
Ways of Applying Artificial Intelligence in Software Engineering
Robert Feldt, Francisco G. de Oliveira Neto, and Richard Torkar

Chalmers and the University of Gothenburg
Gothenburg, Sweden

[robert.feldt|gomesf|torkarr]@chalmers.se

ABSTRACT
As Artificial Intelligence (AI) techniques have become more power-
ful and easier to use they are increasingly deployed as key compo-
nents of modern software systems.While this enables new function-
ality and often allows better adaptation to user needs it also creates
additional problems for software engineers and exposes compa-
nies to new risks. Some work has been done to better understand
the interaction between Software Engineering and AI but we lack
methods to classify ways of applying AI in software systems and
to analyse and understand the risks this poses. Only by doing so
can we devise tools and solutions to help mitigate them. This paper
presents the AI in SE Application Levels (AI-SEAL) taxonomy that
categorises applications according to their point of AI application,
the type of AI technology used and the automation level allowed.
We show the usefulness of this taxonomy by classifying 15 papers
from previous editions of the RAISE workshop. Results show that
the taxonomy allows classification of distinct AI applications and
provides insights concerning the risks associated with them. We
argue that this will be important for companies in deciding how to
apply AI in their software applications and to create strategies for
its use.

CCS CONCEPTS
• Computingmethodologies→Artificial intelligence; • Soft-
ware and its engineering;

KEYWORDS
Taxonomy, Software Engineering, Artificial Intelligence

ACM Reference Format:
Robert Feldt, Francisco G. de Oliveira Neto, and Richard Torkar. 2018. Ways
of Applying Artificial Intelligence in Software Engineering. In Proceedings
of 6th International Workshop on Realizing Artificial Intelligence Synergies in
Software Engineering (RAISE’18). ACM, New York, NY, USA, 7 pages.

1 INTRODUCTION
Artificial Intelligence (AI) has shown a lot of promise in the last
decades but with the recent resurgence of interest and improved
results on real-world tasks the field is undergoing explosive growth.
Many of the improved results have come from larger and more com-
plex neural networks, stacked many layers deep (for so called Deep

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
RAISE’18, May 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.

Learning), but much of progress can also be attributed to larger
data sets and large-scale learning/training on GPUs [40]. But the
renewed interest and increasing amount of resources has also lead
to breakthroughs in related AI technologies, e.g. Bayesian statis-
tics [7, 21], generative models [22], and probabilistic programming/
induction [29].

However, there has been recent criticism that many of these
approaches to building more intelligent software are too far from
human-level intelligence and, thus, are not likely to be enough [30,
33]. Instead the critics argue that we actually need algorithms that
build and extend causal models, can learn from very few examples
(one- or few-shot learning), and can reason symbolically with the
patterns and knowledge they extract from sensors [30, 33].

Regardless if the current set of AI technologies will be enough
to reach human-level intelligence or not it is clear that software
systems will increasingly incorporate them as components and
sub-systems. The form of the solutions produced from these AI/ML
technologies often look inherently different from the software that
is normally developed and deployed. Thus, not only does the AI
technology itself change quickly and at an increasing pace, the
solutions it provides typically look very different from what soft-
ware organisations and engineers are used to. This poses a new
and unique set of risks and opportunities for software organisa-
tions and they need to understand and analyse these risks to select
appropriate strategies.

This hybridisation of AI/ML and software engineering is in-
evitable also in another sense. There will be ample opportunity to
apply AI and ML models to improve software development itself.
Software engineers are close to these technologies and are likely to
be early adopters in applying them on their own problems, methods
and tools. This is also helped by the trend that AI/ML technologies
is increasingly componentised and can be more easily used and
reused, even by non-experts. Advances in software engineering
allow AI technologies to be packaged and easily reusable through
RESTful APIs1 as automated cloud solutions, which can use mul-
tiple technologies before selecting and automatically tuning one/
several2. As AI becomes more accessible its use can be expected to
increase even more.

Given the current expansion of the field and the large number of
different ways that AI/ML can be applied during the engineering of
software and in the software systems themselves, there is a risk of
confusion and miscommunication. If we do not have shared terms
to describe the terrain and an overview of possibilities it becomes
harder for engineers and software organisations to properly assess
risks and discuss mitigation strategies. In our experience, of work-
ing with and applying AI/ML technologies to software engineering
problems in industry, we have seen this first-hand [1, 6, 11, 16–19].
1https://bigml.com/api
2https://cloud.google.com/automl

ar
X

iv
:1

80
2.

02
03

3v
2 

 [
cs

.S
E

] 
 7

 F
eb

 2
01

8

https://bigml.com/api
https://cloud.google.com/automl


RAISE’18, May 2018, Gothenburg, Sweden Robert Feldt, Francisco G. de Oliveira Neto, and Richard Torkar

Clear definition of terms and a way to classify and understand
opportunities and risks can be critical in improving communication
and enabling more detailed weighing of alternatives. This forms the
basis of creating organisational strategies. Here, we propose an ini-
tial taxonomy with which to analyse and understand different ways
of applying artificial intelligence and machine learning in software
engineering. To show the utility of the approach we apply it to a
sample of papers that have been published at the RAISE workshop
on realizing synergies between AI and software engineering.

2 BACKGROUND AND RELATEDWORK
Since the early days when Barr and Feigenbaum [4] discussed the
possibilities of combining AI with software engineering, there have
been some attempts to classify the field to systematically be able
to attack key challenges. In 1987, Barstow [5] presented a review
of how one should apply AI techniques to software engineering
problems. He distinguished between programming-in-the-small
(by individuals or very small groups) and programming-in-the-
large (by very large groups of people). He divided AI usage into
five broad categories: Software engineering methodologies, pro-
gramming techniques, the architecture of the target machine, the
application domain, and the history of the target software.

