language grammars.

Developing real-time systems via a model-based approach

is not novel in the community [24, 46]. The idea proposed in

this paper is partially inspired by them. None of these works

study the migration from standard Java to real-time Java. In

addition, many of the past efforts rely on the notion of model-

driven architecture, which is an outdated MDE practice and

has a lack of tool support. By applying MDE techniques,

as previously described, Real-Time system developers can

benefit from the productivity gain from MDE, as well as

the consistency and maintainability through automation

provided by MDE.

3 Real-Time Specification for Java

RTSJ, originally developed as Java Special Request 1 un-

der the Java Community Process in 2001 1, has been well-

practised in a wide range of application domains, including

automotive, manufacturing control, avionics and informa-

tion systems [22, 43, 46, 47]. For instance, RTSJ has been ap-

plied to the auto-pilot system of an unmanned aerial vehicle,

which is the first Java-based system that satisfies all Boe-

ing’s operational requirements and flew in tests [1]. Jcoap,

realised by RTSJ, provides real-time communications for

IoT systems [29]. In [17], RTSJ has been applied in a real-

time big data processing systems with FPGA-based hardware

acceleration. In industry, JamaicaCAR developed by both

Acis and Perrone Robotics2 provides a lightweight applica-

tion framework for car headunits and in-vehicle information

systems. In addition, Acis and CLAAS3 present solutions

(namely Jamaica-IoT) for digital factory and manufacturing,

which enables deployment and operation of data analytics

and control logic at the network’s edge.

The RTSJ is designed to support both hard and soft real-

time applications. This specification consists of two major

components Ð (i) extensions from the Java programming

language; and (ii) modifications on the semantics of the stan-

dard Java Virtual Machines (JVM) [8]. This section briefly

reviews the programming specification of RTSJ, together

with its reference implementations as well as the supporting

Virtual Machines (VM). Detailed descriptions of each RTSJ

facility and the application examples can be found in [10]

and [48].

3.1 Programming Specification

In total, there are seven extensions from the standard Java

language that are provided in the package javax.realtime,

including task scheduling and dispatching, memory manage-

ment, shared resource control, asynchronous event handling,

etc.

Onemajor facility provided in RTSJ isjavax.RealtimeThr

ead, which takes a set of scheduling-related parameters

(e.g., priority, period and deadline) specifying a real-time

thread’s release, execution and timing properties. Three

types of threads are derived from this entity: periodic, spo-

radic and aperiodic, depending on the input release param-

eter. In addition, a set of asynchronous event handlers are

provided to allow user-defined actions in the cases of dead-

line miss or budge overrun. By default, the real-time threads

are scheduled by a preemptive fixed-priority scheduler, but

user-defined scheduling and dispatching policies are also

possible.

Another important extension the real-time memory man-

agement model. In RTSJ, a set of memory management

1https://jcp.org/en/jsr/detail?id=1
2https://www.perronerobotics.com
3https://www.claas.ca

125

LCTES ’19, June 23, 2019, Phoenix, AZ, USA Wanli Chang, Shuai Zhao, Ran Wei, Andy Wellings, and Alan Burns

Figure 1. Time-sharing applications to real-time applications migration

facilities are provided in RTSJ (e.g.,ImmortalMemory and

ScopedMemory) to allow the construction of self-defined

memory models. However, RTSJ imposes a set of memory

accessing rules that restrict memory-accessing behaviours

to prevent dangling reference (i.e., references that point to

objects in reclaimed memory blocks). With memory man-

agement model defined, the standard Java garbage collector

is no longer required so that its unpredictable interference is

avoided during run-time. Later, a real-time garbage collector

is supported by JamaicaVM (see Section 3.2), which allows

the use of Heap memory and eases the development of RTSJ

applications by avoiding building complex memory models.

In the presence of shared objects, RTSJ provides several

resource sharing policies like priority Inheritance [40] and

Priority Ceiling Protocol (PCP) [36]. Among these protocols,

the PCP yields the minimised blocking time (i.e., one critical

section only) and guarantee dead-lock free resource accesses.

In addition, asynchrony is well handled via a set of asynchro-

nous event handling facilities. Finally, a set of time-related fa-

cilities (e.g., real-time system clock and HighResolutionTime

with granularity of nanoseconds) are supported.

3.2 RTSJ Implementations and VMs

This specificationwas firstly implemented by TimeSys4. This

implementation (i.e., a RTSJ-compliant VM and a RTSJ refer-

ence implementation) supports all versions of Linux. Later,

Aicas GmbH5 provided a different RTSJ implementation in

their JamaicaVM, supporting a wide range of Real-time oper-

ating systems, such as Linux, VxWorks and QNX. In addition,

4https://www.timesys.com
5https://www.aicas.com/cms/en

there also existed other virtual machines that are compliant

with RTSJ, e.g., jRate6, OVM [4] and Aero JVM 7.

Among these VMs, JamaicaVM provides hard real-time

guarantees and is the mostly adopted VM for executing RTSJ

applications. Currently, JamaicaVM supports RTSJ V1.0.2

and is working towards RTSJ 2.0 implementation based on

Java 8. In particular, a real-time Garbage Collector (GC) is

supported by JamaicaVM [41]. This GC executes each time

when threads issues requests to allocate an object in a pre-

emptable fashion, and will not interrupt application threads.

In JamaicaVM manual8, an analytical approach for measur-

ingworst-case execution time in the presence of the real-time

garbage collector are provided.

