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Abstract

The celebrated Cheeger’s Inequality [AM85, Alo86] establishes a bound on the edge expansion
of a graph via its spectrum. This inequality is central to a rich spectral theory of graphs, based on
studying the eigenvalues and eigenvectors of the adjacencymatrix (and other related matrices) of
graphs. It has remained open to define a suitable spectral model for hypergraphs whose spectra can
be used to estimate various combinatorial properties of thehypergraph.

In this paper we introduce a new hypergraph Laplacian operator generalizing the Laplacian ma-
trix of graphs. In particular, the operator is induced by a diffusion process on the hypergraph, such
that within each hyperedge, measure flows from vertices having maximum weighted measure to
those having minimum. Since the operator is non-linear, we have to exploit other properties of the
diffusion process to recover a spectral property concerning the “second eigenvalue” of the resulting
Laplacian. Moreover, we show that higher order spectral properties cannot hold in general using the
current framework.

We consider a stochastic diffusion process, in which each vertex also experiences Brownian noise
from outside the system. We show a relationship between the second eigenvalue and the convergence
behavior of the process.

We show that various hypergraph parameters like multi-way expansion and diameter can be
bounded using this operator’s spectral properties. Since higher order spectral properties do not hold
for the Laplacian operator, we instead use the concept of procedural minimizers to consider higher
order Cheeger-like inequalities. For anyk ∈ N, we give a polynomial time algorithm to compute
anO(log r)-approximation to thek-th procedural minimizer, wherer is the maximum cardinality
of a hyperedge. We show that this approximation factor is optimal under theSSE hypothesis
(introduced by [RS10]) for constant values ofk.

Moreover, using the factor preserving reduction from vertex expansion in graphs to hypergraph
expansion, we show that all our results for hypergraphs extend to vertex expansion in graphs.
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1 Introduction

There is a rich spectral theory of graphs, based on studying the eigenvalues and eigenvectors of the adja-
cency and other related matrices of graphs [AM85, Alo86, AC88, ABS10, LRTV11, LRTV12, LOT12].
We refer the reader to [Chu97, MT06] for a comprehensive survey on Spectral Graph Theory. A funda-
mental graph parameter is its expansion or conductance defined for a graphG = (V,E) as:

φG := min
S⊂V

|∂S|
min

{
vol(S), vol(S̄)

} ,

where byvol(S) we denote the sum of degrees of the vertices inS, and∂S is the set of edges in the
cut induced byS. Cheeger’s inequality [AM85, Alo86], a central inequalityin Spectral Graph Theory,
establishes a bound on expansion via the spectrum of the graph:

λ2

2
≤ φG ≤

√
2λ2,

whereλ2 is the second smallest eigenvalue of the normalized Laplacian matrixLG := W−1/2(W −
A)W−1/2, andA is the adjacency matrix of the graph andW is the diagonal matrix whose(i, i)-th entry
is the degree of vertexi. This theorem and its many (minor) variants have played a major role in the
design of algorithms as well as in understanding the limits of computation [SJ89, SS96, Din07, ARV09,
ABS10]. We refer the reader to [HLW06] for a comprehensive survey.

Edge expansion can be generalized to edge-weighted hypergraphs. In a hypergraphH = (V,E), an edge
e ∈ E is a non-empty subset ofV . The edges have non-negative weights indicated byw : E → R+.
We say thatH is anr-graph (orr-uniform) if every edge contains exactlyr vertices. (Hence, a normal
graph is a 2-graph.) Each vertexv ∈ V has weightwv :=

∑
e∈E:v∈ewe. A subsetS of vertices has

weightw(S) :=
∑

v∈S wv, and the edges it cuts is∂S := {e ∈ E : e intersects bothS andV \ S}. The

edge expansionof S ⊂ V is defined asφ(S) := w(∂S)
w(S) . The expansion ofH is defined as:

φH := min
∅(S(V

max{φ(S), φ(V \ S)}. (1.1)

It has remained open to define a spectral model of hypergraphs, whose spectra can be used to estimate
hypergraph parameters. Hypergraph expansion and related hypergraph partitioning problems are of
immense practical importance, having applications in parallel and distributed computing [CA99], VLSI
circuit design and computer architecture [KAKS99, GGLP00], scientific computing [DBH+06] and
other areas. Inspite of this, hypergraph expansion problems haven’t been studied as well as their graph
counterparts (see Section 1.1 for a brief survey). Spectralgraph partitioning algorithms are widely used
in practice for their efficiency and the high quality of solutions that they often provide [BS94, HL95].
Besides being of natural theoretical interest, a spectral theory of hypergraphs might also be relevant for
practical applications.

The various spectral models for hypergraphs considered in the literature haven’t been without shortcom-
ings. An important reason for this is that there is no canonical matrix representation of hypergraphs. For
anr-uniform hypergraphH = (V,E) on the vertex setV and having edge setE ⊆

(
V
r

)
, one can define

the canonicalr-tensor formA as follows:

A(i1,...,ir) :=

{
1 {i1, . . . , ir} ∈ E

0 otherwise
.

2



This tensor form and its minor variants have been explored inthe literature (see Section 1.1 for a brief
survey), but have not been understood very well. Optimizingover tensors is NP-hard [HL13]; even
getting good approximations might be intractable [BV09]. Moreover, the spectral properties of tensors
seem to be unrelated to combinatorial properties of hypergraphs (See Appendix A).

Another way to study a hypergraph, sayH = (V,E), is to replace each hyperedgee ∈ E by a complete
2-graph or a low degree expander on the vertices ofe to obtain a2-graphG = (V,E′). If we let r
denote the size of the largest hyperedge inE, then it is easy to see that the combinatorial properties of
G andH, like min-cut, sparsest-cut, among others, could be separated by a factor ofΩ(r). Therefore,
this approach will not be useful whenr is large.

In general, one cannot hope to have a linear operator for hypergraphs whose spectra captures hypergraph
expansion in a Cheeger-like manner. This is because the existence of such an operator will imply the

existence of a polynomial time algorithm obtaining aO
(√

OPT
)

bound on hypergraph expansion, but

we rule this out by giving a lower bound ofΩ(
√
OPT log r) for computing hypergraph expansion, where

r is the size of the largest hyperedge (Theorem 3.18).

Our main contribution is the definition of a new Laplacian operator for hypergraphs, obtained by gener-
alizing the random-walk operator on graphs. Our operator does not require the hypergraph to be uniform
(i.e. does not require all the hyperedges to have the same size). We describe this operator in Section 4
(see also Figure 3.1). We present our main results about thishypergraph operator in Section 4 and Sec-
tion 6. Most of our results are independent ofr (the size of the hyperedges), some of our bounds have
a logarithmic dependence onr, and none of our bounds have a polynomial dependence onr. All our
bounds are generalizations of the corresponding bounds for2-graphs.

1.1 Related Work

Freidman and Wigderson [FW95] studied the canonical tensors of hypergraphs. They bounded the sec-
ond eigenvalue of such tensors for hypergraphs drawn randomly from various distributions and showed
their connections to randomness dispersers. Rodriguez [Rod09] studied the eigenvalues of a graph ob-
tained by replacing each hyperedge by a clique (Note that this step incurs a loss ofO(r2), wherer is
the size of the hyperedge). Cooper and Dutle [CD12] studied the roots of the characteristic polynomial
of hypergraphs and related it to its chromatic number. [HQ13, HQ14] also studied the canonical tensor
form of the hypergraph and related its eigenvectors to some configured components of that hypergraph.
Lenz and Mubayi [LM12, LM15, LM13] related the eigenvector corresponding to the second largest
eigenvalue of the canonical tensor to hypergraph quasi-randomness. Chung [Chu93] defined a notion
of Laplacian for hypergraphs and studied the relationship between its eigenvalues and a very different
notion of hypergraph cuts and homologies. [PRT12, PR12, Par13, KKL14, SKM14] studied the relation
of simplicial complexes with rather different notions of Laplacian forms, and considered isoperimetric
inequalities, homologies and mixing times. Ene and Nguyen [EN14] studied the hypergraph multiway
partition problem (generalizing the graph multiway partition problem) and gave a43 -approximation algo-
rithm for 3-uniform hypergraphs. Concurrent to this work, [LM14b] gave approximation algorithms for
hypergraph expansion, and more generally, hypergraph small set expansion; they gave añO

(
k
√
log n

)
-

approximation algorithm and añO
(
k
√
OPT log r

)
approximation bound for the problem of computing

the set of vertices of size at most|V | /k in a hypergraphH = (V,E), having the least expansion.

Bobkov, Houdré and Tetali [BHT00] defined a Poincairé-type functional graph parameter calledλ∞
and showed that it relates to the vertex expansion of a graph in a Cheeger-like manner, i.e. it satisfies
λ∞

2 ≤ φV = O
(√

λ∞
)

whereφV is the vertex expansion of the graph (see Section 3.4 for the definition
of vertex expansion of a graph). [LRV13] gave anO

(√
OPT log d

)
-approximation bound for comput-

ing the vertex expansion in graphs having the largest vertexdegreed. Feigeet al. [FHL08] gave an
O
(√

log n
)
-approximation algorithm for computing the vertex expansion of graphs (having arbitrary

vertex degrees).
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Pereset al. [PSSW09] study a “tug of war” Laplacian operator on graphs that is similar to our hypergraph
heat operator and use it to prove that every bounded real-valued Lipschitz functionF on a subsetY
of a length spaceX admits a unique absolutely minimal extension toX. Subsequently a variant of
this operator was used for analyzing the rate of convergenceof local dynamics in bargaining networks
[CDP10]. [LRTV11, LRTV12, LOT12, LM14a] study higher eigenvalues of graph Laplacians and relate
them to graph multi-partitioning parameters (see Section 3.3).

2 Notation

Recall that we consider an edge-weighted hypergraphH = (V,E,w), whereV is the vertex set,E is the
set of hyperedges andw : E → R+ gives the edge weights. We letn := |V | andm := |E|. The weight
of a vertexv ∈ V is wv :=

∑
e∈E:v∈ew(e). Without loss of generality, we assume that all vertices

have positive weights, since any vertex with zero weight canbe removed. We useRV to denote the set
of column vectors. Givenf ∈ RV , we usefu or f(u) (if we need to use the subscript to distinguish
between different vectors) to indicate the coordinate corresponding tou ∈ V . We useAT to denote the
transpose of a matrixA. For a positive integers, we denote[s] := {1, 2, . . . , s}.
We letI denote the identity matrix andW ∈ Rn×n denote the diagonal matrix whose(i, i)-th entry iswi.
We usermin := mine∈E |e| to denote the size of the smallest hyperedge and usermax := maxe∈E |e|
to denote the size of the largest hyperedge. Since, most of our bounds will only needrmax, we use
r := rmax for brevity. We say that a hypergraph isregular if all its vertices have the same degree. We
say that a hypergraph isuniform if all its hyperedges have the same cardinality. Recall thatthe expansion
φH of a hypergraphH is defined in (1.1). We drop the subscript whenever the hypergraph is clear from
the context.