At RAISE’12, Clifton et al. [9] provided an overview of machine
learning and software engineering in health informatics by pre-
senting ongoing work from several projects. Many of the presented
cases show that the scale of clinical practice requires new engineer-
ing approaches from both disciplines. This is but one example where
one sees that both AI and SE need new engineering approaches for
specific domains. However, we also see a need to address challenges
on a higher level of abstraction as Harman [24] pointed out in his
RAISE keynote that same year. From Harman’s perspective, the
abstraction would serve us in developing “strategies for finding
solutions rather than the solutions themselves.” In this particular
case, we are not looking specifically at finding strategies by the use
of abstraction, but rather to provide researchers and practitioners
with a view of AI in SE, and how ‘embedded’ we would wish for AI
techniques to be, i.e., answering the why and what, while taking
risk into consideration.

On that note, Davis et al. [10], propose a taxonomy of AI ap-
proaches for adaptive distributed real-time embedded (DRE) sys-
tems. The taxonomy classifies AI approaches according to five prop-
erties needed for adaptive DRE systems: i) supporting a distributed
environment, ii) supporting real-time requirements, iii) supporting
an embedded environment, iv) robustly handling new data, and v)
incorporating new data into the approach as it becomes available
while the system is running. Their classification is fine-grained and
is limited to the context of DRE system, since the goal is identifying
suitable AI applications.

Another example of a taxonomy tailored to specific AI appli-
cations in SE is proposed by Charte et al. [8]. Their taxonomy
provides a broad view of autoencoders (AE) which are Artificial
Neural Networks (ANNs) that produce codifications for input data
and are trained so that their decodifications resemble the inputs
as closely as possible. The AEs are used in different applications
related to SE such as data compression, hashing and visualisation.
The taxonomy is based on the different features of an AE, such as

lower dimensionality, or noise tolerance. However, Charte et al. do
not include AI technologies beyond AEs.

We could not find other taxonomies that covers classification
within both areas of AI and SE; existing proposals focus on one
or the other and are rather fine-grained. Unlike the existing tax-
onomies, the one we present in this paper, AI-SEAL (Artificial
Intelligence in Software Engineering Application Levels), aims to
be more general and allow classification beyond a specific subject
matter, such as for a specific type of software system, e.g., DRE
systems, or a specific type of AI technology, e.g., AEs. It has three
main facets (dimensions) to explore different perspectives of AI
in SE on a more general level, thus allowing us to cover more AI
approaches and be more inclusive of other application domains
within software engineering. By being more coarse-grained it can
also be complemented by more detailed taxonomies, such as the
ones described above, or additional, lower-level facets, as outlined
at the end of the next section.

AI-SEAL also differentiates itself by targeting a different use
case. While the taxonomies and categorisations we have described
above focus on providing an overview of the field or outlining
possibilities when applying AI technologies in SE, our overall aim
is to support companies and organisations developing strategies for
such applications. The main aim is thus to be able to estimate and
analyse the risks and costs involved, not only the possibilities.When
a certain type of technology is new there is a tendency to focus
on possibilities and the upside of its application while real-world
adoption requires a deeper understanding also of the downsides.
Our focus is on helping organisations better understand the risks.

2.1 Methodology
In order to propose AI-SEAL we investigated the creation and usage
of taxonomies in SE. There are several taxonomies proposed for
SE in all of its different knowledge areas (e.g., requirements and
testing [43]), but very few are created systematically [44]. Usman
et al. performed a systematic mapping on the use of taxonomies
in software engineering, and proposed a method to develop such
taxonomies [44], which we used when defining AI-SEAL.

There are four phases in the Usman et al. method: i) planning,
ii) identification and extraction, iii) design and construction, and
iv) validation. During planning we decided to be inclusive of all
knowledge areas within software engineering (e.g., testing, require-
ments, processes) and rather seek a more fundamental aspect of
how AI is applied. We argue that this is natural since it would not
matter much to the risks involved whether one applies AI to for
example requirements or design; we argue that the main risks arise
if the actual software itself changes shape and to what degree the
engineers or, even later, the users, can change the proposals and/or
decisions put forward or implemented by the AI or software created
by it.

The goal with the identification and extraction phase is to iden-
tify the main categories and associated terms used in the taxonomy.
The challenge was to identify terms and categories pertaining to
the different SE knowledge areas and the variety of available AI
technologies, not to mention that both fields are constantly chang-
ing and evolving. Based on our own experience from applying AI
in SE, and from reading relevant papers published in the last years,



Ways of Applying Artificial Intelligence in Software Engineering RAISE’18, May 2018, Gothenburg, Sweden

we identified many key facets/dimensions but then filtered them
down.

We extracted three key facets for our taxonomy: point of ap-
plication, automation level and AI technology. We decided to use
a faceted analysis because this type of classification structure is
suitable for new and evolving fields, since complete knowledge
related to the subject area is not required or available [44].

The design and construction phase presents the different lev-
els within those facets, how they were chosen and to what extent
they are connected to the taxonomy’s purpose and usage (we ex-
plain the details in Section 3). Lastly, the validation phase aims at
demonstrating how the subject matter can be classified using the
proposed taxonomy. Literature provides three distinct validation
methods: Orthogonality demonstration, benchmarking and utility
demonstration [44]. We chose the latter and classified a set of AI
applications reported in previous editions of the Workshop on Re-
alizing Artificial Intelligence Synergies in Software Engineering
(RAISE). Additionally, utility demonstration is the most reported
method to validate taxonomies in SE, and it allows us to showcase
the classification extent of the taxonomy [44].