In total, thirty-eight priority levels are supported by this

VM, where priority levels 11-38 are designated for real-time

threads (through the class RealtimeThread) and priority

levels 1-10 belong to the standard Java. That is, JamaicaVM

also compliant with the standard non real-time threads. How-

ever, in this work, we assume that each thread in the given

application will be mapped to a real-time thread, and each

real-time thread has a unique priority.

3.3 Targeted RTSJ Run-Time Environment

As the first attempt of this methodology, we assume a simple

but widely applied real-time system model. The current ver-

sion of proposed methodology aims transferring standard

Java applications in uniprocessor systems to real-time ap-

plications. In this work, we consider those threads can be

transferred to either periodic or aperiodic real-time threads,

6http://jrate.sourceforge.net/
7http://www.aero-project.org
8https://www.aicas.com/cms/sites/default/files/JamaicaVM-8.

2-manual-web.pdf

126

From Java to Real-Time Java: A Model-Driven Methodology . . . LCTES ’19, June 23, 2019, Phoenix, AZ, USA

Figure 2. Discovering Java a model from Java source code

with their release parameters pre-defined in application re-

quirements. Fixed-priority preemptive scheduling policy is

enforced for coordinating executions of real-time threads.

Threads can access to shared objects, but they must do so

with the PCP applied, which is an optimal resource sharing

solution in uniprocessor systems (i.e., deadlock-free and min-

imised blocking time) [16]. JamaicaVM v8.5 (with RTSJ v1.0.2

and Java 1.5) is applied as the underlying virtual machine.

Finally, Memory management is handled by the real-time

GC provided by JamaicaVM.

4 Proposed Methodology

The structure of our proposed methodology is shown in Fig-

ure 1. The first step in our approach is the reverse-engineering

of the Java programs into models. In order to do this, we

use a Text-to-Model transformation to convert the source

code of standard Java applications (i.e. without real-time

properties) into Java models. In addition to the Java source

code, we also take a list of real-time application requirements

that provide necessary information (e.g. timing and prior-

ity parameters for each thread, scheduling policies, etc.) for

building a real-time system.

With the two inputs, a Java model that conforms to the

Java metamodel is produced. With the Java model, there is

a need to perform a model validation to check if the given

application is capable to satisfy all the temporal requirement

after being transformed to a real-time application. If the

model validation passes (the response time of each real-time

thread is equal to or less than its deadline), it means that

the to be transformed application is schedulable. We then

perform a model-to-model transformation to transform the

Java model to the target Java model (named Java Model′)

which uses RTSJ Java constructs. This transformation is a

endogenous transformation - that the target model also con-

forms to the Java Metamodel (for RTSJ does not introduce

new language syntax in Java). The transformation is derived

based on our knowledge in RTSJ and our defined mappings

from standard Java classes to RTSJ classes. The target Java

Model′ is then used as an input for a model-to-text transfor-

mation, which is responsible to transform Java models back

to Java source code.

With the proposed approach, applications developed orig-

inally in standard Java can be automatically converted to

real-time applications based on RTSJ, and are directly ex-

ecutable on JamaicaVM. The whole conversion process is

conducted without intervention of software developers, and

hence, eliminates human-related erroneous factors. In addi-

tion, the proposed methodology removes the need of exper-

tise in the real-time systems design and necessary knowledge

of any targeted real-time programming specification. Conse-

quently, the cost for real-time systems development can be

significantly reduced with the high productivity brought by

MDE. In the following sections, we will discuss the transfor-

mations involved in the approach individually.

4.1 Reverse Engineering Transformation (T2M)

The reverse engineering transformation is the very first trans-

formation in the tool chain. Reverse engineering transfor-

mation is also normally referred to as Model Discovery, in

the sense that a model is discovered from the source code.

There are a number of available tools and approaches that

are capable of performing this task. For example, JaMopp

[20], Spoon [34] and MoDisco [9] are all feasible tools to

perform reverse engineering from Java. It is to be noted that

in this step, there is a strict requirement for model discovery

in our proposed approach, that there shall be no information

loss during the model discovery. This is typically due to the

fact that the discovered model will be analysed, changed and

then transformed back to the source code. If there is any

information loss, the eventual transformed source code is

not complete.

Our proposed reverse engineering transformation is pre-

sented in Figure 2. The Java source code and the real-time

application requirements (we assume here that this would

be a Java class with static fields) are firstly parsed into an

Abstract Syntax Tree (AST), which is a very low-level rep-

resentation model of the Java source code. The problem

with ASTs is that they are difficult to navigate and analyse.

Therefore, an AST simplification is performed to produce

the discovered Java model that conforms to the Java Meta-

model. The AST simplification is a reversible procedure, so

that even if the discovered Java model is changed, the inverse

of the AST simplification is still able to produce an AST that

preserves all the original information (with changes applied

to the AST).

127

LCTES ’19, June 23, 2019, Phoenix, AZ, USA Wanli Chang, Shuai Zhao, Ran Wei, Andy Wellings, and Alan Burns

4.2 Model Validation

With the discovered Java model, a model validation is per-

formed to check whether the given application can meet

its timing constraints defined in its real-time application re-

quirements. The validation process first checks whether the

given requirements are consist with the input Java source

code (e.g., whether threads’ ids in the application are consis-

tent with the ones given by the requirement). The real-time

application requirements provide full thread releasing and

scheduling information for each thread that needs to be

transferred to real-time threads.