Hop-Diameter.A list of edgese1, . . . , el such thatei ∩ ei+1 6= ∅ for i ∈ [l− 1] is referred as apath. The
length of a path is the number of edges in it. We say that a pathe1, . . . , el connects two verticesu, v ∈ V
if u ∈ e1 andv ∈ el. We say that the hypergraph isconnectedif for each pair of verticesu, v ∈ V , there
exists a path connecting them. Thehop-diameterof a hypergraph, denoted bydiam(H), is the smallest
valuel ∈ N, such that each pair of verticesu, v ∈ V have a path of length at mostl connecting them.

For anx ∈ R, we definex+ := max {x, 0} andx− := max {−x, 0}. For a vectoru, we use‖u‖ :=
‖u‖2 to denote its Euclidean norm; if‖u‖ 6= 0, we definẽu := u

‖u‖ . We use1 ∈ RV to denote the vector

having1 in every coordinate. For a vectorx ∈ RV , we define its support as the set of coordinates at
whichx is non-zero, i.e.supp(x) := {i : xi 6= 0}. We useI [·] to denote the indicator variable, i.e.I [E ]
is equal to1 if eventE occurs, and is equal to0 otherwise. We useχS ∈ RV to denote the indicator
vector of the setS ⊂ V , i.e.

χS(v) =

{
1 v ∈ S

0 otherwise
.

In classical spectral graph theory, the edge expansion is related to thediscrepancy ratio, which is defined
as

Dw(f) :=

∑
e∈E we maxu,v∈e (fu − fv)

2

∑
u∈V wuf2

u

,

for each non-zero vectorf ∈ RV . Note that0 ≤ Dw(f) ≤ 2, where the upper bound can be achieved,
say, by a complete bipartite graph withf having 1’s on one side and−1’s on the other side. Observe
that if f = χS is the indicator vector for a subsetS ⊂ V , thenDw(f) = φ(S). In this paper, we use
three isomorphic spaces described as follows. As we shall see, sometimes it is more convenient to use
one space to describe the results.

Weighted Space.This is the space associated with the discrepancy ratioDw to consider edge expansion.
For f, g ∈ RV , the inner product is defined as〈f, g〉w := fTWg, and the associated norm is‖f‖w :=

4



√
〈f, f〉w. We usef ⊥w g to denote〈f, g〉w = 0.

Normalized Space.Givenf ∈ RV in the weighted space, the corresponding vector in the normalized
space isx := W

1
2 f . The normalized discrepancy ratio isD(x) := Dw(W

− 1
2x) = Dw(f).

In the normalized space, the usualℓ2 inner product and norm are used. Observe that ifx andy are the
corresponding normalized vectors forf andg in the weighted space, then〈x, y〉 = 〈f, g〉w.

A well-known result [Chu97] is that thenormalized Laplacianfor a 2-graph can be defined asL :=

I −W− 1
2AW− 1

2 (whereA is the symmetric matrix giving the edge weights) such thatD(x) coincides
with theRayleigh quotientof the Laplacian defined as follows:

R(x) := 〈x,Lx〉〈x, x〉 .

Measure Space.This is the space associated with the diffusion process thatwe shall define later. Given
f in the weighted space, the corresponding vector in the measure space is given byϕ := Wf . Observe
that a vector in the measure space can have negative coordinates. We do not consider inner product
explicitly in this space, and so there is no special notationfor it. However, we use theℓ1-norm, which is
not induced by an inner product. For vectorsϕi = W

1
2xi, we have

√
wmin · ‖x1 − x2‖2 ≤ ‖ϕ1 − ϕ2‖1 ≤

√
w(V ) · ‖x1 − x2‖2,

where the upper bound comes from the Cauchy-Schwarz inequality.

In the diffusion process, we consider howϕ will move in the future. Hence, unless otherwise stated, all
derivatives considered are actually right-hand-derivatives dϕ(t)

dt := lim∆t→0+
ϕ(t+∆t)−ϕ(t)

∆t .

Transformation between Different Spaces.We use the Roman letterf for vectors in the weighted
space,x for vectors in the normalized space, and Greek letterϕ for vectors in the measure space. Observe
that an operator defined on one space induces operators on theother two spaces. For instance, ifL is
an operator defined on the measure space, thenLw := W−1LW is the corresponding operator on the
weighted space andL := W− 1

2LW
1
2 is the one on the normalized space. Moreover, all three operators

have the same eigenvalues. Recall that the Rayleigh quotients are defined asRw(f) := 〈f,Lwf〉w
〈f,f〉w and

R(x) := 〈x,Lx〉
〈x,x〉 . ForW

1
2 f = x, we haveRw(f) = R(x).

Given a setS of vectors in the normalized space,ΠS is the orthogonal projection operator onto the
subspace spanned byS. The orthogonal projection operatorΠw

S can also be defined for the weighted
space.

3 Overview of Results

A major contribution of this paper is to define a hypergraph Laplacian operatorL whose spectral prop-
erties are related to the expansion properties of the underlying hypergraph.

3.1 Laplacian and Diffusion Process

In order to gain insights on how to define the Laplacian for hypergraphs, we first illustrate that the
Laplacian for2-graphs can be related to a diffusion process. Suppose edge weightsw of a 2-graph are
given by the (symmetric) matrixA.

Supposeϕ ∈ RV is some measure on the vertices, which, for instance, can represent a probability
distribution on the vertices. A random walk on the graph can be characterized by the transition matrix
M := AW−1. Observe that each column ofM sums to 1, because we applyM to the column vectorϕ to
get the distributionMϕ after one step of the random walk.

5



We wish to define a continuous diffusion process. Observe that, at this moment, the measure vectorϕ is
moving in the direction ofMϕ− ϕ = (M − I)ϕ. Therefore, if we define an operatorL := I−M on the
measure space, we have the differential equationdϕ

dt = −Lϕ.

Using the transformation into the weighted spacef = W−1ϕ and the normalized spacex = W− 1
2ϕ,

we can define the corresponding operatorsLw := W−1LW = I − W−1A andL := W− 1
2LW

1
2 =

I−W− 1
2AW− 1

2 , which is exactly the normalized Laplacian for2-graphs. In the literature, the (weighted)
Laplacian is defined asW − A, which isWLw in our notation. Hence, to avoid confusion, we only
consider the normalized Laplacian in this paper.

Interpreting the Diffusion Process.In the above diffusion process, we consider more carefully the rate
of change for the measure at a certain vertexu:

dϕu

dt
=

∑

v:{u,v}∈E
wuv(fv − fu), (3.1)

wheref = W−1ϕ is the weighted measure. Observe that for a stationary distribution of the random
walk, the measure at a vertexu should be proportional to its (weighted) degreewu. Hence, given an
edgee = {u, v}, equation (3.1) indicates that there should be a contribution of measure flowing from
the vertex with higherf value to the vertex with smallerf value. Moreover, this contribution has rate
given byce := we · |fu − fv|.
Generalizing Diffusion Rule to Hypergraphs.Suppose in a hypergraphH = (V,E,w) the vertices have
measureϕ ∈ RV (corresponding tof = W−1ϕ). Fore ∈ E, we defineIe(f) ⊆ e as the verticesu in
e whosefu = ϕu

wu
values are minimum,Se(f) ⊆ e as those whose corresponding values are maximum,

and∆e(f) := maxu,v∈E(fu − fv) as the discrepancy within edgee. Then, inspired from the case of
2-graphs, the diffusion process should satisfy the following rules.

(R1) When the measure distribution is at stateϕ (wheref = W−1ϕ), there can be a positive rate of
measure flow fromu to v due to edgee ∈ E only if u ∈ Se(f) andv ∈ Ie(f).

(R2) For every edgee ∈ E, the total rate of measure flowdue to e from vertices inSe(f) to Ie(f) is
ce := we ·∆e(f).

We shall later elaborate how the ratece of flow due to edgee is distributed among the pairs inSe(f)×
Ie(f). Figure 3.1 summarizes this framework.

6



Given a hypergraphH = (V,E,w), we define the (normalized) Laplacian operator as follows. Sup-
posex ∈ RV is in the normalized space with the correspondingϕ := W

1
2x in the measure space and

f := W−1ϕ in the weighted space.

1. For each hyperedgee ∈ E, let Ie(f) ⊆ e be the set of verticesu in e whosefu = ϕu

wu
values are

minimum andSe(f) ⊆ e be the set of vertices ine whose corresponding values are maximum.
Let∆e(f) := maxu,v∈E(fu − fv).

2. Weight Distribution.For eache ∈ E, the weightwe is “somehow” distributed among pairs in
Se(f)× Ie(f) satisfying(R1) and(R2). Observe that ifIe = Se, then∆e = 0, and it does not
matter how the weightwe is distributed.

For each(u, v) ∈ Se(f)× Ie(f), there existsaeuv = aeuv(f) such that
∑

(u,v)∈Se×Ie
aeuv = we,

and the rate of flow fromu to v (due toe) is aeuv ·∆e.

For ease of notation, we letaeuv = aevu. Moreover, for other pairs{u′, v′} that do not receive
any weight frome, we letaeu′v′ = 0.

3. The distribution of hyperedge weights induces a symmetric matrixAf as follows. Foru 6= v,
Af (u, v) = auv :=

∑
e∈E aeuv(f); the diagonal entries are chosen such that entries in the row

corresponding to vertexu sum towu. Observe thatAf depends onϕ becausef = W−1ϕ.

Then, the operatorL(ϕ) := (I−AfW
−1)ϕ is defined on the measure space, and the diffusion process

is described bydϕdt = −Lϕ.

This induces the (normalized) LaplacianL := W− 1
2LW

1
2 , and the operatorLw := W−1LW on the

weighted space.

Figure 3.1: Defining Laplacian via Diffusion Framework

How to distribute the weight we in Step (2) in Figure 3.1? In order to satisfy rule(R1), it turns out
that the weight cannot be distributed arbitrarily. We show that the following straightforward approaches
will not work.

• Assign the weightwe to just one pair(u, v) ∈ Se × Ie. For the case|Se| ≥ 2, after infinitesimal
time, among vertices inSe, onlyϕu (andfu) will decrease due toe. This meansu will no longer be
in Se after infinitesimal time, and we will have to pick another vertex inSe immediately. However,
we will run into the same problem again if we try to pick another vertex fromSe, and the diffusion
process cannot continue.

• Distribute the weightwe evenly among pairs inSe × Ie.1 In Example B.3, there is an edge
e5 = {a, b, c} such that the vertex inIe5 = {c} receives measure from the vertices inSe5 = {a, b}.
However, vertexb also gives some measure to vertexd because of the edgee2 = {b, d}. In the
example, all vertices have the same weight. Now, ifwe5 is distributed evenly among{a, c} and
{b, c}, then the measure ofa decreases more slowly than that ofb becauseb loses extra measure
due toe2. Hence, after infinitesimal time,b will no longer be inSe5 . This means that the measure
of b should not have been decreased at all due toe5, contradicting the choice of distributingwe5

evenly.

What properties should the Laplacian operator have?Even though the weight distribution in Step 2
does not satisfy rule(R1), some operator could still be defined. The issue is whether such an operator
would have any desirable properties. In particular, the spectral properties of the Laplacian should have
be related to the expansion properties of the hypergraph. Recall that the normalized discrepancy ratio

1Through personal communication, Jingcheng Liu and Alistair Sinclair have informed us that they also noticed that dis-
tributing the weight of a hyperedge uniformly will not work,and discovered independently a similar method for resolving
ties.
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D(x) is defined for non-zerox ∈ RV , and is related to hypergraph edge expansion.