3 TAXONOMY FOR AI-IN-SE APPLICATION
LEVELS

3.1 Overview and Description
The purpose with the Artificial Intelligence in Software Engineering
Application Levels (AI-SEAL) taxonomy is to support researchers
and practitioners to communicate, understand and discuss the pros
and cons of applying AI approaches when developing and in run-
ning software systems. We argue that since the end goal of any
software engineering process is to deliver a running software sys-
temwe cannot exclude the actual use of AI during system execution.

An explicit goal was to keep the number of facets to a minimum;
in the end we propose only three. Even though they can be fur-
ther sub-divided and additional facets can help detail them more
we argue that this can be left for future work. A simpler taxon-
omy is more likely to be useful, in particular for practitioners and
companies. The three facets we propose as critical are Point of Ap-
plication (PA), Type of AI (TAI) applied, and Level of Automation
(LA) offered.

The point of application (PA) includes both the ‘when’ (in time)
and the ‘on what’ (location) the AI technology is being applied
(Figure 1). There are three major levels of this facet, two that are
relevant before deployment of the software system (process and
product) while the third is post-deployment representing the run-
time application of AI in a software system.

The process level indicates that the AI is applied in the software
development process and does not necessarily affect, directly, the
source code that will be deployed. An example would be test analyt-
ics, which could be used to optimise testing, but it does not by itself
directly alter the code, e.g., [2, 18]. In contrast, the product level
indicates that the AI directly affects the source code. A concrete
example would be automated program repair, which manipulates
the code directly to automatically fix defects [35].

The runtime level represents AI applications that affect the de-
ployed software system during runtime. The canonical example
would be autonomous and self-adaptive software systems in which

Process Product Runtime

Indirect Direct

Pre deploy

During executionEffect on 
Source Code

When

Figure 1: Overview of the different points of application (PA)
in the AI-SEAL taxonomy.

some AI technology is learning and changing the system itself in a
feedback loop [42]. A more mundane, but recent example, would
be the online learning of more optimal data structures and database
indices based on the actual data stored during operation, in line
with recent results from Google [28].

Some applications can span these main levels of PA or can be
viewed as borderline between levels. An example would be au-
tonomous driving software that includes an ANN. In a situation
where the AI develops a part of the code, which is then compiled
into the binary that goes into the final product, it would be clas-
sified under the product application level. However, if the ANN is
dynamically updating itself using runtime information from the
executing software, then its PA classification would be set to the
runtime application of AI. For risk analysis we argue it makes more
sense to then select the latter (higher) level, i.e., runtime over prod-
uct and product over process. The reason is that the higher the level
the less time there is, in general, for humans to intervene or even
to analyse the result of the applied AI technology.

The next facet of AI-SEAL covers the Type of AI (TAI) that is
applied. Since there is not even a consensus around what AI is it
becomes hard to propose a particular and stable set of levels for this
facet. This facet is, thus, most likely to need to change as progress
is made and new types of AI approaches are proposed. As a starting
point we propose that ‘the five tribes of AI’ classification introduced
by Domingos [15] can be useful:

• Symbolist, e.g., inverse deduction.
• Connectionist, e.g., backpropagation.
• Evolutionaries, e.g., genetic programming.
• Bayesians, e.g., probabilistic inference.
• Analogizers, e.g., kernel machines.

Even though these five tribes capture general types of AI tech-
nology it is clear that the TAI facet can be made more detailed and
divided into further sub-dimensions, depending on the represen-
tations, algorithms, and artefacts used in a particular application
of AI. However, we argue that specifying sub-dimensions hinders
the practical use of the taxonomy since it can be confusing to pre-
cisely distinguish among the different existing algorithms, mainly
if more than one AI technique is involved in, e.g., the product. In
other words, AI-SEAL users can choose to go deeper into that facet
within their domain-specific constraints, but we do not incorporate
those sub-dimensions into the taxonomy itself. The main purpose of



RAISE’18, May 2018, Gothenburg, Sweden Robert Feldt, Francisco G. de Oliveira Neto, and Richard Torkar

Table 1: Levels of automation (LA) of decision and action se-
lection (from [20] and [41])

10. Computer makes and implements decision if it feels it should,
and informs human only if it feels this is warranted.

9. Computer makes and implements decision, and informs human
only if it feels this is warranted.

8. Computer makes and implements decision, and informs human
only if asked to.

7. Computer makes and implements decision, but must inform
human after the fact.

6. Computer makes decision but gives human option to veto
before implementation.

5. Computer offers a restricted set of alternatives and suggests
one, which it will implement if human approve.

4. Computer offers a restricted set of alternatives and suggests
one, but human still makes and implements final decision.

3. Computer offers a restricted set of alternatives, and human
decides which to implement.

2. Computer offers a set of alternatives which human may ignore
in making decision.

1. Human considers alternatives, makes and implements decision.

the TAI facet is to consider the particular properties of the applied
AI technology and how they interact with the PA and LA facets in a
particular application. For example, in a product application the risk
might be much higher with using a Connectionist AI technology,
which produces an opaque neural net that is hard to analyse and
test, than if using an evolutionary search process to find decision
rules that are short and can be analysed before they are deployed.

The last facet is the level of automation, i.e., LA, which the AI
application aims at or achieves.We base the levels of this facet on the
Sheridan-Verplanck 10 levels of automation, an existing taxonomy
from Automation/HCI research that focuses on human-computer
decision making [20, 41] (Table 1).