Then (assuming threads defined in the requirements are

consist with the source code), an analysis is performed to

verify the timing properties of each real-time thread via

the Response Time Analysis (RTA) [2] . For a given task

τi in the targeted system, the worst-case response time Ri
is then calculated by adding the task worst-case execution

time Ci , the blocking time Bi and the interference time due

to preemptions from higher-priority tasks Ii :

Ri = Ci + Bi + Ii

= Ci + Bi +
∑

j ∈hp(i)

⌈

Ri

Tj

⌉

Cj
(1)

where ⌈·⌉ denotes the ceiling function and hp(i) returns the

set of tasks that have a higher priorities than τi ’s priority

(denoted as Pri(τi) in the following equations).

In the presence of shared resources,Ci is further extended

to include the time τi spends on executing each shared re-

sources, as shown in (2).

Ci =WCETi +
∑

rk ∈F (τi)

N k
i c

k (2)

whereWCETi denotes the worst-case execution time of τi
without accessing any shared resources, F (τi) gives a set of

resources accessed by τi , c
k gives the worst-case execution

time of a given resource k and N k
i returns the number of

access τi can issue to resource k in one release. Note, as

described in [42], the overheads cost by the real-time GC for

allocating objects are included into the worst-case execution

time (notationWCET) of each thread, which should be pre-

defined in the application requirements based on memory

usage of each thread (i.e., keyword new).

The blocking time Bi indicates the time period that task τi
is prevented from executing due to either the non-preemptive

sections from the underlying operating system or a low-

priority thread that accesses a shared resource with a ceiling

priority higher than Pri(τi), as give in equation (3).

Bi =max{ĉi , b̂} (3)

in which ĉi denotes blocking due to resource accessing and

b̂ gives the longest non-preemptive section period in the un-

derlying operating system. Finally, ĉi is computed by equa-

tion (4) with PCP assumed. Note, the value of b̂ depends on

the operating system and underlying hardware, and should

be measured and reported in the input application require-

ments.

ĉi = max{ck |N k
lp > 0 ∧ Pri(rk) ≥ Pri(τi)} (4)

This equation finds all resources are accessed by tasks with a

lower priority but have a higher ceiling priority than Pri(τi),

and gets the longest critical section among these resources

as the worst-case blocking time for τi .

With the above analysis, the worst-case response time

for each release of the application threads is bounded. If the

system validation yields a schedulable system with given

threads’ scheduling parameters in the requirement, the pro-

posed methodology processed to the next step, where it

transfers the standard Java model to the real-time Java model

based on the pre-generated metamodel.

However, the current version of model validation heavily

depends on system requirement for pre-measured computa-

tion cost of each thread and shared resource. In the future,

mature worst-case execution time measuring techniques can

be integrated into the proposed toolchain for a higher degree

of automation.

4.3 RTSJ Model Transformation

After the RTA (model validation) passes, in the next step, a

model-to-model transformation (i.e., block M2M in Figure 1)

is performed to migrate the standard Java model to RTSJ

Java model. It is to be noted that this transformation is en-

dogenous in the sense that RTSJ does not introduce new Java

abstract syntax, therefore the both the source model and the

target model conform to the same Java Metamodel. This mi-

gration is performed based on a set of transformation rules,

which specify the mapping from standard Java facilities to

RTSJ facilities provided in package javax.realtime. For the

interest of brevity, below we elaborate on two major Java

to RTSJ transformations (i.e., threads and synchronisation)

and then briefly describe the transformation rules to resolve

RTSJ run-time environment dependencies.

4.3.1 Standard Threads to RTSJ Threads

One major difference between standard Java and RTSJ is the

schedulable entities (i.e., threads), where Java uses java.lang

.Threadwhile RTSJ applications relies on javax.realtime.

RealtimeThread. Figure 3 shows an example transforma-

tion rule (named Thread2RealtimeThread), which transforms

a standard Java thread into a real-time thread.

On the left side of the figure is the source model of the

transformation. The source model contains a number of stan-

dard Java threads that are extracted from the input source

code. The transformation rulemaps each standard Java thread

to a real-time thread in RTSJ, as seen in the target model.

In the source model, each thread is associated with a explic-

itly defined java.lang.Runnable object, which contains all

functionality implementations that should be executed by

128

From Java to Real-Time Java: A Model-Driven Methodology . . . LCTES ’19, June 23, 2019, Phoenix, AZ, USA

Figure 3. Example transformation rule ead2RealtimeThread

this thread. This Runnable objective will be passed directly

into the run() method9 of the real-time thread constructed

during this transformation phase. In addition, each standard

Java thread may also define an optional faultRecovery()

method, which contains recovery operations to be performed

in the situation that the thread misses its deadline. The trans-

formation rule transforms the code in the faultRecovery()

method into RTSJ dedicated handlers, in this instance, the

transformation creates a DeadlineMissHandler based on

javax.realtime.AsyncEventHandler. If such a method is

not provided, an immediately system shutdown is triggered

in case of any deadline misses.

Then, the transformation rule creates RTSJ parameters

such as ReleaseParameter and SchedulingParameter to ap-

ply timing constraints. As defined in the previous section,

the source model also contains a set of real-time application

requirements, which is embedded in the form of a Java class

with static fields. In this real-time application requirements,

a set release and scheduling parameters specifying the ex-

ecution eligibility and temporal proprieties of each thread

should be defined by the users, as shown in Figure 3. Note

that a period parameter is mandated for periodic threads,

but should be omitted by those aperiodic threads to facilitate

the identification of various activation pattern of real-time

threads. Listing 1 provides a simple example of real-time ap-

plication requirements for a periodic thread and an aperiodic

thread.