Definition 3.1 (Procedural Minimizers) Definex1 := W
1
2

�

1, where
�

1 ∈ RV is the all-ones vector;
γ1 := D(x1) = 0. Suppose{(xi, γi)}i∈[k−1] have been constructed. Defineγk := min{D(x) :

�

0 6=
x ⊥ {xi : i ∈ [k − 1]}}, andxk to be any such minimizer that attainsγk = D(xk).

Properties of Laplacian in 2-graphs.For the case of 2-graphs, it is known that the discrepancy ratio
D(x) coincides with the Rayleigh quotientR(x) := 〈x,Lx〉

〈x,x〉 of the normalized LaplacianL, which can be
interpreted as a symmetric matrix. Hence, it follows that the sequence{γi} obtained by the procedural
minimizers also gives the eigenvalues ofL. Observe that for a2-graph, the sequence{γi} is uniquely
defined, even though the minimizers{xi}might not be unique (even modulo scalar multiple) in the case
of repeated eigenvalues. On the other hand, for hypergraphs, γ2 is uniquely defined, but we shall see in
Example B.1 thatγ3 could depend on the choice of minimizerx2.

Theorem 3.2 (Diffusion Process and Laplacian)Given an edge-weighted hypergraph, a diffusion pro-
cess satisfying rules(R1) and(R2) can be defined and uniquely induces a normalized LaplacianL (that
is not necessarily linear) on the normalized space having the following properties.

1. For all
�

0 6= x ∈ RV , the Rayleigh quotient〈x,Lx〉〈x,x〉 coincides with the discrepancy ratioD(x). This
implies that all eigenvalues ofL are non-negative.

2. There is an operatorL := W
1
2LW− 1

2 on the measure space such that the diffusion process can be
described by the differential equationdϕdt = −Lϕ.

3. Any procedural minimizerx2 attainingγ2 := min�

0 6=x⊥W
1
2

�

1
D(x) satisfiesLx2 = γ2x2.

However, there exists a hypergraph (Example B.4) such that for all procedural minimizers{x1, x2}, any
procedural minimizerx3 attainingγ3 := min�

0 6=x⊥{x1,x2}
D(x) is not an eigenvector ofΠ{x1,x2}⊥L.

The first three statements are proved in Lemmas 4.2, 4.8 and Theorem 4.1. Example B.4 suggests that
the current approach cannot be generalized to consider higher order eigenvalues of the LaplacianL,
since any diffusion process satisfying rules(R1) and(R2) uniquely determines the LaplacianL.

We remark that for hypergraphs, the LaplacianL is non-linear. In general, non-linear operators can have
more or fewer thann eigenvalues. Theorem 3.2 implies that apart fromx1 = W

1
2

�

1, the Laplacian has
another eigenvectorx2, which is a procedural minimizer attainingγ2. It is not clear ifL has any other
eigenvalues. We leave as an open problem the task of investigating if other eigenvalues exist.

Diffusion Process and Steepest Descent.We can interpret the above diffusion process in terms of
deepest descent with respect to the following quadratic potential function on the weighted space:

Qw(f) :=
1

2

∑

e∈E
we max

u,v∈e
(fu − fv)

2.

Specifically, we can imagine a diffusion process in which themotion is leading to a decrease in the
potential function. For2-graphs, one can check that in fact we havedf

dt = −W−1∇fQw(f). Hence,
we could try to defineLwf asW−1∇fQw(f). Indeed, Lemma 4.10 confirms that our diffusion process
implies that ddtQw(f) = −‖Lwf‖2w. However, because of the maximum operator in the definition of
Qw(·), one eventually has to consider the issue of resolving ties in order to give a meaningful definition
of∇fQw(f).

Comparison to other operators.One could ask if there can be a “better” operator? A natural operator
that one would be tempted to try is theaveragingoperator, which corresponds to a diffusion process
that attempts to transfer measure betweenall vertices in a hyperedge to approach the stationary dis-
tribution. However, for each hyperedgee ∈ E, the averaging operator will yield information about
Ei,j∈e (fi − fj)

2, instead ofmaxi,j∈e (fi − fj)
2 that is related to edge expansion. In particular, the av-

eraging operator will have a gap of factorΩ(r) between the hypergraph expansion and the square root
of its second smallest eigenvalue.
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3.2 Diffusion Processes

The diffusion process described in Figure 3.1 is given by thedifferential equationdϕdt = −Lϕ, where
ϕ ∈ RV is in the measure space. The diffusion process is deterministic, and no measure enters or
leaves the system. We believe that it will be of independent interest to consider the case when each
vertex can experience independent noise from outside the system, for instance, in risk management
applications [Mer69, Mer71]. Since the diffusion process is continuous in nature, we consider Brownian
noise.

For someη ≥ 0, we assume that the noise experienced by each vertexu follows the Brownian motion
whose rate of variance isηwu. Then, the measureΦt ∈ RV of the system is an It ō process defined
by the stochastic differential equationdΦt = −LΦt dt +

√
η ·W 1

2 dBt. Forη = 0, this reduces to the
deterministic diffusion process in a closed system.

We consider the transformation into the normalized spaceXt := W− 1
2Φt, and obtain the corresponding

equationdXt = −LXt dt +
√
η dBt, whereL is the normalized Laplacian. Observe that the random

noise in the normalized space is spherically symmetric.

Convergence Metric. Given a measure vectorϕ ∈ RV , denoteϕ∗ := 〈�1,ϕ〉
w(V ) ·W

�

1, which is the cor-

respondingstationarymeasure vector obtained by distributing the total measure
∑

u∈V ϕu = 〈�1, ϕ〉
among the vertices such that each vertexu receives an amount proportional to its weightwu.

For the normalized vectorx = W− 1
2ϕ, observe thatx∗ := W− 1

2ϕ∗ = 〈�1 ,ϕ〉
w(V ) ·W

1
2

�

1 is the projection ofx

into the subspace spanned byx1 := W
1
2

�

1. We denote byΠ the orthogonal projection operator into the
subspace orthogonal tox1.

Hence, givenx = W− 1
2ϕ, we havex = x∗ + Πx, wherex∗ is the stationary component andΠx is the

transient component. Moreover,ϕ− ϕ∗ = W
1
2Πx.

We derive a relationship betweenγ2 and the system’s convergence behavior.

Theorem 3.3 (Convergence and Spectral Gap)Supposeγ2 = min06=x⊥x1 R(x). Then, in the stochas-
tic diffusion process described above, for eacht ≥ 0, the random variable‖ΠXt‖2 is stochastically dom-

inated by‖X̂t‖2, whereX̂t has distributione−γ2tΠX0+
√

η
2γ2
· (1− e−2γ2t) ·N(0, 1)V , andN(0, 1)V

is the standardn-dimensional Guassian distribution with independent coordinates.

Mixing Time for Deterministic Diffusion Process. For the special caseη = 0, one can consider an
initial probability measureϕ0 ∈ RV

+ such that〈�1, ϕ0〉 = 1. We denote the the stationary distribution

ϕ∗ := 1
w(V ) ·W

�

1. For δ > 0, themixing timetmix
δ (ϕ0) is the smallest timeτ such that for allt ≥ τ ,

‖ϕt − ϕ∗‖1 ≤ δ.

Theorem 3.4 (Upper Bound for Mixing Time) Consider the deterministic diffusion process with some
initial probability measureϕ0 ∈ RV

+. Then, for allδ > 0, the mixing timetmix
δ (ϕ0) ≤ 1

γ2
log 1

δ
√

ϕ∗
min

,

whereϕ∗
min := minu∈V ϕ∗(u).

Observe that for a regular hypergraph (i.e.,wu is the same for allu ∈ V ), Theorem 3.4 says that the
mixing time can beO (log n). We believe that this fact might have applications in counting/sampling
problems on hypergraphs à la MCMC (Markov chain monte carlo) algorithms on graphs.

Towards Local Clustering Algorithms for Hypergraphs We believe that the hypergraph diffusion
process has applications in computing combinatorial properties and sampling problems in hypergraphs.
As a concrete example, we show that the diffusion process canbe useful towards computing sets of
vertices having small expansion. We show that if the diffusion process mixes slowly, then the hypergraph
must contain a set of vertices having small expansion. This is analogous to the corresponding fact for
graphs, and can be used as a tool to certify an upper bound on hypergraph expansion.

9



Theorem 3.5 Given a hypergraphH = (V,E,w) and a probability distributionϕ0 : V → [0, 1], let
ϕt denote the probability distribution at timet according to the diffusion process (Figure 3.1) andϕ∗ be
the stationary distribution.

Let δ > 0. Suppose initially‖ϕ0 − ϕ∗‖1 > δ and for some timeT > 0, ‖ϕT − ϕ∗‖1 > δ. Then, there
exists a setS ⊂ V such thatϕ∗(S) ≤ 1

2 and

φ(S) ≤ O
(

1

T
ln
‖ϕ0 − ϕ∗‖1√

ϕ∗
min · δ

)
.

As in the case of graphs, this upper bound might be better thanthe guarantee obtained using anSDP
relaxation (3.22) in certain settings.

One could ask if the converse of the statement of Theorem 3.5 is true, i.e., if the hypergraphH =
(V,E,w) has a “sparse cut”, then is there a polynomial time computable probability distributionϕ0 :
V → [0, 1] such that the diffusion process initialized with thisϕ0 mixes “slowly”? Theorem 3.6 shows
that there exists such a distributionϕ0, but it is not known if such a distribution can be computed in
polynomial time. We leave this as an open problem.

Theorem 3.6 (Lower bound on Mixing Time) Given a hypergraphH = (V,E,w), there exists a
probability measureϕ0 onV such that‖ϕ0 − ϕ∗‖1 ≥ 1

2 , and for small enoughδ,

tmix
δ (ϕ0) = Ω

(
1

γ2
ln

ϕ∗
min

δ

)
.

See Theorem 5.5 for the formal statement of Theorem 3.6. We view the condition in Theorem 3.6 that
the starting distributionϕ0 satisfy‖ϕ0 − ϕ∗‖1 ≥ 1

2 as the analogue of a random walk in a graph starting
from some vertex.

Discretized Diffusion Operator and Hypergraph Diameter A well known fact about regular2-
graphs is that the diameter of a graphG is at mostO (log n/ (log(1/(1 − γ2)))).

We define a discretized diffusion operatorM := I − 1
2L on the measure space in Section 5.4, and use it

to prove an upper bound on the hop-diameter of a hypergraph.

Theorem 3.7 Given a hypergraphH = (V,E,w), its hop-diameterdiam(H) is at mostO
(
logNw

γ2

)
,

whereNw := maxu∈V
w(V )
wu

.

3.3 Cheeger Inequalities

We generalize the Cheeger’s inequality [AM85, Alo86] to hypergraphs.

Theorem 3.8 (Hypergraph Cheeger Inequalities)Given an edge-weighted hypergraphH, its expan-
sionφH is defined as in (1.1). Then, we have the following:

γ2
2
≤ φH ≤ 2

√
γ2 .