The Sheridan-Verplanck taxonomy conveys how different hu-
man operators (e.g., a developer, tester, user, or any stakeholder
in the software system) and the technical system (e.g., AI tech-
nology) should cooperate by sharing the control of determining
and selecting options to implement tasks. At lower levels of au-
tomation, the AI technology simply provides data through, for
instance, dashboards with descriptive and visual information, while
the stakeholder responsible for understanding the information and
determining the next course of action of the software.

As we climb up these levels, we allow the AI technology to be
more autonomous by either allowing it to suggest alternatives to the
human operator (Level 2) or even, at the top level, implement the
decisions itself and only inform the human if it so decides (Level 10).
Hence, the higher the level of automation, the more autonomous the
AI technology becomes in making decisions related to the element,
e.g., product, process, or runtime, where it is being applied. And,
we argue, the higher the risk involved 3.
3We admit that there is also a case to be made that ultimately, and especially for some
tasks, solutions based on AI might be less risky than having humans have the final say
before taking action. However, we argue that the decision to trust AI solutions will
have to be based on other risk-reduction strategies such as taking a general decision to
trust certain types of systems based on empirical evidence of their safety. We thus see

Point of Application

Levels of 
AutomationManual Autonomous

Process

Product

Runtime

Higher 
Risk

Lower 
Risk

Figure 2: Levels of risk on the AI-SEAL taxonomy with re-
spect to Points ofApplication (PA) and Levels ofAutomation
(LA).

Note that one of the main benefits of the three facets of the
taxonomy is to allow practitioners and researchers to classify and
understand the risks involved in the AI application. If we consider
the PA facet, we argue that the risk of applying AI increases as
we move from process to the runtime level. At each step, there is
more at stake since negative consequences due to the application of
inappropriate AI technologies are worse/costlier to reverse closer to
(or after) deploying the product. As such, PA is closely related to the
size of the impact as well as level of control that developers have on
the AI application. Similarly, the LA facet is riskier at higher levels,
since stakeholders will have less time to reverse decisions when
the AI has a higher degree of autonomy (see the risk boundaries in
Figure 2).

Thus, if an AI technology is new to a company, practitioners
should start at low levels of automation (LA) to allow more hu-
man intervention, as well as at a ‘lower’ point of application (PA),
where potential issues with introducing AI will not be directly in-
troduced to the source code. Then, by building more experience
one can expand to explore higher levels of automation and points
of application of the AI technology in SE and software systems.

4 EVALUATION
We evaluate the AI-SEAL taxonomy through a utility demonstra-
tion [44] by classifying papers from previous editions of the RAISE
workshop. The workshop focuses on papers showcasing applica-
tions of AI in SE, in a broad sense, and is, thus, a suitable venue for
identifying relevant papers.

The first instance of RAISE was held in 2012 and, except for
2017, it has been running annually (2012–2016). A total of 44 papers
have been presented at RAISE over the years. Based on the title we
excluded ten papers that we assessed as not presenting a specific
application/solution of AI in SE, e.g., surveys, or papers presenting
challenges or open issues. For the remaining set of papers we then
included the most recent ones, published at RAISE 2015 (six out of

this as a future extension possibility rather than a threat to the taxonomy presented
here.



Ways of Applying Artificial Intelligence in Software Engineering RAISE’18, May 2018, Gothenburg, Sweden

Table 2: Classification of 15 RAISE papers according to the
AI-SEAL taxonomy. Papers #6 and #15 both discuss Runtime
and higher levels of automation of the AI so we mark them
as borderline FW (Future Work) below and list them twice.

ID Reference Appl. Point Type of AI Level of Auto
(PA) (TAI) (LA)

#1 [26] Process Analogizer 2
#2 [27] Process Analogizer 4
#31 [32] Process Connectionist 7
#34 [38] Process Symbolist 9
#36 [39] Process Analogizer 2–3
#37 [37] Process Symbolist 2–3
#38 [23] Process Symbolist 2
#40 [13] Process Evolutionary 2–3
#41 [14] Process Analogizer 2–3
#42 [36] Process Analogizer 2–3
#43 [3] Process Analogizer 2–3
#44 [34] Process Analogizer 2–3
#6 [12] Product Symbolist 4
#15 [25] Product Analogizer 7
#35 [31] Product Symbolist 9
#6 [12] (Runtime)FW Symbolist (8)FW
#15 [25] (Runtime)FW Analogizer 7

seven papers; one not found in the IEEE database) and 2016 (four
papers), as well as a random sample of another five for a total of
15 papers4. We then applied the AI-SEAL taxonomy to these 15
papers. In Table 2 we show an overview of the results and below
we describe four papers in more detail, to show the value of our
approach.

Paper #1, written by Iliev et al. [26] uses an ontology, based
on design information provided by stakeholders, to automatically
predict the severity level of a defect. The AI suggests the sever-
ity levels to stakeholders who, in turn, can accept or ignore the
suggestions. Therefore, the AI-SEAL classification of Paper #1, for
PA, TAI and LA is, respectively, Process, Level 2 of Automation and
included in the Analogizer tribe since the design information and
the classification rules used by the ontology are defined in advance
by stakeholders.

Paper #6, written by de Souza Alcantara et al. [12] presents an
approach where a tool learns a set of gestures that UI designers can
use to design gesture-based applications for multi-touch devices.
We classify this as a Symbolist AI technology since it analyses
the relations between and reasons about the different steps of a
specific gesture, which are inferred based on a set of primitives.
Hence, the designer first trains the tool to learn a set of gestures
that can be used when designing the UI of the application. Then,
during the actual design of the UI, IGT can detect gestures outside
the standards and prompt the designer to ask whether the drawn
gesturewas amistake. Authors state that the gestures definitions are
not updated; therefore, the levels for PA and LA are, respectively,
Product (the final gesture identification output from the tool in
included in the developed application) and Level 4. However, authors

4https://goo.gl/ERPoUk

PA

LA

1 10

Process

Product

Runtime

5

1 2

Symbolist Connectionist Evolutionary Bayesian Analogizer

34
36

38

31
41

42

43
44

40

35

156

37

Figure 3: AI-SEAL classification of papers from different edi-
tions of RAISE. The papers used in this classification were
[3, 12–14, 23, 25–27, 31, 32, 34, 36–39].

discuss future work where the interaction between designer and
the tool is higher, and the gestures definitions are updated; this
could move the technology to higher levels of LA and, possibly, PA.