// Periodic thread PT1

public static final String PT1_id = "PT1";

public static final int PT1_Period = 250;

9This Runnable object does not replace the Runnable of the real-time thread.

It is passed into the real-time thread and executed by invoking its run()

just for the execution the logic implementation in the method. The run()

method of a real-time thread may contain extra implementation for realising

its activation behaviours.

public static final int PT1_Cost = 200;

public static final int PT1_Deadline = 250;

public static final int PT1_Priority = 20;

// Aperiodic thread AT1

public static final String PT1_id = "AT1";

public static final int AT1_Cost = 30;

public static final int AT1_Deadline = 50;

public static final int AT1_Priority = 25;

Listing 1. An example of the real-time application

requirements

During the transformation, threads’ priorities are con-

structed as javax.realime.PriorityParameter objects an-

d other parameters (e.g., cost, deadline) are modelled into

javax.realtime.ReleaseParameters objects, as shown in

Figure 3. Depending on whether a given thread is associ-

ated with a period, the release parameter objects are further

modelled to either PeriodicParameters or AperiodicPa-

rameters10 objects provided in java.realtime.package. In

addition, it is to be noted that the DeadlineMissHandler

transferred from the pre-defined faultRecovery() method

is also integrated into the ReleaseParameters object, as

defined by the RTSJ specification.

With above real-time thread parameters and logic con-

structed, a standard Java thread can be transferred into a

RTSJ thread via passing these parameter objects and the

Runnable object into the construction method, where the

Runnable object is called inside the run() method. For peri-

odic threads, method waitForNextPeriod() is added into

its run() method to achieve a periodic release behaviour. Note

that as we assume the presence of a real-time GC, real-time

threads are allowed to execute in Heap memory so that those

memory area parameters associated to the real-time threads

10The Class PeriodicParameters and AperiodicParameters are realised by

RTSJ as the sub-classes of ReleaseParametersin package javax.realtime

129

LCTES ’19, June 23, 2019, Phoenix, AZ, USA Wanli Chang, Shuai Zhao, Ran Wei, Andy Wellings, and Alan Burns

are set as empty, which by default are executed in Heap by

JamaicaVM.

Finally, it is to be noted that we used a hybrid (i.e. impera-

tive and declarative) transformation approach. The transfor-

mation rule in Figure 3 is one of the rules we define for the

entire transformation. There are also rule dependencies, for

example, we also define a faultRecovery2DeadlineMissHandler

transformation rule, this rule should be called within our

Thread2RealtimeThread transformation rule. This execution

behaviour is typical for hybrid transformations and we rec-

ommend using the Epsilon Transformation Language [27]

to write and execute the transformation.

4.3.2 Java Synchronisation to Real-Time Resource

Control

Besides thread scheduling, another major difference between

stand Java application and RTSJ is thread synchronisation

approach, where in RTSJ each shared resource must be pro-

tected by proper resource sharing protocols (i.e., javax.real

time.MonitorControl) to ensure bounded resource access-

ing time for each resource access. As described in Section 3.3,

the PCP is applied in the proposed toolchain for managing

shared resources in transformed RTSJ appellations. This sec-

tion describes the transformation rule Lock2RealtimeLock

that transforms standard Java synchronisation to RTSJ PCP

facility11. In the current version of the proposed toolchain,

we assume that each thread can only can only access one

resource at a time.

To perform proper transformation, we define a set of rules

towards thread synchronisation in the input source code and

real-time application requirements, as described below.

• The user should be aware of all shared objects (i.e.,

ones that are read andwritten bymore than one threads)

and the threads that access those shared objects in the

input Java source code.

• Each shared resource must be implemented as a class

with the required operations implementing its meth-

ods properly protected by the standard Java synchro-

nisation approach, i.e., via synchronised coding blocks

and methods.

• The use of wait(), notify() and notifyAll() facil-

ities in Standard Java are not allowed i.e., threads are

not self suspended.

• For a given shared resource, say rk , the user should

provide its ceiling priority (i.e., the maximum priority

of threads that access rk) in the real-time application

requirements.

Below we provide an example of a valid input source code

of a shared object class SharedResource and the associated

application requirements conforming to the rules defined

above.

11The PCP in RTSJ is implemented by class PriorityCeilingEmulation

in package javax.realtime by extending class MonitorControl.

// real-time application requirements

public static final String SR1_id = "sr1";

public static final int SR1_Ceiling = 25;

...

// input source code

class SharedResource{

String id;

public synchronised void access(){

critical_section;

}

}

SharedResource sr1 = new SharedResource("sr1");

Listing 2. An example of RTSJ synchronisation with PCP

applied

With above rules defined, the standard Java synchroni-

sation approach can be effectively transferred to real-time

resource sharing techniques. First, the source Java model

generated in Section 4.1 (i.e., the model that extracts all ob-

jects in the input source code) is able to identify all shared

objects (i.e., classes) and required operations by detecting the

synchronised keyword. Then, for each object created based

on these classes, its associated priority ceiling priority can

be found in the application requirements. With above infor-

mation, RTSJ implementation can be generated by adding

a PriorityCeilingEmulation instance to that object, as

shown below.

SharedResource sr1 = new SharedResource("sr1");

// With PCP enforced.