However, to consider higher-order Cheeger inequalities for hypergraphs, at this moment, we cannot
use the spectral properties of the LaplacianL. Moroever, the sequence{γi} generated by procedural
minimizers might not be unique. We consider the following parameters.

Orthogonal Minimaximizers. Defineξk := minx1,...xk
maxi∈[k]D(xi) andζk := minx1,...xk

max{D(x) :
x ∈ span{x1, . . . xk}}, where the minimum is overk non-zero mutually orthogonal vectorsx1, . . . , xk
in the normalized space. (All involved minimum and maximum can be attained becauseD is continuous
and all vectors could be chosen from the surface of a unit ball, which is compact.)
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For 2-graphs, the three parametersξk = γk = ζk coincide with the eigenvalues of the normalized
LaplacianL. Indeed, most proofs in the literature concerning expansion and Cheeger inequalities
(e.g., [LOT12, KLL+13]) just need to use the underlying properties ofγk, ξk andζk with respect to
the discrepancy ratio, without explicitly using the spectral properties of the Laplacian. However, the
three parameters can be related to one another in the following lemma, whose proof is in Section 6.2.

Lemma 3.9 (Comparing Discrepancy Minimizers) Suppose{γk} is some sequence produced by the
procedural minimizers. For eachk ≥ 1, ξk ≤ γk ≤ ζk ≤ kξk. In particular, γ2 = ζ2, but it is possible
that ξ2 < γ2.

Given a parameterk ∈ N, the multi-way small-set expansion problem asks to computek disjoint sets
S1, S2, . . . , Sk that all have small expansion. This problem has a close connection with the Unique
Games Conjecture [RS10, ABS10]. In recent works, higher eigenvalues of Laplacians were used to
bound small-set expansion in2-graphs [LRTV12, LOT12]. In particular, the following result is achieved.

Fact 3.10 (Higher-Order Cheeger Inequalities for 2-Graphs) There exists an absolute constantc >
0 such that for any2-graphG = (V,E,w) and any integerk < |V |, there existΘ(k) non-empty disjoint
setsS1, . . . , S⌊ck⌋ ⊂ V such that

max
i∈[ck]

φ(Si) = O
(√

γk log k
)
.

Moreover, for anyk disjoint non-empty setsS1, . . . , Sk ⊂ V

max
i∈[k]

φ(Si) ≥
γk
2

.

We prove the following generalizations to hypergraphs (seeTheorems 6.6 and 6.14 for formal state-
ments).

Theorem 3.11 (Small Set Expansion)Given hypergraphH = (V,E,w) and parameterk < |V |,
supposef1, f2, . . . , fk arek orthonormal vectors in the weighted space such thatmaxs∈[k]Dw(fs) ≤ ξ.
Then, there exists a setS ⊂ V such that|S| = O (|V | /k) satisfying

φ(S) = O
(
k log k log log k ·

√
log r ·

√
ξ
)
,

wherer is the size of the largest hyperedge inE.

Theorem 3.12 (Higher-Order Cheeger Inequalities for Hypergraphs) There exist absolute constants
c > 0 such that the following holds. Given a hypergraphH = (V,E,w) and any integerk < |V |, sup-
posef1, f2, . . . , fk are k orthonormal vectors in the weighted space such thatmaxs∈[k]Dw(fs) ≤ ξ.
Then, there existsΘ(k) non-empty disjoint setsS1, . . . , S⌊ck⌋ ⊂ V such that

max
i∈[ck]

φ(Si) = O
(
k2 log k log log k ·

√
log r ·

√
ξ
)
.

Moreover, for anyk disjoint non-empty setsS1, . . . , Sk ⊂ V

max
i∈[k]

φ(Si) ≥
ζk
2
.
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3.4 Hardness via Vertex Expansion in2-Graphs

Given a graphG = (V,E,w) having maximum vertex degreed and a setS ⊂ V , its internal boundary
N in(S), and external boundaryNout(S) is defined as follows:

N in(S) :=
{
v ∈ S : ∃u ∈ S̄such that{u, v} ∈ E

}
and

Nout(S) :=
{
v ∈ S̄ : ∃u ∈ Ssuch that{u, v} ∈ E

}
.

The vertex expansionφV(S) of a setS is defined as

φV(S) :=

∣∣N in(S)
∣∣+ |Nout(S)|
|S| .

Vertex expansion is a fundamental graph parameter that has applications both as an algorithmic primitive
and as a tool for proving communication lower bounds [LT80, Lei80, BTL84, AK95, SM00].

Bobkov et al. [BHT00] defined a Poincairé-type functional graph parameter as follows. Given an
undirected graphG = (V,E), denotev ∼ u if {v, u} ∈ E, and define

λ∞ := min
f∈RV

∑
u∈V maxv∼u (fu − fv)

2

∑
u∈V f2

u − 1
n

(∑
u∈V fu

)2 .

Observe that the expression to be minimized does not change if the same constant is added to every
coordinate. Hence, without loss of generality, we can assume that the above minimization is taken over
all non-zero vectors such thatf ⊥ �

1. Therefore, we can equivalently write

λ∞ = min
06=f⊥�

1

DV (f), (3.2)

whereDV (·) is the discrepancy ratio for vertex expansion:

DV (f) :=

∑
u∈V maxv∼u (fu − fv)

2

∑
u∈V f2

u

.

If χS is the characteristic vector of the susbetS of vertices, then it follows thatφV(S) = DV (χS). We
can see that there are many similarities with edge expansion, and indeed a Cheeger-type Inequality for
vertex expansion in graphs was proved in [BHT00].

Fact 3.13 ([BHT00]) For an un-weighted graphG = (V,E),

λ∞
2
≤ φV

G ≤
√

2λ∞ .

Given the similarities between vertex expansion in2-graphs and hyperedge expansion, one could imag-
ine that a diffusion process can be defined with respect to vertex expansion in order to construct a similar
Laplacian operator, which would haveλ∞ as an eigenvalue. However, instead of repeating the whole ar-
gument and analysis, we remark that there is a well known reduction from vertex expansion in2-graphs
to hyperedge expansion.

Reduction 3.14
Input: Undirected2-graphG = (V,E).
Output:We construct hypergraphH = (V,E′) as follows. For every vertexv ∈ V , we add the (unit-
weighted) hyperedge{v} ∪Nout({v}) toE′.
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Fact 3.15 ([LM14b]) Given a graphG = (V,E,w) of maximum degreed and minimum degreec1d
(for some constantc1), the hypergraphH = (V,E′) obtained from Reduction 3.14 has hyperedges of
cardinality at mostd+ 1 and,

c1φH(S) ≤ 1

d+ 1
· φV

G(S) ≤ φH(S) ∀S ⊂ V .

Remark 3.16 The dependence on the degree in Fact 3.15 is only because vertex expansion and hyper-
graph expansion are normalized differently. The vertex expansion of a setS is defined as the number of
vertices in the boundary ofS divided by the cardinality ofS, whereas the hypergraph expansion of a set
S is defined as the number hyperedges crossingS divided by the sum of the degrees of the vertices inS.

Using Fact 3.15, we can apply our results for hypergraph edgeexpansion to vertex expansion ind-regular
2-graphs. In particular, we relateλ∞ with the parameterγ2 associated with the hypergraph achieved in
Reduction 3.14.

Theorem 3.17 Let G = (V,E) be a undirectedd-regular 2-graph with parameterλ∞, and letH =
(V,E′) be the hypergraph obtained in Reduction 3.14 having parameter γ2. Then,

γ2
4
≤ λ∞

d
≤ γ2 .

The computation ofλ∞ is not known to be tractable. For graphs having maximum vertex degreed,
[LRV13] gave aO (log d)-approximation algorithm for computingλ∞, and showed that there exists an
absolute constantC such that isSSE-hard to get better than aC log d-approximation toλ∞. Indeed,
such a hardness result implies that the hyperedge expansionand the spectral gapγ2 cannot be efficiently
approximated. See Section 7 for a definition ofSSE hypothesis. Specifically, we show the following
hardness results for computing hyperedge expansion (see Theorem 7.3) andγ2 (see Theorem 7.4).

Theorem 3.18 (Informal Statement) Given a hypergraphH, it is SSE-hard to get better than an

O
(√

φH · log rr

)
bound on hypergraph expansion in polynomial time. (Note that this is non-trivial

only whenφH ≤ log r
r .)

Theorem 3.19 (Informal Statement) Whenγ2 ≤ 1
r , it is SSE-hard to output a number̂γ in polynomial

time such thatγ2 ≤ γ̂ = O (γ2 log r).

3.5 Approximation Algorithms

We do not know how to efficiently find orthonormal vectorsf1, f2, . . . , fk in the weighted space that
attain ξk. In view of Theorems 3.11 and 3.12, we consider approximation algorithms to findk such
vectors to minimizemaxi∈[k]Dw(fi).

Approximate Procedural Minimizers. Our approximation algorithms are based on the following result
on finding approximate procedural minimizers.

Theorem 3.20 Suppose fork ≥ 2, {fi}i∈[k−1] is a set of orthonormal vectors in the weighted space,

and defineγ := min{Dw(f) :
�

0 6= f ⊥w {fi : i ∈ [k − 1]}}. Then, there is a randomized procedure
that produces a non-zero vectorf that is orthogonal to{fi}i∈[k−1] in polynomial time, such that with
high probability,Dw(f) = O (γ log r), wherer is the size of the largest hyperedge.

Using the procedure in Theorem 3.20 as a subroutine for generating procedural minimizers, we can show
that the resulting vectors provide anO (k log r)-approximation toξk.
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Theorem 3.21 (Approximatingξk) There exists a randomized polynomial time algorithm that, given a
hypergraphH = (V,E,w) and a parameterk < |V |, outputsk orthonormal vectorsf1, . . . , fk in the
weighted space such that with high probability, for eachi ∈ [k],

Dw(fi) ≤ O (i log r · ξi) .

Algorithmic Applications. Applying Theorem 3.21, we readily have approximation algorithms for the
problems in Theorems 3.8, 3.11 and 3.12.

Corollary 3.22 (Hyperedge Expansion)There exists a randomized polynomial time algorithm that
given a hypergraphH = (V,E,w), outputs a setS ⊂ V such thatφ(S) = O

(√
φH log r

)
with

high probability, wherer is the size of the largest hyperedge inE.

We note that Corollary 3.22 also follows directly from [LM14b].

Many theoretical and practical applications require multiplicative approximation guarantees for hy-
pergraph sparsest cut. In a seminal work, Arora, Rao and Vazirani [ARV09] gave aO

(√
log n

)
-

approximation algorithm for the (uniform) sparsest cut problem in graphs. [LM14b] gave aO
(√

log n
)
-

approximation algorithm for hypergraph expansion.

Corollary 3.23 (Small Set Expansion)There exists a randomized polynomial time algorithm that given
hypergraphH = (V,E,w) and parameterk < |V |, produces a setS ⊂ V such that with high proba-
bility, |S| = O

(
n
k

)
and

φ(S) = O
(
k1.5 log k log log k · log r ·

√
ξk

)
,

wherer is the size of the largest hyperedge inE.

In contrast, a polynomial-time algorithm is given in [LM14b] that returns a subsetS with sizeO
(
n
k

)

whose expansion is at mostO
(
k log k log log k · √log n

)
times the smallest expansion over all vertex

sets of size at mostnk .