Paper #15, written by Heitmeyer et al. [25], is titled High as-
surance human-centric decision systems and proposes an approach
where AI techniques are used to detect and assist operators of a
decision system that start to feel overloaded given the complexity
of tasks in the decision system. They use two AI techniques, both
from the Analogizers tribe, to predict human overload based on the
past interactions of the operator with the system. Ultimately, the AI
application should take over the system operation while alerting the
operator (LA = 7 ). Therefore, the application is at the product level,
since the overload model does not update during runtime, even
though authors plan to address this issue in future work. This is an
example how the application can actually begin at lower risk levels,
and then evolve to higher risk areas of the AI-SEAL taxonomy.

Paper #31, written by Langer and Oswald [32], is titled A self-
learning approach for validation of communication in embedded
systems. The authors use neural networks (Connectionist) to learn
which communication traces are valid in a distributed embedded
system. The proposed approach is used for automated integra-
tion testing focusing the communication between the distributed
components, thus being applied at the process level. Then, the AI
automatically analyses the communication traces, and notify users
only if an invalid communication trace is found (LA = 7 ).

We summarise the classification of the papers in our taxonomy
in Figure 3 and Table 2. Most of the papers (53%) use analogizers,
and, regarding the PA facet, most of them are applied at the process
level (80%), and at lower levels of automation. In contrast, none
of the evaluated papers proposed applications of AI technologies
from the Bayesian tribe, and only two of them discussed Runtime
application of the AI as future work. We argue that this more might
show a bias of the RAISE workshop than anything fundamental; for
example we gave two papers as examples of Runtime applications
when introducing the facet. An explanation for the little use of
Bayesian solutions might be that they are not as clearly seen as
part of AI technology as part of advanced statistics; however, as
Domingos makes clear in his book their view of AI is also valid and
general [15].

https://goo.gl/ERPoUk


RAISE’18, May 2018, Gothenburg, Sweden Robert Feldt, Francisco G. de Oliveira Neto, and Richard Torkar

We note that this is an initial proposal on how the taxonomy
can be used to raise awareness of current state of art regarding AI
applications in SE. Certainly, some applications will be more chal-
lenging than others to classify, particularly when the application
or technology span across different levels of one or more facets or
as new AI technologies and solutions are introduced.

5 DISCUSSION
We have introduced a taxonomy (AI-SEAL) having three facets
that can be used to classify and analyse ways of applying AI in
software engineering and thus help understand the associated risks
and opportunities. Our main argument is that the risk one takes
in applying AI relates to the level of control and the time given to
exert control that the developers and users have (over) the decisions
proposed or taken by the AI component. Together this explains two
of the three facets; the third is used for basic characterisation of
the AI technology being applied.

Our evaluation shows that AI-SEAL can classify applications
regardless of the SE knowledge area (e.g., design, development,
maintenance) and even domain-specific information (e.g., UI design,
safety-critical systems, or object-oriented programming) involved.
This is by design; we argue that a taxonomy needs to have this
property to be generally useful. It can of course be complemented
by additional facets or existing taxonomies to further detail the two
main facets.

Similarly, the PA facet is inclusive of different application do-
mains and types in SE, since it depends on elements present in any
SE application, i.e., the source code of the system, that is eventually
deployed, and a process to develop it. There are plenty of ways to
expand on the PA facet, for example by using SWEBOK’s knowl-
edge areas to further describe what the AI is applied to and when. In
fact, this possibility to update and expand the facets independently
is one of the main benefits of a faceted taxonomy [44], thus being
a suitable design choice for a taxonomy in dynamic fields such as
AI and SE.

The demonstration (Figure 3) also reflects the risks of the classi-
fied applications. For instance, Paper #15 is an example of a software
system controlled by an AI and a human operator that cooperate to
control unmanned air vehicles (UAV), an example of autonomous
vehicle, which are widely used by the military for surveillance and
targeting [25]. Therefore, the risk related to that AI in SE applica-
tion is high since mistakes caused by the AI could have adverse
outcomes.

On the other hand, Paper #1 [26] has lower risk, where the AI
automatically classifies the level of severity of found defects. Note
that at LA = 2 the AI provides input, but stakeholders are the ones
responsible to decide, so the development process can recover from
eventual adversities with poor classification. Certainly, at higher
levels of automation (e.g., LA ≥ 6), the risks would be higher since
the AI becomes more autonomous and can disrupt the development
process or lead to decisions that ultimately decrease quality.

On that note, the risks in Papers #2 and #6 differ mainly due to
the PA levels. Paper #2 detects clones on source code during main-
tenance, thus having an impact on maintenance costs and internal
quality (e.g., refactoring) as opposed to paper #6 that is used to as-
sist its end-user (UI designers). Any mistakes in the AI application

in Paper #6 affects the product, thus its impact on external quality
is higher.