PriorityCeilingEmulation PCP =

PriorityCeilingEmulation.instance(25);

MonitorControl.setMonitorControl(sr1, PCP);

Listing 3. An example of RTSJ synchronisation with PCP

applied

The transformation first generates a PriorityCeiling

Emulation instance for the shared object with its ceiling pri-

ority assigned based on the requirements. Then, the control

policy for this shared resource is set to this PCP instance

so that each thread accesses this object will raise its prior-

ity, and later on restore its original priority once the lock

is released. This is performed automatically by JamaicaVM,

assuming the transformation is conducted successfully.

Finally, note that the priority ceiling priorities of shared ob-

jects must be correctly assigned in the real-time application

requirements. Otherwise (e.g., the ceiling is lower than that

of the accessing thread), a CeilingViolationException

will be thrown by JamaicaVM.

130

From Java to Real-Time Java: A Model-Driven Methodology . . . LCTES ’19, June 23, 2019, Phoenix, AZ, USA

Figure 4. Transformation rule to resolve run-time environ-

ment dependencies

4.3.3 Transformation Rules for Run-Time

Environment Dependencies

Besides the transformation towards those major RTSJ fa-

cilities, RTSJ applications require dedicated run-time Envi-

ronment in order to be executed with real-time properties.

Therefore, there is a need to execute a transformation to

convert standard Java run-time Environment dependencies

into RTSJ run-time Environment dependencies.

Figure 4 illustrates the transformation rule that converts

these run-time environment dependencies. As shown in

the figure, a typical standard Java run-time environment

is equipped with a non-real-time garbage collector, a sys-

tem clock with granularity in milliseconds, utility timers,

standard Java exceptions. In addition, standard Java threads

are mapped to native level threads and are scheduled by the

underlying operating system.

In order for the output application with the RTSJ facili-

ties generated in the above sections to execute successfully

and to satisfy the application’s timing requirements, a RTSJ

run-time environment is required. The right side of Figure 4

shows an example of JamaicaVM-based RTSJ run-time envi-

ronment. This JaimaicaJM RTSJ run-time is equipped with a

dedicated Real-Time garbage collector running in the Heap

memory, a real-time wall clock, finer-grained HighResolu-

tionTime objects with granularity in nanoseconds and addi-

tional RTSJ related exceptions and a Fixed Priority preemp-

tive scheduler mechanisms. The mappings from Standard

Java run-time environment to RTSJ run-time environment

is drawn in Figure 4 using dashed lines.

Among the facilities considered in the targeted RTSJ run-

time environment, the real-time garbage collector is enabled

and the fixed priority scheduler is applied as default by

JaimaicaVM. The standard Java clock is transformed to javax

.realtime.Clock in javax.realtime package so that the

invocations to obtain the current system time12 is replaced by

the method Clock.getRealtimeClock().getTime(). Fur-

ther, as required by the RTSJ specification, time units in

RTSJ should be modelled by HighResolutionTime as either

a AbsoluteTime or a RelativeTime object, where the later

two time units are sub-classes of the former. For instance,

the temporal properties (e.g., period, cost and deadline) for a

real-time thread will be generated as the RelativeTime ob-

jects before they are assigned to the construction method of

RealtimeThread. Finally, additional exceptions introduced

by Class RTSJ is generated into the output implementa-

tion where applicable. For instance, for each synchronised

method, a CeilingViolationException exception should

be thrown for illegal ceiling priority assignment. After this

transformation is executed, the target model should have

dependencies to RTSJ run-time resolved.

5 Open Challenges and Further Research
Directions

Plenty of open questions and research opportunities are

introduced from this work. In this section, we discuss some

of the challenges and point towards selected future research

directions.

First, the current version of the proposed toolchain as-

sumes the presence of a real-time garbage collector (e.g., the

one supported by JamaicaVM), which allows the execution

of real-time threads in Heap memory. However, in situations

where a real-time GC is not available, an explicit memory

management model must be constructed by ScpoedMemory

to guarantee temporal requirements of real-time Java ap-

plications, as executing in Heap memory will suffer from

unpredictable interference of standard Java garbage collec-

tor. One major challenge of this Java to RTSJ automation

approach is to provide a generic memorymanagement model

that suits all types of RTSJ applications. The memory man-

agement model in RTSJ is highly specific to the application

characteristics (especially, the correlation of those real-time

threads) and is difficult to generate based merely on the

knowledge from the input source code.

A possible workaround is to enforce an SCJ (Safety-Critical

Java)-like programming model [39], which imposes restric-

tions towards the application structure but is sufficient to

provide the required functionalities. In the SCJ, threads are

grouped into missions, which are executed by one or more

mission sequencers (i.e., missions can be executed concur-

rently). This programming model conforms to a specific

12The method System.currentTimeMillis().

131

LCTES ’19, June 23, 2019, Phoenix, AZ, USA Wanli Chang, Shuai Zhao, Ran Wei, Andy Wellings, and Alan Burns

memory management framework [38]. In the SCJ, each mis-

sion has its own memory block and each thread in that mis-

sion is also assigned with a private memory area, building

upon the memory block of the associated mission. Once a

mission is finished (i.e., all its threads are signalled to be

terminated), its associated memory block (and subsequently,

memory areas of its threads) will be reclaimed during a mis-

sion cleanUp phase. However, applying this memory model

in the proposed methodology requires extra information de-

scribing the correlation between those real-time threads in

order to allocate them correctly into each individual group

for memory allocation.

