1804.08424v1 [cs.CV] 23 Apr 2018

arxXiv

Efficient Pose Tracking from Natural Features in Standard Web
Browsers

Fabian Gottl
University of Passau

ABSTRACT

Computer Vision-based natural feature tracking is at the core of
modern Augmented Reality applications. Still, Web-based Aug-
mented Reality typically relies on location-based sensing (using
GPS and orientation sensors) or marker-based approaches to solve
the pose estimation problem.

We present an implementation and evaluation of an efficient
natural feature tracking pipeline for standard Web browsers using
HTML5 and WebAssembly. Our system can track image targets at
real-time frame rates tablet PCs (up to 60 Hz) and smartphones (up
to 25 Hz).

CCS CONCEPTS

+ Computing methodologies — Computer vision;

KEYWORDS

web-based augmented reality, natural feature tracking, webassem-
bly, asm.js, webxr, webar

ACM Reference Format:

Fabian Goattl, Philipp Gagel, and Jens Grubert. 2018. Efficient Pose Tracking
from Natural Features in Standard Web Browsers. In Proceedings of ACM
Conference (Conference’17). ACM, New York, NY, USA, Article 0, 4 pages.

1 INTRODUCTION

We witness a proliferation of Augmented Reality (AR) applications
such as games [Thomas 2012] or utilities [Hartl et al. 2013] across de-
vice classes (e.g., tablets, smartphones, smartglasses) and operating
systems. Software Development Kits (SDKs) such as Vuforia, Apple
ARKit, Google ARCore or the Windows Mixed Reality Toolit allow
for efficient creation of AR applications for individual platforms
through spatial tracking components with 6 degrees of freedom
(DoF) pose estimation. However, deployment of AR solutions across
platforms is often hindered by those platform-specific SDKs.

Instead, existing Web-based AR solutions typically rely on location-
based sensing (e.g., GPS plus orientation sensors).

In particular computer vision algorithms needed for realizing
markerless Augmented Reality (AR) applications have been deemed
too computational intensive for implementing them directly in
the Web technology stack. While marker-based AR systems (often
derivates of ARToolkit) have been demonstrated to work in Web

ACM acknowledges that this contribution was authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.

Conference’17, July 2017, Washington, DC, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-X/YY/MM. .. $15.00

Philipp Gagel
Coburg University of Applied
Sciences and Arts

Jens Grubert
Coburg University of Applied
Sciences and Arts
jens.grubert@hs-coburg.de

Figure 1: WebAssembly-based natural feature tracking
pipeline running on Google Chrome on a Microsoft Surface
Pro tablet and a Samsung Galaxy S8 smartphone.

browsers [Etienne 2017], natural feature tracking algorithms are
not in widespread use on standard Web browsers.

Recently, visual-inertial odometry approaches as provided by
Apple ARKit or Google ARCore have been combined with custom
Webviews [Google 2017a,b] to allow experimentation with Web-
based Cross Reality APIs like WebXR [Group 2018]. Still, they are
not available in standard Web browsers.

Providing efficient 6 DoF pose estimation using natural features
in standard Web browsers could help to overcome challenges of
multiple creation of platform-specific code. To this end, we present
the implementation and evaluation of an efficient computer vision-
based pose estimation pipeline from natural features in standard
Web browsers even on mobile devices, see Figure 1. The pipeline
can be tested under current versions of Google Chrome or Mozilla
Firefox at www.ar4web.org.

2 RELATED WORK

There has been an ongoing interest in supporting the creation of
Augmented Reality applications using Web technologies [Kooper
and MaclIntyre 2003; MaclIntyre et al. 2011; Speiginer et al. 2015].
Several architectures have been proposed that aim at separat-
ing content, registration and presentation modules for Web-based
Augmented Reality solutions (e.g., [Ahn et al. 2013, 2014; Leppa-
nen et al. 2014; MacIntyre et al. 2011]) but they typically rely on
sensor-based registration and tracking. Further, efforts have been
made to standardize how to make available content into Web-based

Conference’17, July 2017, Washington, DC, USA

Fabian Gottl, Philipp Gagel, and Jens Grubert

Detection

Keypoint Detection Descriptor Creation

Descriptor Matching

Outlier Removal Pose Estimation

Pose lost ﬁ @ Pose found

Tracking
NCC-based
Warp Template Matching around Pose Estimation
Keypoint

Figure 2: Overview of detection and tracking pipeline.