Certainly, the risk analysis is sensitive to other factors involving
both the AI and SE parts. For example, the familiarity that the
company and the engineers have with the particular AI technology
being used will be important. However, the value of AI-SEAL is to
give an overview of the risk and the possible impacts5. Therefore,
we recommend practitioners interested in exploring possible AI
application in their SE projects to begin in the lower risk areas, and
then move towards riskier areas as they gather experience on the
AI application in SE. For researchers, AI-SEAL is useful to map the
field and identify areas to employ more research effort.

In it’s current form AI-SEAL does not help in specific classifica-
tion of AI technology, for example helping practitioners to under-
stand the distinction between different ANN models, or exposing
the trade-offs when applying machine learning algorithms on differ-
ent knowledge areas in SE. Instead, our taxonomy aims to support
practitioners and researchers in understanding the high-level as-
pects and the impact of their AI applications. That decision is more
on the strategic level rather than a solution instance (e.g., which
ANN to choose from).

In general we agree with Harman that compartmentalising and
deconstructing AI for SE into sub-domains is tempting but would
be a mistake [24]. The SE community can benefit significantly by
discussing the strategies rather than the solutions themselves, and
we believe that AI-SEAL can help in this endeavour.

6 CONCLUDING REMARKS
In this paper we propose the AI-SEAL taxonomy to help researchers
and practitioners to classify different AI applications in software
engineering. The taxonomy has three facets allowing its users to
classify, the point of application (process, product and runtime),
the type of AI technology (based, initially, on the five tribes pro-
posed by Domingos [15]) and the level of automation of the applied
technology (inspired by Sheridan-Verplanck’s 10 levels of automa-
tion [41]).

Besides helping its user to understand the field of AI applica-
tions in SE, AI-SEAL provides a basis for software engineers to
consider the risks of applying AI. This advantage allows, for in-
stance, practitioners to reason about the trade-offs of introducing
the AI technology in their processes and products. In addition, the
taxonomy is not constrained by domain-specific applications, thus
covering all knowledge areas of software engineering.

We demonstrate the use of the taxonomy by classifying 15 pa-
pers from past RAISE workshops. Most of the papers focused on
supporting stakeholders during the development process but did
not directly affect the source code or the runtime behaviour of the
systems. There was also an uneven use of the many different AI
approaches that exist; in particular a lack of Bayesian and, sur-
prisingly, Connectionist (neural net) ones. Future work includes
classification of more papers as well as proposing more detailed
and explicit support for risk analysis.

5We also see a potential to analyse the overall ‘reach’ of the decisions/proposals of AI
component in the wider system in a more detailed risk analysis. Since the ultimate risk
might not be high, despite a high LA value, if the impact of the decisions are limited
by the rest of the system.



Ways of Applying Artificial Intelligence in Software Engineering RAISE’18, May 2018, Gothenburg, Sweden

REFERENCES
[1] W. Afzal and R. Torkar. 2008. A comparative evaluation of using genetic program-

ming for predicting fault count data. In 3rd International Conference on Software
Engineering Advances. IEEE, NJ, USA, 407–414. https://doi.org/10.1109/ICSEA.
2008.9

[2] W. Afzal and R. Torkar. 2008. A comparative evaluation of using genetic program-
ming for predicting fault count data. In 3rd International Conference on Software
Engineering Advances. IEEE Press, NJ, USA, 407–414. https://doi.org/10.1109/
ICSEA.2008.9

[3] S. Akbarinasaji, A. B. Bener, and A. Erdem. 2016. Measuring the principal of defect
debt. In 5th International Workshop on Realizing Artificial Intelligence Synergies in
Software Engineering (RAISE ’16). ACM, NY, USA, 1–7. https://doi.org/10.1145/
2896995.2896999

[4] A. Barr and E. A. Feigenbaum. 1981. The handbook of artificial intelligence.
HeirisTech Press, CA, USA.

[5] D. Barstow. 1987. Artificial intelligence and software engineering. In 9th Inter-
national Conference on Software Engineering (ICSE ’87). IEEE Computer Society
Press, CA, USA, 200–211.

[6] M. Bäumer, P. Seidler, R. Torkar, R. Feldt, P. Tomaszewski, and L.-O. Damm. 2008.
Predicting fault inflow in highly iterative software development processes: An
industrial evaluation. In 19th International Symposium on Software Reliability
Engineering: Industry Track. IEEE, NJ, USA.

[7] B. Carpenter, A. Gelman, M. Hoffman, D. Lee, B. Goodrich, M. Betancourt, M. A.
Brubaker, J. Guo, P. Li, A. Riddell, et al. 2016. Stan: A probabilistic programming
language. Journal of Statistical Software 20, 2 (2016), 1–37.

[8] D. Charte, F. Charte, S. García, M. J. del Jesus, and F. Herrera. 2018. A prac-
tical tutorial on autoencoders for nonlinear feature fusion: Taxonomy, mod-
els, software and guidelines. Information Fusion 44 (2018), 78–96. https:
//doi.org/10.1016/j.inffus.2017.12.007

[9] D. A. Clifton, J. Gibbons, J. Davies, and L. Tarassenko. 2012. Machine learning
and software engineering in health informatics. In 1st International Workshop
on Realizing Artificial Intelligence Synergies in Software Engineering (RAISE ’12).
IEEE Press, NJ, USA, 37–41. https://doi.org/10.1109/RAISE.2012.6227968

[10] J. Davis, J. Hoffert, and E. Vanlandingham. 2016. A taxonomy of artificial intelli-
gence approaches for adaptive distributed real-time embedded systems. In 2016
IEEE International Conference on Electro Information Technology (EIT). IEEE, NJ,
USA, 233–238. https://doi.org/10.1109/EIT.2016.7535246

[11] F. G. de Oliveira Neto, R. Feldt, R. Torkar, and P. Machado. 2013. Searching
for models to evaluate software technology. In 1st International Workshop on
Combining Modelling and Search-Based Software Engineering. IEEE, NJ, USA,
12–15.