Second, as an initial attempt on the topic, we have targeted

at a simple and widely-applied uniprocessor environment

and focused mainly on the functionality of the proposed

toolchain. There is a trend that most of the existing real-

time programming specifications are extended to support

multiprocessor and distributed systems [50]. The proposed

approach can also be extended to support multiprocessor fea-

tures with multiprocessor scheduling policies and resource

sharing techniques taken into account. In addition, as the

application scenarios of real-time systems become more so-

phisticated, supporting complex system semantics (e.g., in

the presence of release jitters or shared resources) is also

desirable and should be investigated.

In addition, as illustrated in Figure 1, there is an open

question to be answered when the given applications are

found unschedulable after model validation. One possible

solution would be the reconfiguration of system scheduling

parameters to achieve better schedulability (i.e., transfer-

ring systems that are deemed unschedulable into feasible

real-time systems). Such reconfiguration is worthwhile es-

pecially for complex systems (e.g., multiprocessor systems

with shared resources), where optimal scheduling solutions

may not be available. In such cases, a search-based algorithm

could be applied for searching threads’ parameters and feasi-

ble resource sharing protocols that can achieve a schedulable

system [49]. In addition, further improvement can be made

towards other perspectives of real-time systems, such as

sustainability and robustness in the presence of additional

interference.

From the programming language perspective, the pro-

posed automated toolchain can be generalised to support

different programming languages (e.g., C/C++ and Ada) and

their real-time, safety-critical and high-integrity extension

profiles (e.g., MISRA C/C++ [19, 44] and Spark Ada [6]).

Such efforts are worthwhile as they remove the restriction

on the usage of a specific programming language (and its ex-

tensions) in the proposed automated toolchain and provide

solutions towards those major programming languages in

embedded systems.

From the model-driven perspective, for those program-

ming languages where reverse engineering facilities may not

be available (e.g., C and Ada), modelling real-time systems

from system specification directly and then generating imple-

mentation via code generation facilities would be desirable.

There are several modelling languages which are capable

of modelling real-time systems, e.g., the Architectural Anal-

ysis and Design Language (AADL), the Unified Modelling

Language (UML), the Systems Modelling Language (SysML),

the Modelling and Analysis of Real-Time Embedded Systems

(MARTE) UML profile, and the AADL for UML profile are

all feasible languages for modelling real-time systems.

However, there are shortcomings in these languages dis-

cussed above. AADL is not an open modelling language, and

there is a lack of modelling capabilities for the system be-

haviour. UML is a general modelling language. However, it

lacks the formalism needed in modelling of the real-time

systems. SysML shares the same problem as UML. MARTE

provides extensive modelling capabilities, which leads to the

complexity of the language itself. Consequently, a MARTE

model could get complex quickly, leading to complex models

and diagrams which are hard to manage. A new modelling

language is therefore needed for the real-time systems com-

munity to address the above shortcomings. With this mod-

elling language, we could generate the real-time applications

in programming languages such as Java, Ada and C.

6 Conclusion

This paper proposes a model-driven methodology that auto-

matically transforms time-sharing Java applications to real-

time applications in RTSJ. This methodology eases the devel-

opment of real-time systems by allowing software engineers

to construct real-time Java applications without necessary

knowledge of the RTSJ programming specification. In ad-

dition, the proposed methodology is favourable to those

organisations with a need to re-develop their products to

possess real-time features. The proposed methodology pro-

vides a real-time system development solution that reduces

software development cost, increases productivity and elim-

inates human-related errors. In this paper, a complete stan-

dard Java to RTSJ conversion automation architecture is

presented with required actions during each transformation

phase described in detail. In addition, transformation rules

are presented for generating major RTSJ facilities and the

RTSJ run-time environment based on the JamaicaVM with

the given inputs.

The proposed methodology opens up plenty of research

questions and possible research directions, which can be in-

vestigated together by the embedded systems, programming

languages as well as MDE communities. They have been

discussed with motivation and preliminary approaches. In

future, we aim to provide a complete and fully functional

toolchain for the proposed Java to RTSJ automated method-

ology to prove the concept presented in this paper and to

evaluate the efficacy of the proposed Java to RTSJ automated

toolchain.

132

From Java to Real-Time Java: A Model-Driven Methodology . . . LCTES ’19, June 23, 2019, Phoenix, AZ, USA

References
[1] Austin Armbruster, Jason Baker, Antonio Cunei, Chapman Flack,

David Holmes, Filip Pizlo, Edward Pla, Marek Prochazka, and Jan

Vitek. 2007. A real-time Java virtual machine with applications in

avionics. ACM Transactions on Embedded Computing Systems (TECS)

7, 1 (2007), 5.

[2] Neil Audsley, Alan Burns, Mike Richardson, Ken Tindell, and Andy J

Wellings. 1993. Applying new scheduling theory to static priority

pre-emptive scheduling. Software Engineering Journal 8, 5 (1993),

284ś292.

[3] Neil C Audsley, Yu Chan, Ian Gray, and Andy J Wellings. 2014. Real-

Time Big Data: the JUNIPER Approach. (2014).

[4] Jason Baker, Antonio Cunei, Chapman Flack, Filip Pizlo, Marek Proc-

hazka, Jan Vitek, Austin Armbruster, Edward Pla, and David Holmes.

2006. A real-time java virtual machine for avionics-an experience re-

port. In 12th IEEE Real-Time and Embedded Technology and Applications

Symposium (RTAS’06). IEEE, 384ś396.

[5] Konstantinos Barmpis, Dimitrios Kolovos, and Justin Hingorani. 2018.