AR applications through XML-based formats (like ARML [Lechner
2013; Lechner and Tripp 2010], KARML [Hill et al. 2010] or the TOI
format [Nixon et al. 2012]), which again focus on location-based
spatial registration and often target mobile Augmented Reality
browser applications [Langlotz et al. 2013, 2014; Sambinelli and
Arias 2015].

While recent experimental browsers have been released with
visual-inertial tracking [Google 2017a,b], on standard Web browsers
computer vision-based tracking is mainly limited to fidual-based
pose estimation [Etienne 2017].

Only few works have investigated to make computer-vision
based pose tracking from natural features directly available us-
ing standard web technologies. In 2011, Oberhofer et al. presented
an efficient natural feature tracking pipeline with a dedicated de-
tection and tracking phase [Oberhofer et al. 2012]. While their
solution was able to run in Web browsers supporting video cap-
ture through HTMLS5, the implementation was purely written in
JavaScript. Specifically, it was not able to achieve real-time frame
rates on mobile devices. They also reported that the slowdown
compared to native implementations (in Google NativeClient) was
fourfold.

Recently, a commercial solution for natural feature tracking was
announced [Awe.media 2017]. For this approach, no performance
metrics were made available but only videos demonstrating inter-
active framerates on an unknown platform.

In contrast to previous approaches, we present an efficient imple-
mentation of a pose estimation pipeline from natural features that
runs at real-time framerates on standard web-browsers on mobile
devices with processing time for the tracking component as low as
15 ms on a tablet and 50 ms on a smartphone.

3 NATURAL FEATURE TRACKING PIPELINE

Our pose estimation pipeline combines a dedicated detection step
with an efficient tracking phase as proposed for mobile platforms
[Wagner et al. 2008, 2010]. Our overall pipeline is shown in Figure
2

If no pose has been found, the initial detection first extracts
ORB features in the current camera frame [Rublee et al. 2011]

and matches them with features from template images using fast
approximate nearest neighbor search [Muja and Lowe 2009]. This
is followed by outlier removal with a threshold of three times the
minimum feature distance. Based on all remaining features, we first
estimate a homography based on a RANSAC scheme, transform 4
corner points of the template image using that homography and
employ an iterative perspective-n-point (PnP) algorithm for the
final pose estimation.

As soon as the pose is found, we can switch from the expen-
sive detection phase into a leightweight tracking phase. This phase
consists of tracking keypoints that were detected previously in the
detection phase. First, we take the homography H that was deter-
mined in the previous frame. Based on this homography, we create
a warped representation of the marker. To speed up computation,
the warped image is downsampled by factor of 2. For each keypoint
that is visible in the current frame we cut a 5x5px image patch out
of the warped image. The image patch should look similar to the
patch in the current camera image. In order to save computation
time, we keep track of a maximum of 25 patches or keypoints. With
normalized cross correlation (NCC) we match the image patch to
the current frame. Here, we use a search window of 16px length.
These optimized points are stored with object keypoints together
in tuples, which enables to compute an updated homography H.
Similarly to the detection step, we compute the pose R and t out of
H with iterative PnP.

If the distance between the camera pose of the recent and previ-
ous frame is within a given threshold (e.g., the translation threshold
for targets in DIN A4 was empirically determined as 5 cm), we
handle the pose as valid. At the next frame we start over again
in front of this phase. If the pose is invalid, the detection phase is
started again.

3.1 Implementation

Our pipeline utilizes WebAssembly and OpenCV for efficient pro-
cessing of tracking data. We use the framework Emscripten, to com-
pile C++ code with OpenCV embeddings to WebAssembly. Alter-
natively, Emscripten is able to output code in a subset of Javascript
called asm.js. The camera is accessed through getUserMedia and

Efficient Pose Tracking from Natural Features in Standard Web Browsers

writes the image into a HTML5 canvas element. The data is passed
to the C++ level through heap memory and processed through the
above mentioned pipeline. Finally, the computed pose is passed
back and utilized in rendering a 3D scene with WebGL.