[12] T. de Souza Alcantara, J. Denzinger, J. Ferreira, and F. Maurer. 2012. Learning
gestures for interactingwith low-fidelity prototypes. In 1st InternationalWorkshop
on Realizing Artificial Intelligence Synergies in Software Engineering (RAISE ’12).
IEEE Press, NJ, USA, 32–36. https://doi.org/10.1109/RAISE.2012.6227967

[13] T. Diamantopoulos and A. Symeonidis. 2015. Towards interpretable defect-prone
component analysis using genetic fuzzy systems. In 4th International Workshop
on Realizing Artificial Intelligence Synergies in Software Engineering (RAISE ’15).
IEEE Press, NJ, USA, 32–38. http://dl.acm.org/citation.cfm?id=2820668.2820677

[14] S. M. Didar Al Alam, M. R. Karim, D. Pfahl, and G. Ruhe. 2016. Comparative analy-
sis of predictive techniques for release readiness classification. In 5th International
Workshop on Realizing Artificial Intelligence Synergies in Software Engineering
(RAISE ’16). ACM, NY, USA, 15–21. https://doi.org/10.1145/2896995.2896997

[15] P. Domingos. 2015. The master algorithm: How the quest for the ultimate learning
machine will remake our world. Basic Books, NY, USA. https://books.google.se/
books?id=glUtrgEACAAJ

[16] R. Feldt. 1998. Generating multiple diverse software versions with genetic pro-
gramming. In 24th Euromicro Conference, Vol. 1. IEEE, NJ, USA, 387–394.

[17] R. Feldt. 1999. Genetic programming as an explorative tool in early software
development phases. In 1st International Workshop on Soft Computing Applied to
Software Engineering. IEEE, NJ, USA, 11–19.

[18] R. Feldt. 2014. Do system test cases grow old?. In Software Testing, Verification
and Validation (ICST), 2014 IEEE Seventh International Conference on. IEEE, NJ,
USA, 343–352.

[19] R. Feldt and S. Poulding. 2013. Finding test data with specific properties via
metaheuristic search. In 24th International Symposium on Software Reliability
Engineering (ISSRE). IEEE, NJ, USA, 350–359.

[20] J. Frohm. 2008. Levels of automation in production systems. Ph.D. Dissertation.
Chalmers University of Technology, Gothenburg, Sweden.

[21] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin.
2014. Bayesian data analysis. Vol. 2. CRC press, FL, USA.

[22] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, and Y. Bengio. 2014. Generative adversarial nets. In Advances in Neural
Information Processing Systems, Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger (Eds.). Vol. 27. Curran Associates, Inc., NY, USA,
2672–2680. http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

[23] M. Hamza and R. J. Walker. 2015. Recommending features and feature rela-
tionships from requirements documents for software product lines. In 4th In-
ternational Workshop on Realizing Artificial Intelligence Synergies in Software
Engineering (RAISE ’15). IEEE Press, NJ, USA, 25–31. http://dl.acm.org/citation.
cfm?id=2820668.2820675

[24] M. Harman. 2012. The role of artificial intelligence in software engineering. In
1st International Workshop on Realizing Artificial Intelligence Synergies in Software
Engineering (RAISE ’12). IEEE Press, NJ, USA, 1–6. https://doi.org/10.1109/RAISE.
2012.6227961

[25] C. Heitmeyer, M. Pickett, L. Breslow, D. Aha, J. G. Trafton, and E. Leonard. 2013.
High assurance human-centric decision systems. In 2nd International Workshop
on Realizing Artificial Intelligence Synergies in Software Engineering (RAISE ’13).
IEEE Press, NJ, USA, 35–41. https://doi.org/10.1109/RAISE.2013.6615202

[26] M. Iliev, B. Karasneh, M. R. V. Chaudron, and E. Essenius. 2012. Automated
prediction of defect severity based on codifying design knowledge using on-
tologies. In 1st International Workshop on Realizing Artificial Intelligence Syn-
ergies in Software Engineering (RAISE ’12). IEEE Press, NJ, USA, 7–11. https:
//doi.org/10.1109/RAISE.2012.6227962

[27] I. Keivanloo and J. Rilling. 2012. Clone detection meets semantic web-based tran-
sitive closure computation. In 1st International Workshop on Realizing Artificial
Intelligence Synergies in Software Engineering (RAISE ’12). IEEE Press, NJ, USA,
12–16. https://doi.org/10.1109/RAISE.2012.6227963

[28] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis. 2017. The case for
learned index structures. ArXiv e-prints (Dec. 2017). arXiv:cs.DB/1712.01208

[29] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. 2015. Human-
level concept learning through probabilistic program induction. Sci-
ence 350, 6266 (2015), 1332–1338. https://doi.org/10.1126/science.aab3050
arXiv:http://science.sciencemag.org/content/350/6266/1332.full.pdf

[30] B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman. 2017. Building
machines that learn and think like people. Behavioral and Brain Sciences 40 (2017),
e253.