Corollary 3.24 (Multi-way Hyperedge Expansion) There exist absolute constantsc, c′ > 0 such that
the following holds. There exists a randomized polynomial time algorithm that given hypergraphH =
(V,E,w) and parameterk < |V |, producesΘ(k) non-empty disjoint setsS1, . . . , S⌊ck⌋ ⊂ V such that
with high probability,

max
i∈[ck]

φ(Si) = O
(
k2.5 log k log log k · log r ·

√
ξk

)
.

In contrast, for2-graphs, a polynomial-time bi-criteria approximation algorithm [LM14a] outputs(1 −
ǫ)k disjoint subsets such that each subset has expansion at mostOǫ(

√
log n log k) times the optimal

value.

3.6 Sparsest Cut with General Demands

An instance of the problem consists of a hypergraphH = (V,E,w) with edge weightsw and a collection
T = {({si, ti},Di) : i ∈ [k]} of demand pairs, where each pair{si, ti} has demandDi. For a subset
S ⊂ V , its expansion with respect toT is

Φ(S) :=
w(∂S)∑

i∈[k]Di |χS(si)− χS(ti)|
.

The goal is to findS to minimizeΦ(S). We denoteΦH := minS⊂V Φ(S).

Arora, Lee and Naor [ALN08] gave aO
(√

log k log log k
)
-approximation algorithm for the sparsest

cut in 2-graphs with general demands. We give a similar boundfor the sparsest cut in hypergraphs with
general demands.
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Theorem 3.25 There exists a randomized polynomial time algorithm that given an instance of the hyper-
graph Sparsest Cut problem with hypergraphH = (V,E,w) andk demand pairs inT = {({si, ti},Di) :
i ∈ [k]}, outputs a setS ⊂ V such that with high probability,

Φ(S) ≤ O
(√

log k log r log log k
)
ΦH ,

wherer = maxe∈E |e|.

3.6.1 Discussion

We stress that none of our bounds have a polynomial dependence onr, the size of the largest hyperedge
(Theorem 3.11 has a dependence onÕ (min {r, k})). In many of the practical applications, the typical
instances haver = Θ(nα) for someα = Ω(1); in such cases having bounds ofpoly(r) would not be of
any practical utility. All our results generalize the corresponding results for 2-graphs.

3.7 Organization

We formally define the diffusion process and our Laplacian operator in Section 4. We prove the existence
of a non-trivial eigenvalue for the Laplacian operator in Theorem 4.1.

In Section 5, we define the stochastic diffusion process, andprove our bounds on the mixing time (The-
orem 3.4 and Theorem 3.6). We define a discrete diffusion operator and give a bound on the hypergraph
diameter (Theorem 3.7) in Section 5.4.

In Section 6, we prove the basic hypergraph Cheeger inequality (Theorem 3.8) and also the higher-order
variants (Theorem 3.11 and Theorem 3.12).

In Section 7, we explore the relationship between hyperedgeexpansion and vertex expansion in 2-graphs.
Using hardness results for vertex expansion, we prove our hardness results for computing hypergraph
eigenvalues (Theorem 3.19) and for hypergraph expansion (Theorem 3.18).

In Section 8, we give our approximation algorithm for procedural minimizers (Theorem 3.20). We
present our algorithm for sparsest cut with general demands(Theorem 3.25) in Section 9.

4 Defining Diffusion Process and Laplacian for Hypergraphs

A classical result in spectral graph theory is that for a2-graph whose edge weights are given by the adja-
cency matrixA, the parameterγ2 := min�

0 6=x⊥W
1
2

�

1
D(x) is an eigenvalue of the normalized Laplacian

L := I−W− 1
2AW− 1

2 , where a corresponding minimizerx2 is an eigenvector ofL. Observe thatγ2 is
also an eigenvector on the operatorLw := I −W−1A induced on the weighted space. However, in the
literature, the (weighted) Laplacian is defined asW−A, which isWLw in our notation. Hence, to avoid
confusion, we only consider the normalized Laplacian in this paper.

In this section, we generalize the result to hypergraphs. Observe that any result for the normalized space
has an equivalent counterpart in the weighted space, and vice versa.

Theorem 4.1 (Eigenvalue of Hypergraph Laplacian)For a hypergraph with edge weightsw, there
exists a normalized LaplacianL such that the normalized discrepancy ratioD(x) coincides with the
corresponding Rayleigh quotientR(x). Moreover, the parameterγ2 := min�

0 6=x⊥W
1
2

�

1
D(x) is an

eigenvalue ofL, where any minimizerx2 is a corresponding eigenvector.

However, we show in Example B.4 that the above result for our Laplacian does not hold forγ3.

Intuition from Random Walk and Diffusion Process. We further elaborate the intuition described in
Section 3.1. Given a2-graph whose edge weightsw are given by the (symmetric) matrixA, we illustrate
the relationship between the Laplacian and a diffusion process in an underlying measure space, in order
to gain insights on how to define the Laplacian for hypergraphs.

15



Supposeϕ ∈ RV is some measure on the vertices, which, for instance, can represent a probability
distribution on the vertices. A random walk on the graph can be characterized by the transition matrix
M := AW−1. Observe that each column ofM sums to 1, because we applyM to the column vectorϕ to
get the distributionMϕ after one step of the random walk.

We wish to define a continuous diffusion process. Observe that, at this moment, the measure vectorϕ is
moving in the direction ofMϕ− ϕ = (M − I)ϕ. Therefore, if we define an operatorL := I−M on the
measure space, we have the differential equationdϕ

dt = −Lϕ.

To be mathematically precise, we are considering howϕ will move in the future. Hence, unless other-
wise stated, all derivatives considered are actually right-hand-derivativesdϕ(t)dt := lim∆t→0+

ϕ(t+∆t)−ϕ(t)
∆t .

Using the transformation into the weighted spacef = W−1ϕ and the normalized spacex = W− 1
2ϕ,

we can define the corresponding operatorsLw := W−1LW = I − W−1A andL := W− 1
2LW

1
2 =

I−W− 1
2AW− 1

2 , which is exactly the normalized Laplacian for2-graphs.

Generalizing the Diffusion Rule from 2-Graphs to Hypergraphs. We consider more carefully the rate
of change for the measure at a certain vertexu: dϕu

dt =
∑

v:{u,v}∈E wuv(fv − fu), wheref = W−1ϕ
is the weighted measure. Observe that for a stationary distribution of the random walk, the measure at
a vertexu should be proportional to its (weighted) degreewu. Hence, given an edgee = {u, v}, by
comparing the valuesfu andfv, measure should move from the vertex with higherf value to the vertex
with smallerf value, at the rate given byce := we · |fu − fv|.
To generalize this to a hypergraphH = (V,E), for e ∈ E and measureϕ (corresponding tof = W−1ϕ),
we defineIe(f) ⊆ e as the verticesu in e whosefu = ϕu

wu
are minimum,Se(f) ⊆ e as those whose

corresponding values are maximum, and∆e(f) := maxu,v∈E(fu − fv) as the discrepancy within edge
e. Then, the diffusion process obeys the following rules.

(R1) When the measure distribution is at stateϕ (wheref = W−1ϕ), there can be a positive rate of
measure flow fromu to v due to edgee ∈ E only if u ∈ Se(f) andv ∈ Ie(f).

(R2) For every edgee ∈ E, the total rate of measure flowdue to e from vertices inSe(f) to Ie(f) is
ce := we · ∆e(f). In other words, the weightwe is distributed among(u, v) ∈ Se(f) × Ie(f)
such that for each such(u, v), there existsaeuv = aeuv(f) such that

∑
(u,v)∈Se×Ie

aeuv = we, and
the rate of flow fromu to v (due toe) is aeuv · ∆e. (For ease of notation, we writeaeuv = aevu.)
Observe that ifIe = Se, then∆e = 0 and it does not matter how the weightwe is distributed.

Observe that the distribution of hyperedge weights will induce a symmetric matrixAf such that for
u 6= v, Af (u, v) = auv :=

∑
e∈E aeuv(f), and the diagonal entries are chosen such that entries in the

row corresponding to vertexu sum towu. Then, the operatorL(ϕ) := (I− AfW
−1)ϕ is defined on the

measure space to obtain the differential equationdϕ
dt = −Lϕ. As in the case for2-graph, we show in

Lemma 4.2 that the corresponding operatorLw on the weighted space and the normalized LaplacianL
are induced such thatDw(f) = Rw(f) andD(x) = R(x), which hold no matter how the weightwe of
hyperedgee is distributed among edges inSe(f)× Ie(f).

Lemma 4.2 (Rayleigh Quotient Coincides with Discrepancy Ratio) SupposeLw on the weighted space
is defined such that rules(R1) and(R2) are obeyed. Then, the Rayleigh quotient associated withLw sat-
isfies that for anyf in the weighted space,Rw(f) = Dw(f). By considering the isomorphic normalized
space, we have for eachx,R(x) = D(x).

Proof: It suffices to show that〈f, Lwf〉w =
∑

e∈E wemaxu,v∈e(fu − fv)
2.

Recall thatϕ = Wf , andLw = I−W−1Af , whereAf is chosen as above to satisfy rules(R1) and(R2).

Hence, it follows that

〈f, Lwf〉w = fT(W −Af )f =
∑

uv∈(V2)
auv(fu − fv)

2

=
∑

uv∈(V2)
∑

e∈E:{uv,vu}∩Se×Ie 6=∅ a
e
uv(fu − fv)

2 =
∑

e∈E wemaxu,v∈e(fu − fv)
2, as required.
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4.1 Defining Diffusion Process to Construct Laplacian

Recall thatϕ ∈ RV is the measure vector, where each coordinate contains the “measure” being dis-
persed. Observe that we consider a closed system here, and hence〈�1, ϕ〉 remains invariant. To facilitate
the analysis, we also consider the weighted measuref := W−1ϕ.

Our goal is to define a diffusion process that obeys rules(R1) and (R2). Then, the operator on the
measure space is given byLϕ := −dϕ

dt . By observing that the weighted space is achieved by the

transformationf = W−1ϕ, the operator on the weighted space is given byLwf := −df
dt .

In Figure 4.1, we give a procedure that takesf ∈ RV and returnsr = df
dt ∈ RV . This definesLwf = −r,

and the Laplacian is inducedL := W
1
2LwW

− 1
2 on the normalized spacex = W

1
2 f .

Suppose we have the measure vectorϕ ∈ RV and the corresponding weighted vectorf = W−1ϕ.
Observe that even though we callϕ a measure vector,ϕ can still have negative coordinates. We shall
construct a vectorr ∈ RV that is supposed to bedfdt . For u ∈ V ande ∈ E, let ρu(e) be the rate of
change of the measureϕu due to edgee. Then,ρu :=

∑
e∈E ρu(e) gives the rate of change ofϕu.

We show thatr andρ must satisfy certain constraints because of rules(R1) and(R2). Then, it suffices
to show that there exists a uniquer ∈ RV that satisfies all the constraints.

First, sincedfdt = W−1 dϕ
dt , we have for each vertexu ∈ V , ru = ρu

wu
.

Rule(R1) implies the following constraint:

for u ∈ V ande ∈ E, ρu(e) < 0 only if u ∈ Se(f), andρu(e) > 0 only if u ∈ Ie(f).