Nativ

Firefox wasm

Chrome wasm
Opera wasm
Chrome asm.js

Opera asm.js

i

Firefox asm.js

o
=
o
N
o

30 40 50 60 70

Runtime in ms

W Tracking m Detection

Figure 3: Runtime performance of the tracking and detec-
tion steps on a Microsoft Surface Pro.
wasm: WebAssembly, asm.js: A low-level Javascript subset

aalll

Chrome wasm Chrome asm.js Firefox wasm Firefox asm.js

Runtime in ms

NS
o o

M Tracking M Detection

Figure 4: Runtime performance of the tracking and detec-
tion steps on a Samsung Galaxy S8.
wasm: WebAssembly, asm.js: A low-level Javascript subset

4 EVALUATION

We conducted a performance evaluation of the pipeline on a Tablet
PC and a smartphone with two Web browsers on each platform
(Mozilla Firefox version 59 and Google Chrome version 64). Addi-
tionally, we evaluated Opera 52 on the Tablet PC.

The Tablet PC was a Microsoft Surface Pro with an Intel Core i5-
6300U (Dual Core with 2,40 Ghz) processor and 8 GB RAM running
Windows 10. The smartphone was a Samsung Galaxy S8 with an
Octa-core (4x2.3 GHz Mongoose M2 and 4x1.7 GHz Cortex-A53)
processor and 4 GB RAM running Android 7.0 (Nougat). The camera
resolution was set to 320x240 px.

Conference’17, July 2017, Washington, DC, USA

Figure 3 shows the runtime on the Tablet PC and Figure 4 for
the smartphone. Please note, that in Figure 3 there are additional
bars indicating the performance of the native code.

Compared to the native C++ implementation on a Microsoft
Surface Pro the average runtime for detection increases by 100% on
Chrome to 200% for Firefox. In contrast, for tracking the average
runtime increases by 70% for Firefox and by 75% for Chrome.

Figure 5 indicates the average performance of the complete track-
ing pipeline (after an initial detection step). The figure indicates
that accessing the camera through getUserMedia is substantially
slower on Firefox compared to Google Chrome. Both on the Surface
Pro and on the Galaxy S8 Google chrome needs on average 1 ms to
deliver the camera image, whereas on Mozilla Firefox it is 6 ms on
the Surface Pro and 8 ms on the Samsung Galaxy S8.

This indicates, that if the initial detection phase is completed,
our pipeline can run up to 70 Hz under Chrome on a Surface Pro
tablet and 20 Hz on a Galaxy S8. However, under Firefox it only
runs at 30 Hz on a Surface Pro and 7 Hz on a Galaxy S8.

For robustness, we measured degrees until tracking failed. On
multiple targets the minimum angle (starting from the horizontal
plane) required for tracking was on average 17°(sd=3) both on the
Tablet PC and the smartphone.

SP Chrome |
SP Opera |
SP Firefox |
S8 Chrome |I———
S8 Firefox IEEI——

0 20 40 60 80 100 120
Runtime in ms

W getUserMedia ® Tracking

Figure 5: Runtime performance of the tracking pipeline in-
cluding access to the camera image through getUserMedia.
SP: Microsoft Surface Pro, S8: Samsung Galaxy S8.

5 DISCUSSION

The results indicate that under optimal conditions, the proposed
pipeline can run efficiently on standard Web browsers, both on
Tablet PCs as well as on recent smartphones. The initial detection
step is rather slow (between 3 Hz on a smartphone and 12 Hz on a
tablet PC) with a noticable speedup as soon as the tracking phase
enters after the target was found initially. The real life runtime
performance of the pipeline depends on how often a switch between
both phases is necessary. We found empirically that even if the
tracking phase fails the detection phase quickly re-initializes the
pose and, hence, is only active for 1-2 frames.