[31] M. Landhaeusser and R. Hug. 2015. Text understanding for programming in
natural language: Control structures. In 4th International Workshop on Realizing
Artificial Intelligence Synergies in Software Engineering. IEEE, NJ, USA, 7–12.
https://doi.org/10.1109/RAISE.2015.9

[32] F. Langer and E. Oswald. 2014. A self-learning approach for validation of com-
munication in embedded systems. In 3rd International Workshop on Realizing
Artificial Intelligence Synergies in Software Engineering (RAISE 2014). ACM, NY,
USA, 38–44. https://doi.org/10.1145/2593801.2593808

[33] G. Marcus. 2018. Deep learning: A critical appraisal. ArXiv e-prints (Jan. 2018).
arXiv:cs.AI/1801.00631

[34] J. Misra, S. Sengupta, and S. Podder. 2016. Topic cohesion preserving require-
ments clustering. In 5th International Workshop on Realizing Artificial Intelli-
gence Synergies in Software Engineering (RAISE ’16). ACM, NY, USA, 22–28.
https://doi.org/10.1145/2896995.2896998

[35] M. Monperrus. 2018. Automatic software repair: A bibliography. ACM Comput.
Surv. 51, 1, Article 17 (Jan. 2018), 24 pages. https://doi.org/10.1145/3105906

[36] V. Musco, A. Carette, M. Monperrus, and P. Preux. 2016. A learning algorithm for
change impact prediction. In 5th International Workshop on Realizing Artificial
Intelligence Synergies in Software Engineering (RAISE ’16). ACM, NY, USA, 8–14.
https://doi.org/10.1145/2896995.2896996

[37] P. Papadopoulos and N. Walkinshaw. 2015. Black-box test generation from
inferred models. In 4th International Workshop on Realizing Artificial Intelligence
Synergies in Software Engineering (RAISE ’15). IEEE Press, NJ, USA, 19–24. http:
//dl.acm.org/citation.cfm?id=2820668.2820674

[38] S. Roychoudhury, V. Kulkarni, and N. Bellarykar. 2015. Mining enterprise models
for knowledgeable decision making. In 4th International Workshop on Realizing
Artificial Intelligence Synergies in Software Engineering (RAISE ’15). IEEE Press,
NJ, USA, 1–6. http://dl.acm.org/citation.cfm?id=2820668.2820670

[39] M. Schindler, O. Fox, and A. Rausch. 2015. Clustering source code elements by
semantic similarity using Wikipedia. In 4th International Workshop on Realizing
Artificial Intelligence Synergies in Software Engineering (RAISE ’15). IEEE Press,
NJ, USA, 13–18. http://dl.acm.org/citation.cfm?id=2820668.2820672

[40] J. Schmidhuber. 2015. Deep learning in neural networks: An overview. Neural
networks 61 (2015), 85–117.

[41] T. B. Sheridan. 1980. Computer control and human alienation. Technology review
83, 1 (1980), 60–73.

[42] W. Truszkowski, M. Hinchey, J. Rash, and C. Rouff. 2004. NASA’s swarmmissions:
The challenge of building autonomous software. IT professional 6, 5 (2004), 47–52.

[43] M. Unterkalmsteiner, R. Feldt, and T. Gorschek. 2014. A taxonomy for re-
quirements engineering and software test alignment. Transactions on Soft-
ware Engineering Methodology 23, 2, Article 16 (April 2014), 38 pages. https:
//doi.org/10.1145/2523088

[44] M. Usman, R. Britto, J. Börstler, and E. Mendes. 2017. Taxonomies in software
engineering: A systematic mapping study and a revised taxonomy development
method. Information and Software Technology 85 (2017), 43–59. https://doi.org/
10.1016/j.infsof.2017.01.006

https://doi.org/10.1109/ICSEA.2008.9
https://doi.org/10.1109/ICSEA.2008.9
https://doi.org/10.1109/ICSEA.2008.9
https://doi.org/10.1109/ICSEA.2008.9
https://doi.org/10.1145/2896995.2896999
https://doi.org/10.1145/2896995.2896999
https://doi.org/10.1016/j.inffus.2017.12.007
https://doi.org/10.1016/j.inffus.2017.12.007
https://doi.org/10.1109/RAISE.2012.6227968
https://doi.org/10.1109/EIT.2016.7535246
https://doi.org/10.1109/RAISE.2012.6227967
http://dl.acm.org/citation.cfm?id=2820668.2820677
https://doi.org/10.1145/2896995.2896997
https://books.google.se/books?id=glUtrgEACAAJ
https://books.google.se/books?id=glUtrgEACAAJ
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://dl.acm.org/citation.cfm?id=2820668.2820675
http://dl.acm.org/citation.cfm?id=2820668.2820675
https://doi.org/10.1109/RAISE.2012.6227961
https://doi.org/10.1109/RAISE.2012.6227961
https://doi.org/10.1109/RAISE.2013.6615202
https://doi.org/10.1109/RAISE.2012.6227962
https://doi.org/10.1109/RAISE.2012.6227962
https://doi.org/10.1109/RAISE.2012.6227963
http://arxiv.org/abs/cs.DB/1712.01208
https://doi.org/10.1126/science.aab3050
http://arxiv.org/abs/http://science.sciencemag.org/content/350/6266/1332.full.pdf
https://doi.org/10.1109/RAISE.2015.9
https://doi.org/10.1145/2593801.2593808
http://arxiv.org/abs/cs.AI/1801.00631
https://doi.org/10.1145/2896995.2896998
https://doi.org/10.1145/3105906
https://doi.org/10.1145/2896995.2896996
http://dl.acm.org/citation.cfm?id=2820668.2820674
http://dl.acm.org/citation.cfm?id=2820668.2820674
http://dl.acm.org/citation.cfm?id=2820668.2820670
http://dl.acm.org/citation.cfm?id=2820668.2820672
https://doi.org/10.1145/2523088
https://doi.org/10.1145/2523088
https://doi.org/10.1016/j.infsof.2017.01.006
https://doi.org/10.1016/j.infsof.2017.01.006

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Methodology

	3 Taxonomy for AI-in-SE Application Levels
	3.1 Overview and Description

	4 Evaluation
	5 Discussion
	6 Concluding Remarks
	References