Rule(R2) implies the following constraint:

for eache ∈ E, we have
∑

u∈Ie(f) ρu(e) = −
∑

u∈Se(f)
ρu(e) = we ·∆e(f).

Construction of Af . Observe that for eache ∈ E, once all theρu(e)’s are determined, the weightwe

can be distributed among edges inSe×Ie by considering a simple flow problem on the complete bipartite
graph, where eachu ∈ Se is a source with supply−ρu(e)

∆e
, and eachv ∈ Ie is a sink with demandρv(e)∆e

.
Then, from any feasible flow, we can setaeuv to be the flow along the edge(u, v) ∈ Se × Ie.

Infinitesimal Considerations. In the previous discussion, we argue that if a vertexu is losing measure
due to edgee, then it should remain inSe for infinitesimal time, which holds only if the rate of change
of fu is the maximum among vertices inSe. A similar condition should hold if the vertexu is gaining
measure due to edgee. This translates to the following constraints.

Rule(R3) First-Order Derivative Constraints:

• If ρu(e) < 0, thenru ≥ rv for all v ∈ Se.
• If ρu(e) > 0, thenru ≤ rv for all v ∈ Ie.

We remark that rule(R3) is only a necessary condition in order for the diffusion process to satisfy
rule (R1). Even thoughAf might not be unique, we shall show that these rules are sufficient to define a
uniquer ∈ RV , which is returned by the procedure in Figure 4.1.

Moreover, observe that iff = αg for someα > 0, then in the above flow problem to determine
the symmetric matrix, we can still haveAf = Ag. Hence, even though the resultingLw(f) := (I −
W−1Af )f might not be linear, we still haveLw(αg) = αLw(g).
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Given a hypergraphH = (V,E,w) and a vectorf ∈ RV in the weighted space, we describe a
procedure to returnr ∈ RV that is supposed to ber = df

dt in the diffusion process.

1. Define an equivalence relation onV such thatu andv are in the same equivalence classiff
fu = fv.

2. We consider each such equivalence classU ⊂ V and define ther values for vertices inU .
DenoteEU := {e ∈ E : ∃u ∈ U, u ∈ Ie ∪ Se}.
Recall thatce := we ·maxu,v∈E(fu − fv). ForF ⊂ E, denotec(F ) :=

∑
e∈F ce.

ForX ⊂ U , defineIX := {e ∈ EU : Ie ⊆ X} andSX := {e ∈ EU : Se ∩X 6= ∅}.
DenoteC(X) := c(IX)− c(SX) andδ(X) := C(X)

w(X) .

3. Find anyP ⊂ U such thatδ(P ) is maximized.

For allu ∈ P , setru := δ(P ).

4. Recursively, find ther values for the remaining pointsU ′ := U \ P usingEU ′ := EU \ (IP ∪
SP ).

Figure 4.1: Determining the Vectorr = df
dt

Uniqueness of Procedure. In step (3) of Figure 4.1, there could be more than one choice of P to
maximizeδ(P ). In Section 4.2, we give an efficient algorithm to find such aP . Moreover, we shall
show that the procedure will return the samer ∈ RV no matter what choice the algorithm makes. In
Lemma 4.8, we prove that rules(R1)-(R3) imply that dfdt must equal to such anr.

4.2 A Densest Subset Problem

In step (3) of Figure 4.1, we are solving the following variant of the densest subset problem restricted to
some setU of vertices, with multi-setsI := {e ∩ U : e ∈ E, Ie(f) ∩ U 6= ∅} andS := {e ∩ U : e ∈
E,Se(f) ∩ U 6= ∅}.

Definition 4.3 (Densest Subset Problem)The input is a hypergraphHU = (U, I ∪S), where we allow
multi-hyperedges inI ∪ S. Eachv ∈ U has weightwv > 0, and eache ∈ I ∪ S has valuece > 0.

For X ⊂ U , defineIX := {e ∈ I : e ⊂ X} andSX := {e ∈ S : e ∩X 6= ∅}.
The output is a non-emptyP ⊂ U such thatδ(P ) := c(IP )−c(SP )

w(P ) is maximized, and we call suchP a
densest subset.

We use an LP similar to the one given by Charikar [Cha00] used for the basic densest subset problem.

maximize c(x) :=
∑

e∈I cexe −
∑

e∈S cexe
subject to

∑
v∈U wvyv = 1

xe ≤ yv ∀e ∈ I, v ∈ e
xe ≥ yv ∀e ∈ S, v ∈ e
yv, xe ≥ 0 ∀v ∈ U, e ∈ I ∪ S

We analyze this LP using a similar approach given in [BBC+15]. Given a subsetP ⊂ U , we define the
following feasible solutionzP = (xP , yP ).

xPe =

{
1

w(P ) if e ∈ IP ∪ SP

0 otherwise.
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yPv =

{
1

w(P ) if v ∈ P

0 otherwise.

Feasibility ofzP can be verified easily and it can be checked that the objectivevalue isc(xP ) = δ(P ).

Given a feasible solutionz = (x, y), we say that a non-emptyP is a level setof z if there existsr > 0
such thatP = {v ∈ U : yv ≥ r}.
The following lemma has a proof similar to [BBC+15, Lemma 4.1].

Lemma 4.4 Supposez∗ = (x∗, y∗) is an optimal (fractional) solution of the LP. Then, every (non-
empty) level setP of z∗ is a densest set andδ(P ) = c(x∗).

Proof: Supposez∗ = (x∗, y∗) is an optimal solution. We prove the result by induction on the number
k of level sets ofz∗, which is also the number of distinct non-zero values found in the coordinates ofy∗.
For the base case whenk = 1, z∗ only has one level setP = supp(y∗). Because

∑
v∈U wvy

∗
v = 1, it

follows that we must havez∗ = zP , and henceP must be a densest set and the result holds fork = 1.

For the inductive step, supposey∗ hask ≥ 2 non-zero distinct values in its coordinates. LetP :=
supp(y∗) andα := min{y∗v : v ∈ P}. ObserveP is a level set ofz∗ andα · w(P ) ≤∑v∈U wvy

∗
v = 1.

Moreover, observe that ifx∗e > 0, thenx∗e ≥ α.

Defineẑ = (x̂, ŷ) as follows.

x̂e =

{
x∗
e−α

1−α·w(P ) if x∗e > 0

0 otherwise.

ŷv =

{
y∗v−α

1−α·w(P ) if v ∈ P

0 otherwise.

Hence,z∗ = α · w(P ) · zS + (1 − α · w(P ))ẑ, and the number of level sets ofẑ is exactlyk − 1. In
particular, the level sets ofz∗ areP together with those of̂z.

Hence, to complete the inductive step, it suffices to show that ẑ is a feasible solution to the LP. To see why
this is enough, observe that the objective function is linear, c(x∗) = α·w(P )·c(xP )+(1−α·w(P ))·c(x̂).
Hence, if bothzP andẑ are feasible, then both must be optimal. Then, the inductivehypothesis on̂z can
be used to finish the inductive step.

Hence, it remains to check the feasibility ofẑ.

First,
∑

v∈U wvŷv =
∑

v∈P wv
y∗v−α

1−α·w(P ) = 1.

Observe in the objective value, we want to increasexe for e ∈ I and decreasexe for e ∈ S. Hence, the
optimality ofz∗ implies that

x∗e =

{
minv∈e y∗v if e ∈ I

maxv∈e y∗v if e ∈ S.

Forx∗e = 0, thenx̂e = 0 and the corresponding inequality is satisfied.

Otherwise,x∗e ≥ α, we have

x̂e =
x∗
e−α

1−α·w(P ) =

{
minv∈e y∗v−α
1−α·w(P ) = minv∈e ŷv if e ∈ I

maxv∈e y∗v−α
1−α·w(P ) = maxv∈e ŷv if e ∈ S.

Therefore,̂z is feasible and this completes the inductive step.

Given two densest subsetsP1 andP2, it follows that thatz
P1+zP2

2 is an optimal LP solution. Hence, by
considering its level sets, Lemma 4.4 implies the followingcorollary.

Corollary 4.5 (Properties of Densest Subsets) 1. SupposeP1 andP2 are both densest subsets. Then,
P1∪P2 is also a densest subset. Moreover, ifP1∩P2 is non-empty, then it is also a densest subset.
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2. The maximal densest subset is unique and contains all densest subsets.

The next two lemmas show that the procedure defined in Figure 4.1 will return the samer ∈ RV , no
matter which densest subset is returned in step (3). Lemma 4.6 implies that ifP is a maximal densest
subset in the given instance, then the procedure will assignr values to the vertices inP first and each
v ∈ P will receiverv := δ(P ).

Lemma 4.6 (Remaining Instance)Suppose in an instance(U, I ∪ S) with density functionδ, some
densest subsetX is found, and the remaining instance(U ′, I ′ ∪ S′) is defined withU ′ := U \ X,
I ′ := {e ∩ U ′ : e ∈ I \ IX}, S′ := {e ∩ U ′ : e ∈ S \ SX} and the corresponding density functionδ′.
Then, for anyY ⊂ U ′, δ′(Y ) ≤ δ(X), where equality holdsiff δ(X ∪ Y ) = δ(X).

Proof: DenoteδM := δ(X) = c(IX)−c(SX)
w(X) .

Observe thatc(I ′Y ) = c(IX∪Y )− c(IX) andc(S′
Y ) = c(SX∪Y )− c(SX).

Hence, we haveδ′(Y ) =
c(I′Y )−c(S′

Y )
w(Y ) = δ(X∪Y )·w(X∪Y )−δM ·w(X)

w(X∪Y )−w(X) .

Therefore, for each⊲⊳∈ {<,=, >}, we haveδ′(Y ) ⊲⊳ δM iff δ(X ∪ Y ) ⊲⊳ δM .

We next see how this implies the lemma. For⊲⊳ being “>”, we know δ′(Y ) > δ(X) is impossible,
because this implies thatδ(X ∪ Y ) > δ(X), violating the assumption thatX is a densest subset.

For⊲⊳ being “=”, this givesδ′(Y ) = δ(X) iff δ(X ∪ Y ) = δ(X), as required.

Corollary 4.7 (Procedure in Figure 4.1 is well-defined.)The procedure defined in Figure 4.1 will re-
turn the samer ∈ RV , no matter which densest subset is returned in step (3). In particular, if P is the
(unique) maximal densest subset in the given instance, thenthe procedure will assignr values to the
vertices inP first and eachv ∈ P will receiverv := δ(P ). Moreover, afterP is removed from the
instance, the maximum density in the remaining instance is strictly less thanδ(P ).

4.3 Densest Subset Procedure Defines Laplacian

We next show that rules(R1) to (R3) imply that in the diffusion process,dfdt must equal to the vector
r ∈ RV returned by the procedure described in Figure 4.1.

We denoterS(e) := maxu∈Se ru andrI(e) := minu∈Ie ru.

Lemma 4.8 (Defining Laplacian from Diffusion Process)Given a measure vectorϕ ∈ RV (and the
correspondingf = W−1ϕ in the weighted space), rules(R1) to (R3) uniquely determiner = df

dt ∈ RV

(andρ = Wr), which can be found by the procedure described in Figure 4.1. This defines the operators
Lwf := −r andLϕ := −Wr. The normalized Laplacian is also inducedL := W− 1

2LW
1
2 .