We investigated the pipeline performance under WebAssembly
and the JavaScript subset asm.js. WebAssembly builds are faster
than asm.js. In contrast, WebAssembly builds are slower for the
detection step in Firefox (by 9%) and Opera (by 12%). We assume

Conference’17, July 2017, Washington, DC, USA

that some optimizations for WebAssembly are not applicable in the
detection step.

One issue we noticed during our evaluation, is the strong depen-
dency of the pipeline runtime overall performance on the employed
browser. Specifically, while Google Chrome can provide fast access
to camera images in approximately 1 ms, Firefox can take up to
26 ms on a smartphone to access the image data.

To be fair, this issue is not specific to our implementation, but
applies to other vision-based pipelines that require live camera
access, as well.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we presented an implementation and evaluation of
an efficient natural feature tracking pipeline for standard Web
browsers using HTML5 and WebAssembly. Our system can track
image targets at real-time frame rates tablet PCs (up to 65 Hz) and
smartphones (up to 25 Hz).

In future work, we want to combine our pipeline with efficient
large scale image search and further optimize the tracking parame-
ters (e.g., number of keypoints, search window size) on a per target
basis. We also see potential for integrating it with Semantic Web-
based Augmented Reality Systems [Nixon et al. 2012] or to utilize
WebAssembly to enable new Web-based AR user experiences, e.g.,
through around-device interaction [Grubert et al. 2016].

REFERENCES

Sangchul Ahn, Heedong Ko, and Steven Feiner. 2013. Webizing mobile AR contents.
In Virtual Reality (VR), 2013 IEEE. IEEE, 131-132.

Sangchul Ahn, Heedong Ko, and Byounghyun Yoo. 2014. Webizing mobile augmented
reality content. New Review of Hypermedia and Multimedia 20, 1 (2014), 79-100.

Awe.media. 2017. Bring your images to life. https://awe.media/blog/
bring-your-images-to-life. (2017). Accessed: 2018-03-02.

Jerome Etienne. 2017. AR js - Efficient Augmented Reality for the Web. https://github.
com/jeromeetienne/AR.js. (2017). Accessed: 2018-03-02.

Google. 2017a. Quickstart for AR on the Web. https://developers.google.com/ar/
develop/web/quickstart. (2017). Accessed: 2018-03-02.

Google. 2017b. WebARonARKit. https://github.com/google-ar/WebARonARKit. (2017).
Accessed: 2018-04-22.

Immersive Web Community Group. 2018. WebXR Device APL https://immersive-web.
github.io/webxr/. (2018). Accessed: 2018-04-22.

Jens Grubert, Eyal Ofek, Michel Pahud, Matthias Kranz, and Dieter Schmalstieg. 2016.
Glasshands: Interaction around unmodified mobile devices using sunglasses. In
Proceedings of the 2016 ACM on Interactive Surfaces and Spaces. ACM, 215-224.

Andreas Hartl, Jens Grubert, Dieter Schmalstieg, and Gerhard Reitmayr. 2013. Mobile
interactive hologram verification. In Mixed and Augmented Reality (ISMAR), 2013

Fabian Gottl, Philipp Gagel, and Jens Grubert

IEEE International Symposium on. IEEE, 75-82.

Alex Hill, Blair MacIntyre, Maribeth Gandy, Brian Davidson, and Hafez Rouzati. 2010.
Kharma: An open kml/html architecture for mobile augmented reality applications.
In Mixed and Augmented Reality (ISMAR), 2010 9th IEEE International Symposium
on. IEEE, 233-234.

Rob Kooper and Blair MacIntyre. 2003. Browsing the real-world wide web: Maintaining
awareness of virtual information in an AR information space. International Journal
of Human-Computer Interaction 16, 3 (2003), 425-446.

Tobias Langlotz, Jens Grubert, and Raphael Grasset. 2013. Augmented reality browsers:
essential products or only gadgets? Commun. ACM 56, 11 (2013), 34-36.