Towards a framework for writing executable natural language rules.

In European Conference on Modelling Foundations and Applications.

Springer, 251ś263.

[6] John Barnes. 1997. High integrity Ada: the SPARK approach. Vol. 189.

Addison-Wesley Reading.

[7] Jean Bézivin. 2005. On the unification power of models. Software &

Systems Modeling 4, 2 (2005), 171ś188.

[8] Gregory Bollella and James Gosling. 2000. The real-time specification

for Java. Computer 33, 6 (2000), 47ś54.

[9] Hugo Bruneliere, Jordi Cabot, Grégoire Dupé, and Frédéric Madiot.

2014. Modisco: A model driven reverse engineering framework. Infor-

mation and Software Technology 56, 8 (2014), 1012ś1032.

[10] Alan Burns and Andy Wellings. 2016. Analysable Real-Time Systems:

Programmed in Ada. CreateSpace Independent Publishing Platform.

[11] Alan Burns and Andrew J Wellings. 2001. Real-time systems and

programming languages: Ada 95, real-time Java, and real-time POSIX.

Pearson Education.

[12] Wanli Chang and Samarjit Chakraborty. 2016. Resource-aware auto-

motive control systems design: A cyber-physical systems approach.

Foundations and Trends in Electronic Design Automation 10, 4 (2016),

249ś369.

[13] Wanli Chang, Dip Goswami, Samarjit Chakraborty, and Arne Hamann.

2018. OS-aware automotive controller design using non-uniform

sampling. ACM Transactions on Cyber-Physical Systems 2, 4 (2018), 26.

[14] Wanli Chang, Dip Goswami, Samarjit Chakraborty, Lei Ju, Chun Xue,

and Sidharta Andalam. 2017. Memory-aware embedded control sys-

tems design. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems 36, 4 (2017), 586ś599.

[15] Wanli Chang, Alma Pröbstl, Dip Goswami, Majid Zamani, and Samarjit

Chakraborty. 2015. Reliable CPS design for mitigating semiconductor

and battery aging in electric vehicles. In IEEE International Conference

on Cyber-Physical Systems, Networks, and Applications. 37ś42.

[16] Robert I. Davis and Alan Burns. 2011. A survey of hard real-time

scheduling for multiprocessor systems. Acm Computing Surveys 43, 4

(2011), 1ś44.

[17] Ian Gray, Neil Cameron Audsley, Jamie Garside, Yu Chan, and Andrew

John Wellings. 2015. FPGA-based acceleration for Real-Time Big Data

Systems. In 9th HiPEAC workshop on Reconfigurable Computing.

[18] Ian Gray, Yu Chan, Jamie Garside, Neil C. Audsley, and Andy J.

Wellings. 2015. FPGA-based hardware acceleration for Real-Time

Big Data systems.

[19] Les Hatton. 2004. Safer language subsets: an overview and a case

history, MISRA C. Information and Software Technology 46, 7 (2004),

465ś472.

[20] Florian Heidenreich, Jendrik Johannes, Mirko Seifert, and Christian

Wende. 2009. Closing the gap between modelling and java. In In-

ternational Conference on Software Language Engineering. Springer,

374ś383.

[21] Thomas Henties, James J Hunt, Doug Locke, Kelvin Nilsen, Martin

Schoeberl, and Jan Vitek. 2009. Java for safety-critical applications. In

2nd international workshop on the certification of safety-critical software

controlled systems (SafeCert 2009).

[22] Erik Yu-Shing Hu, Eric Jenn, Nicolas Valot, and Alejandro Alonso. 2006.

Safety critical applications and hard real-time profile for Java: a case

study in avionics. In Proceedings of the 4th international workshop on

Java technologies for real-time and embedded systems. ACM, 125ś134.

[23] Ari Jaaksi. 2002. Developing mobile browsers in a product line. IEEE

software 19, 4 (2002), 73ś80.

[24] A Juan, Jorge Garrido, Juan Zamorano, and Alejandro Alonso. 2014.

Model-driven design of real-time software for an experimental satellite.

IFAC Proceedings Volumes 47, 3 (2014), 1592ś1598.

[25] Juha Kärnä, Juha-Pekka Tolvanen, and Steven Kelly. 2009. Evaluating

the use of domain-specific modeling in practice. In Proceedings of the

9th OOPSLA workshop on Domain-Specific Modeling.

[26] Timothy Patrick Kelly. 1999. Arguing safety: a systematic approach to

managing safety cases. Ph.D. Dissertation. University of York York,

UK.

[27] Dimitrios S Kolovos, Richard F Paige, and Fiona AC Polack. 2008. The

epsilon transformation language. In International Conference on Theory

and Practice of Model Transformations. Springer, 46ś60.

[28] Dimitrios S Kolovos, Ran Wei, and Konstantinos Barmpis. 2013. An

approach for efficient querying of large relational datasets with ocl-

based languages. In XM 2013śExtreme Modeling Workshop. 48.

[29] Björsn Konieczek, Michael Rethfeldt, Frank Golatowski, and Dirk Tim-

mermann. 2015. Real-time communication for the internet of things

using jcoap. In 2015 IEEE 18th International Symposium on Real-Time

Distributed Computing. IEEE, 134ś141.

[30] Shaoshan Liu, Jie Tang, ChaoWang, QuanWang, and Jean-Luc Gaudiot.

2017. Implementing a Cloud Platform for Autonomous Driving. arXiv

preprint arXiv:1704.02696 (2017).