Moreover,
∑

e∈E ce(rI(e)− rS(e)) =
∑

u∈V ρuru = ‖r‖2w.

Proof: As in Figure 4.1, we consider each equivalence classU , where all vertices in a class have the
samef values.

For each such equivalence classU ⊂ V , defineIU := {e ∈ E : ∃u ∈ U, u ∈ Ie} andSU := {e ∈ E :
∃u ∈ U, u ∈ Se}. Notice that eache is in exactly one suchI ’s and one suchS’s.

As remarked in Section 4.1, for eache ∈ E, once allρu(e) is defined for allu ∈ Se ∪ Ie, it is simple to
determineaeuv for (u, v) ∈ Se × Ie by considering a flow problem on the bipartite graphSe × Ie. The
“uniqueness” part of the proof will show thatr = df

dt must be some unique value, and the “existence”
part of the proof shows that thisr can determine theρu(e)’s.

Considering Each Equivalence ClassU . We can consider each equivalence classU independently by
analyzingru andρu(e) for u ∈ U ande ∈ IU ∪ SU that satisfy rules(R1) to (R3).
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Proof of Uniqueness.We next show that rules(R1) to (R3) imply thatr must take a unique value that
can be found by the procedure in Figure 4.1.

For eache ∈ IU ∪ SU , recall thatce := we ·∆e(f), which is the rate of flow due toe intoU (if e ∈ IU )
or out ofU (if e ∈ SU ). ForF ⊆ IU ∪ SU , denotec(F ) :=

∑
e∈F ce.

SupposeT is the set of vertices that have the maximumr values within the equivalence class, i.e., for
all u ∈ T , ru = maxv∈U rv. Observe that to satisfy rule(R3), for e ∈ IU , there is positive ratece of
measure flow intoT due toe iff Ie ⊆ T ; otherwise, the entire ratece will flow into U \ T . On the other
hand, fore ∈ SU , if Se ∩ T 6= ∅, then there is a ratece of flow out ofT due toe; otherwise, the ratece
flows out ofU \ T .

Based on this observation, we define forX ⊂ U , IX := {e ∈ IU : Ie ⊆ X} andSX := {e ∈ SU : Se ∩
X 6= ∅}. Note that these definitions are consistent withIU andSU . We denoteC(X) := c(IX)−c(SX ).

To detect which vertices inU should have the largestr values, we defineδ(X) := C(X)
w(X) , which, loosely

speaking, is the average weighted (with respect toW) measure rate going into vertices inX. Observe
that if r is feasible, then the definition ofT implies that for allv ∈ T , rv = δ(T ).

Corollary 4.7 implies that the procedure in Figure 4.1 will find the unique maximal densest subsetP
with δM := δ(P ).

We next show thatT = P . Observe that for all edgese ∈ IP haveIe ⊂ P , and hence, there must
be at least rate ofc(IP ) going intoP ; similarly, there is at most rate ofc(SP ) going out ofP . Hence,
we have

∑
u∈P wuru ≥ c(IP ) − c(SP ) = w(P ) · δ(P ). Therefore, there existsu ∈ P such that

δ(P ) ≤ ru ≤ δ(T ), where the last inequality holds because every vertexv ∈ T is supposed to have
the maximum raterv = δ(T ). This implies thatδ(T ) = δM , T ⊆ P and the maximumr value is
δM = δ(T ) = δ(P ). Therefore, the above inequality becomesw(P )·δM ≥

∑
u∈P wuru ≥ w(P )·δ(P ),

which means equality actually holds. This implies that every vertexu ∈ P has the maximum rate
ru = δM , and soT = P .

Recursive Argument.Hence, it follows that the setT can be uniquely identified in Figure 4.1 as the
set of vertices have maximumr values, which is also the unique maximal densest subset. Then, the
uniqueness argument can be applied recursively for the smaller instance withU ′ := U\T , IU ′ := IU\IT ,
SU ′ := SU \ ST .

Proof of Existence. We show that onceT is identified in Figure 4.1, it is possible to assign for each
v ∈ T and edgee wherev ∈ Ie ∪ Se, the valuesρv(e) such thatδM = rv =

∑
e ρv(e).

Consider an arbitrary configurationρ in which edgee ∈ IT supplies a rate ofce to vertices inT , and
each edgee ∈ ST demands a rate ofce from vertices inT . Each vertexv ∈ T is supposed to gather a
net rate ofwv · δM , where any deviation is known as thesurplusor deficit.

Given configurationρ, define a directed graphGρ with vertices inT such that there is an arc(u, v) if
non-zero measure rate can be transferred fromu to v. This can happen in one of two ways: (i) there
existse ∈ IT containing bothu andv such thatρu(e) > 0, or (ii) there existse ∈ ST containing bothu
andv such thatρv(e) < 0.

Hence, if there is a directed path from a vertexu with non-zero surplus to a vertexv with non-zero
deficit, then the surplus at vertexu (and the deficit at vertexv) can be decreased.

We argue that a configurationρ with minimum surplus must have zero surplus. (Observe that the min-
imum can be achieved becauseρ comes from a compact set.) Otherwise, suppose there is at least one
vertex with positive surplus, and letT ′ be all the vertices that are reachable from some vertex with pos-
itive surplus in the directed graphGρ. Hence, it follows that for alle /∈ IT ′ , for all v ∈ T ′, ρv(e) = 0,
and for alle ∈ ST ′ , for all u /∈ T ′, ρu(e) = 0. This means that the rate going intoT ′ is c(IT ′) and all
comes fromIT ′ , and the rate going out ofT ′ is c(ST ′). Since no vertex inT ′ has a deficit and at least
one has positive surplus, it follows thatδ(T ′) > δM , which is a contradiction.
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After we have shown that a configurationρ with zero surplus exists, it can be found by a standard flow
problem, in which eache ∈ IT has supplyce, eachv ∈ T has demandwv · δM , and eache ∈ ST has
demandce. Moreover, in the flow network, there is a directed edge(e, v) if v ∈ Ie and(v, e) if v ∈ Se.
Suppose in a feasible solution, there is a flow with magnitudeθ along a directed edge. If the flow is in
the direction(e, v), thenρv(e) = θ; otherwise, if it is in the direction(v, e), thenρv(e) = −θ.

Recursive Application.The feasibility argument can be applied recursively to the smaller instance de-
fined on(U ′, IU ′ , SU ′) with the corresponding density functionδ′. Indeed, Corollary 4.7 implies that
thatδ′M := max∅6=Q⊂U ′ δ′(Q) < δM .

Claim.
∑

e∈E ce(rI(e) − rS(e)) =
∑

u∈V ρuru.

ConsiderT defined above withδM = δ(T ) = ru for u ∈ T .

Observe that
∑

u∈T ρuru = (c(IT ) − c(ST )) · δM =
∑

e∈IT ce · rI(e) −
∑

e∈ST
ce · rS(e), where the

last equality is due to rule(R3).

Observe that everyu ∈ V will be in exactly one suchT , and everye ∈ E will be accounted for exactly
once in each ofIT andST , ranging over allT ’s. Hence, summing over allT ’s gives the result.

Comment on the Robustness of Diffusion Process.Recall that in Section 3.1, we mention that if
the weight distribution is not carefully designed in Figure3.1, then the diffusion process cannot actu-
ally continue. The following lemma implies that our diffusion process resulting from the procedure in
Figure 4.1 will be robust.

Lemma 4.9 In the diffusion process resulting from Figure 4.1 with the differential equationdfdt = −Lwf ,

at any timet0, there exists someǫ > 0 such thatdfdt is continuous in(t0, t0 + ǫ).

Proof: Observe that as long as the equivalence classes induced byf do not change, then each of them
act as a super vertex, and hence the diffusion process goes smoothly.

At the very instant that equivalence classes merge into someU , Figure 4.1 is actually used to determine
whether the vertices will stay together in the next moment.

An equivalence class can be split in two ways. The first case isthat the equivalence classU is peeled
off layer by layer in the recursive manner described above, because they receive differentr values. In
particular, the (unique) maximal densest subsetT is such a layer.

The second case is more subtle, because it is possible that vertices withinT could be split in the next
moment. For instance, there could be a proper subsetX ( T whoser values might be marginally larger
than the rest after infinitesimal time.

The potential issue is that if the vertices inX go on their own, then the verticesX and also the vertices
in T \ X might experience a sudden jump in their rater, thereby nullifying the “work” performed in
Figure 4.1

Fortunately, this cannot happen, because if the setX could go on its own, it must be the case that
δM = δ(T ) = δ(X). Corollary 4.7 states that in this case, afterX is separated on its own, then in the
remaining instance, we must still haveδ′(T \X) = δM . Hence, the behavior of the remaining vertices
is still consistent with ther value produced in Figure 4.1, and ther value cannot suddenly jump.

Hence, we can conclude that if equivalence classes merge or split at time t0, there exists someǫ > 0
such thatdfdt is continuous in(t0, t0 + ǫ), until the next time equivalence classes merge or split.

4.4 Spectral Properties of Laplacian

We next consider the spectral properties of the normalized LaplacianL induced by the diffusion process
defined in Section 4.1.
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Lemma 4.10 (First-Order Derivatives) Consider the diffusion process satisfying rules(R1) to (R3)
on the measure space withϕ ∈ RV , which corresponds tof = W−1ϕ in the weighted space. Suppose
Lw is the induced operator on the weighted space such thatdf

dt = −Lwf . Then, we have the following
derivatives.

1. d‖f‖2w
dt = −2〈f, Lwf〉w.

2. d〈f,Lwf〉w
dt = −2‖Lwf‖2w.

3. SupposeRw(f) is the Rayleigh quotient with respect to the operatorLw on the weighted space.
Then, forf 6= 0, dRw(f)

dt = − 2
‖f‖4w · (‖f‖

2
w · ‖Lwf‖2w − 〈f, Lwf〉2w) ≤ 0, by the Cauchy-Schwarz

inequality on the〈·, ·〉w inner product, where equality holdsiff Lwf ∈ span(f).

Proof: For the first statement,d‖f‖
2
w

dt = 2〈f, dfdt 〉w = −2〈f, Lwf〉w.

For the second statement, recall from Lemma 4.2 that〈f, Lwf〉w =
∑

e∈E wemaxu,v∈e(fu − fv)
2.

Moreover, recall also thatce = we ·maxu,v∈e(fu − fv). Recall thatr = df
dt , rS(e) = maxu∈Se ru and

rI(e) = minu∈Ie ru.

Hence, by the Envelope Theorem,d〈f,Lwf〉w
dt = 2

∑
e∈E ce · (rS(e) − rI(e)). From Lemma 4.8, this

equals−2‖r‖2w = −2‖Lwf‖2w.

Finally, for the third statement, we have

d
dt

〈f,Lwf〉w
〈f,f〉w = 1

‖f‖4w (‖f‖
2
w · d〈f,Lwf〉w

dt − 〈f, Lwf〉w · d‖f‖
2
w

dt ) = − 2
‖f‖4w · (‖f‖

2
w · ‖Lwf‖2w − 〈f, Lwf〉2w),

where the last equality follows from the first two statements.