Tobias Langlotz, Thanh Nguyen, Dieter Schmalstieg, and Raphael Grasset. 2014. Next-
generation augmented reality browsers: rich, seamless, and adaptive. Proc. IEEE
102, 2 (2014), 155-169.

Martin Lechner. 2013. ARML 2.0 in the context of existing AR data formats. In Software
Engineering and Architectures for Realtime Interactive Systems (SEARIS), 2013 6th
Workshop on. IEEE, 41-47.

Martin Lechner and Markus Tripp. 2010. ARML4ATan augmented reality standard.
coordinates 13, 47.797222 (2010), 432-440.

Teemu Leppénen, Arto Heikkinen, Antti Karhu, Erkki Harjula, Jukka Riekki, and
Timo Koskela. 2014. Augmented reality web applications with mobile agents in
the internet of things. In Next Generation Mobile Apps, Services and Technologies

(NGMAST), 2014 Eighth International Conference on. IEEE, 54-59.
Blair MacIntyre, Alex Hill, Hafez Rouzati, Maribeth Gandy, and Brian Davidson. 2011.

The Argon AR Web Browser and standards-based AR application environment. In
Mixed and Augmented Reality (ISMAR), 2011 10th IEEE International Symposium on.
IEEE, 65-74.

Marius Muja and David G Lowe. 2009. Fast approximate nearest neighbors with
automatic algorithm configuration. VISAPP (1) 2, 331-340 (2009), 2.

Lyndon JB Nixon, Jens Grubert, Gerhard Reitmayr, and James Scicluna. 2012. SmartRe-
ality: Integrating the Web into Augmented Reality.. In I-SEMANTICS (Posters &
Demos). Citeseer, 48-54.

Christoph Oberhofer, Jens Grubert, and Gerhard Reitmayr. 2012. Natural feature
tracking in javascript. In Virtual Reality Short Papers and Posters (VRW), 2012 IEEE.
IEEE, 113-114.

Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. 2011. ORB: An effi-
cient alternative to SIFT or SURF. In Computer Vision (ICCV), 2011 IEEE international
conference on. IEEE, 2564-2571.

Fernando Sambinelli and Cecilia Sosa Arias. 2015. Augmented Reality Browsers:
A Proposal for Architectural Standardization. International Journal of Software
Engineering & Applications 6, 1 (2015), 1.

Gheric Speiginer, Blair Maclntyre, Jay Bolter, Hafez Rouzati, Amy Lambeth, Laura
Levy, Laurie Baird, Maribeth Gandy, Matt Sanders, Brian Davidson, et al. 2015. The
evolution of the argon web framework through its use creating cultural heritage
and community-based augmented reality applications. In International Conference
on Human-Computer Interaction. Springer, 112-124.

Bruce H Thomas. 2012. A survey of visual, mixed, and augmented reality gaming.
Computers in Entertainment (CIE) 10, 1 (2012), 3.

Daniel Wagner, Gerhard Reitmayr, Alessandro Mulloni, Tom Drummond, and Dieter
Schmalstieg. 2008. Pose tracking from natural features on mobile phones. In
Proceedings of the 7th IEEE/ACM International Symposium on Mixed and Augmented
Reality. IEEE Computer Society, 125-134.

Daniel Wagner, Gerhard Reitmayr, Alessandro Mulloni, Tom Drummond, and Dieter
Schmalstieg. 2010. Real-time detection and tracking for augmented reality on
mobile phones. IEEE transactions on visualization and computer graphics 16, 3
(2010), 355-368.

https://awe.media/blog/bring-your-images-to-life
https://awe.media/blog/bring-your-images-to-life
https://github.com/jeromeetienne/AR.js
https://github.com/jeromeetienne/AR.js
https://developers.google.com/ar/develop/web/quickstart
https://developers.google.com/ar/develop/web/quickstart
https://github.com/google-ar/WebARonARKit
https://immersive-web.github.io/webxr/
https://immersive-web.github.io/webxr/

	Abstract
	1 Introduction
	2 Related Work
	3 Natural Feature Tracking Pipeline
	3.1 Implementation

	4 Evaluation
	5 Discussion
	6 Conclusions and Future Work
	References