[31] Shaoshan Liu, Jie Tang, ChaoWang, QuanWang, and Jean-Luc Gaudiot.

2017. A unified cloud platform for autonomous driving. Computer 50,

12 (2017), 42ś49.

[32] HaiTao Mei, Ian Gray, and Andy Wellings. 2016. Real-Time stream

processing in java. In Ada-Europe International Conference on Reliable

Software Technologies. Springer, 44ś57.

[33] Parastoo Mohagheghi and Vegard Dehlen. 2008. Where is the proof?-A

review of experiences from applying MDE in industry. In European

Conference on Model Driven Architecture-Foundations and Applications.

Springer, 432ś443.

[34] Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos Noguera,

and Lionel Seinturier. 2015. Spoon: A Library for Implementing Anal-

yses and Transformations of Java Source Code. Software: Practice and

Experience 46 (2015), 1155ś1179. https://doi.org/10.1002/spe.2346

[35] Ben Potter, David Till, and Jane Sinclair. 1996. An introduction to formal

specification and Z. Prentice Hall PTR.

[36] Ragunathan Rajkumar. 2012. Synchronization in real-time systems: a

priority inheritance approach. Vol. 151. Springer Science & Business

Media.

[37] Douglas C Schmidt. 2006. Model-driven engineering. COMPUTER-IEEE

COMPUTER SOCIETY- 39, 2 (2006), 25.

[38] Martin Schoeberl, Andreas Engelbredt Dalsgaard, René Rydhof

Hansen, Stephan E Korsholm, Anders P Ravn, Juan Ricardo Rios Rivas,

Tórur Biskopstù Strùm, Hans Sùndergaard, Andy Wellings, and Shuai

Zhao. 2017. Safety-critical Java for embedded systems. Concurrency

and Computation: Practice and Experience 29, 22 (2017), e3963.

[39] Martin Schoeberl, Hans Sondergaard, Bent Thomsen, and Anders P

Ravn. 2007. A profile for safety critical java. In 10th IEEE International

133

LCTES ’19, June 23, 2019, Phoenix, AZ, USA Wanli Chang, Shuai Zhao, Ran Wei, Andy Wellings, and Alan Burns

Symposium on Object and Component-Oriented Real-Time Distributed

Computing (ISORC’07). IEEE, 94ś101.

[40] Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky. 1990. Priority

Inheritance Protocols: An Approach to Real-Time Synchronization.

39, 9 (1990).

[41] Fridtjof Siebert. 2007. Realtime garbage collection in the JamaicaVM

3.0. In Proceedings of the 5th international workshop on Java technologies

for real-time and embedded systems. Citeseer, 94ś103.

[42] Fridtjof Siebert. 2010. Concurrent, parallel, real-time garbage-

collection. In ACM Sigplan Notices, Vol. 45. ACM, 11ś20.

[43] Rashmi P Sonar and Rani S Lande. 2018. Javolution-Solution for Real

Time Embedded System. In 2018 International Conference on Research

in Intelligent and Computing in Engineering (RICE). IEEE, 1ś10.

[44] Chris Tapp. 2008. An introduction to MISRA C++. SAE international

journal of passenger cars-electronic and electrical systems 1, 2008-01-

0664 (2008), 265ś268.

[45] Kleanthis Thramboulidis. 2007. IEC 61499 in factory automation. In

Advances in Computer, Information, and Systems Sciences, and Engi-

neering. Springer, 115ś124.

[46] Kleanthis Thramboulidis and Alkiviadis Zoupas. 2005. Real-time Java

in control and automation: a model driven development approach. In

2005 IEEE Conference on Emerging Technologies and Factory Automation,

Vol. 1. IEEE, 8śpp.

[47] Christian Wawersich, Michael Stilkerich, and Wolfgang Schröder-

Preikschat. 2007. An OSEK/VDX-based multi-JVM for automotive

appliances. In Embedded System Design: Topics, Techniques and Trends.

Springer, 85ś96.

[48] Andrew J Wellings. 2004. Concurrent and real-time programming in

Java. John Wiley New York.

[49] Shuai Zhao. 2018. A FIFO Spin-based Resource Control Framework for

Symmetric Multiprocessing. Ph.D. Dissertation. University of York.

[50] Shuai Zhao, Andy Wellings, and Stephan Erbs Korsholm. 2015. Sup-

porting multiprocessors in the ICECAP safety-critical java run-time

environment. In Proceedings of the 13th International Workshop on Java

Technologies for Real-time and Embedded Systems. ACM, 1.

[51] Athanasios Zolotas, Ran Wei, Simos Gerasimou, Horacio Hoyos Ro-

driguez, Dimitrios S. Kolovos, and Richard F. Paige. 2018. Towards

Automatic Generation of UML Profile Graphical Editors for Papyrus.

In Modelling Foundations and Applications, Alfonso Pierantonio and

Salvador Trujillo (Eds.). Springer International Publishing, Cham, 12ś

27.

134

	Abstract
	1 Introduction
	2 Model-Driven Engineering
	3 Real-Time Specification for Java
	3.1 Programming Specification
	3.2 RTSJ Implementations and VMs
	3.3 Targeted RTSJ Run-Time Environment

	4 Proposed Methodology
	4.1 Reverse Engineering Transformation (T2M)
	4.2 Model Validation
	4.3 RTSJ Model Transformation

	5 Open Challenges and Further Research Directions
	6 Conclusion
	References