We next prove some properties of the normalized LaplacianL with respect to orthogonal projection in
the normalized space.

Lemma 4.11 (Laplacian and Orthogonal Projection) SupposeL is the normalized Laplacian defined
in Lemma 4.8. Moreover, denotex1 := W

1
2

�

1, and letΠ denote the orthogonal projection into the
subspace that is orthogonal tox1. Then, for allx, we have the following:

1. L(x) ⊥ x1,
2. 〈x,Lx〉 = 〈Πx,LΠx〉.
3. For all real numbersα andβ, L(αx1 + βx) = βL(x).

Proof: For the first statement, observe that since the diffusion process is defined on a closed system,
the total measure given by

∑
u∈V ϕu does not change. Therefore,0 = 〈�1, dϕdt 〉 = 〈W

1
2

�

1, dxdt 〉, which
implies thatLx = −dx

dt ⊥ x1.

For the second statement, observe that from Lemma 4.2, we have:

〈x,Lx〉 =∑e∈E we maxu,v∈e( xu√
wu
− xv√

xv
)2 = 〈(x+αx1),L(x+αx1)〉, where the last equality holds

for all real numbersα. It suffices to observe thatΠx = x+ αx1, for some suitable realα.

For the third statement, it is more convenient to consider transformation into the weighted spacef =

W− 1
2x. It suffices to show thatLw(α

�

1 + βf) = βLw(f). This follows immediately because in the

definition of the diffusion process, it can be easily checkedthat∆e(α
�

1 + βf) = β∆e(f).

Proof of Theorem 4.1: SupposeL is the normalized Laplacian induced by the diffusion process in
Lemma 4.8. Letγ2 := min�

0 6=x⊥W
1
2

�

1
R(x) be attained by some minimizerx2. We use the isomorphism

between the three spaces:W− 1
2ϕ = x = W

1
2 f .

The third statement of Lemma 4.10 can be formulated in terms of the normalized space, which states
that dR(x)

dt ≤ 0, where equality holdsiff Lx ∈ span(x).

We claim thatdR(x2)
dt = 0. Otherwise, supposedR(x2)

dt < 0. From Lemma 4.11, we havedxdt = −Lx ⊥
W

1
2

�

1. Hence, it follows that at this moment, the current normalized vector is at positionx2, and is
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moving towards the direction given byx′ := dx
dt |x=x2 such thatx′ ⊥ W

1
2

�

1, and dR(x)
dt |x=x2 < 0.

Therefore, for sufficiently smallǫ > 0, it follows that x′2 := x2 + ǫx′ is a non-zero vector that is

perpendicular toW
1
2

�

1 andR(x′2) < R(x2) = γ2, contradicting the definition ofx2.

Hence, it follows thatdR(x2)
dt = 0, which implies thatLx2 ∈ span(x2). Sinceγ2 = R(x2) = 〈x2,Lx2〉

〈x2,x2〉 ,
it follows thatLx2 = γ2x2, as required.

5 Diffusion Processes

In Section 4, we define a diffusion process in a closed system with respect to a hypergraph according to
the equationdϕdt = −Lϕ, whereϕ ∈ RV is the measure vector, andL is the corresponding operator on
the measure space. In this section, we consider related diffusion processes. In the stochastic diffusion
process, on the top of the diffusion process, each vertex is subject to independent Brownian noise. We
also consider a discretized diffusion operator, which we use to analyze the hop-diameter of a hypergraph.

5.1 Stochastic Diffusion Process

We analyze the process using It ō calculus, and the reader can refer to the textbook by Øksendal [Øks14]
for relevant background.

Randomness Model.We consider the standard multi-dimensional Wiener process{Bt ∈ RV : t ≥ 0}
with independent Brownian motion on each coordinate. Suppose the variance of the Brownian motion
experienced by each vertex is proportional to its weight. Tobe precise, there existsη ≥ 0 such that for
each vertexu ∈ V , the Brownian noise introduced tou till time t is

√
ηwu · Bt(u), whose variance is

ηwut. It follows that the net amount of measure added to the systemtill time t is
∑

u∈V
√
ηwu · Bt(u),

which has normal distributionN(0, ηt · w(V )). Observe that the special case forη = 0 is just the
diffusion process in a closed system.

This random model induces an It ō process on the measure space given by the following stochastic
differential equation:

dΦt = −LΦt dt+
√
η ·W 1

2 dBt,

with some initial measureΦ0

By the transformation into the normalized spacex := W− 1
2ϕ, we consider the corresponding stochastic

differential equation in the normalized space:

dXt = −LXt dt+
√
η dBt,

whereL is the normalized Laplacian from Lemma 4.8. Observe that therandom noise in the normalized
space is spherically symmetric.

Convergence Metric.Given a measure vectorϕ ∈ RV , denoteϕ∗ := 〈�1 ,ϕ〉
w(V ) ·W

�

1, which is the measure

vector obtained by distributing the total measure
∑

u∈V ϕu = 〈�1, ϕ〉 among the vertices such that each
vertexu receives an amount proportional to its weightwu.

For the normalized vectorx = W− 1
2ϕ, observe thatx∗ := W− 1

2ϕ∗ = 〈�1 ,ϕ〉
w(V ) ·W

1
2

�

1 is the projection ofx

into the subspace spanned byx1 := W
1
2

�

1. We denote byΠ the orthogonal projection operator into the
subspace orthogonal tox1.

Hence, to analyze how far the measure is from being stationary, we consider the vectorΦt −Φ∗
t , whose

ℓ1-norm is‖Φt − Φ∗
t‖1 ≤

√
w(V ) · ‖ΠXt‖2. As random noise is constantly delivered to the system,

we cannot hope to argue that these random quantities approach zero ast tends to infinity. However, we
can show that these random variables are stochastically dominated by distributions with bounded mean
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and variance ast tends to infinity. The following lemma states that a larger value of γ2 implies that the
measure is closer to being stationary.

Lemma 5.1 (Stochastic Dominance)Supposeγ2 = min06=x⊥x1 R(x). Then, in the stochastic diffu-
sion process described above, for eacht ≥ 0, the random variable‖ΠXt‖2 is stochastically dominated

by‖X̂t‖2, whereX̂t has distributione−γ2tΠX0 +
√

η
2γ2
· (1− e−2γ2t) ·N(0, 1)V , andN(0, 1)V is the

standardn-dimensional Guassian distribution with independent coordinates.

Proof: Consider the functionh : RV → R given byh(x) := ‖Πx‖22 = ‖x − x∗‖22, wherex∗ :=
〈x1,x〉
w(V ) · x1 andx1 := W

1
2

�

1. Then, one can check that the gradient is∇h(x) = 2Πx, and the Hessian is

∇2h(x) = 2(I − 1
w(V ) ·W

1
2JW

1
2 ), whereJ is the matrix where every entry is 1.

Define the It ō processYt := h(Xt) = 〈ΠXt,ΠXt〉. By the It ō’s lemma, we have

dYt = 〈∇h(Xt), dXt〉+ 1
2(dXt)

T∇2h(Xt) (dXt).

To simplify the above expression, we make the substitutiondXt = −LXt dt+
√
η dBt. From Lemma 4.11,

we have for allx, Lx ⊥ x1 and〈x,Lx〉 = 〈Πx,LΠx〉.
Moreover, the convention for the product of differentials is0 = dt · dt = dt · dBt(u) = dBt(u) · dBt(v)
for u 6= v, anddBt(u) · dBt(u) = dt. Hence, only the diagonal entries of the Hessian are relevant.

We havedYt = −2〈ΠXt,LΠXt〉 dt + η
∑

u∈V (1 − wu

w(V )) dt + 2
√
η · 〈ΠXt, dBt〉. Observing that

ΠXt ⊥ x1, from the definition ofγ2, we have〈ΠXt,LΠXt〉 ≥ γ2 · 〈ΠXt,ΠXt〉. Hence, we have the
following inequality:dYt ≤ −2γ2Yt dt+ ηn dt+ 2

√
η · 〈ΠXt, dBt〉.

We next define another It ō processŶt := 〈X̂t, X̂t〉 with initial valueX̂0 := ΠX0 and stochastic differ-
ential equation:dŶt = −2γ2Ŷt dt+ ηn dt+ 2

√
η · 〈X̂t, dB̂t〉.

We briefly explain whyYt is stochastically dominated bŷYt by using a simple coupling argument. If
Yt < Ŷt, then we can choosedBt anddB̂t to be independent. IfYt = Ŷt, observe that〈ΠXt, dBt〉 and
〈X̂t, dB̂t〉 have the same distribution, because bothdBt anddB̂t are spherically symmetric. Hence, in
this case, we can choose a coupling betweendBt anddB̂t such that〈ΠXt, dBt〉 = 〈X̂t, dB̂t〉.
Using It ō’s lemma, one can verify that the above stochasticdifferential equation can be derived from the
following equation involvingX̂t: dX̂t = −γ2X̂t dt+

√
η dB̂t.

BecausedB̂t has independent coordinates, it follows that the equation can be solved independently for
each vertexu. Again, using the It ō lemma, one can verify thatd(eγ2tXt) =

√
η · eγ2t dB̂t. Therefore,

we have the solution̂Xt = e−γ2tX̂0 +
√
η · e−γ2t

∫ t
0 e

γ2s dB̂s, which has the same distribution as:

e−γ2tX̂0 +
√

η
2γ2
· (1− e−2γ2t) ·N(0, 1)V , as required.

Corollary 5.2 (Convergence and Laplacian) In the stochastic diffusion process, ast tends to infinity,
‖Φt − Φ∗

t‖21 is stochastically dominated byη·w(V )
2γ2

· χ2(n), whereχ2(n) is the chi-squared distribution

with n degrees of freedom. Hence,limt→∞E[‖Φt − Φ∗
t‖1] ≤

√
ηn·w(V )

2γ2
.

Remark. Observe that the total measure introduced into the system is
∑

u∈V
√
ηwu ·Bt(u), which has

standard deviation
√
ηt · w(V ). Hence, ast increases, the “error rate” is at most

√
n

2γ2t
.

Proof: Observe that, ast tends to infinity,Ŷt = ‖X̂t‖22 converges to the distributionη2γ2 · χ
2(n), where

χ2(n) is the chi-squared distribution withn degrees of freedom (having meann and standard deviation√
2n).

Finally, observing that‖Φt − Φ∗
t‖21 ≤ w(V ) · ‖ΠXt‖22, it follows that ast tends to infinity,‖Φt − Φ∗

t‖21
is stochastically dominated by the distributionη·w(V )

2γ2
· χ2(n), which has meanηn·w(V )

2γ2
and standard
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deviationη
√
n·w(V )√
2γ2

.

Corollary 5.3 (Upper Bound for Mixing Time for η = 0) Consider the deterministic diffusion process
with η = 0, and some initial probability measureϕ0 ∈ RV

+ such that〈�1, ϕ0〉 = 1. Denoteϕ∗ :=
1

w(V ) · W
�

1, and ϕ∗
min := minu∈V ϕ∗(u). Then, for anyδ > 0 and t ≥ 1

γ2
log 1

δ
√

ϕ∗
min

, we have

‖Φt − ϕ∗‖1 ≤ δ.

Proof: In the deterministic process withη = 0, stochastic dominance becomes‖ΠXt‖2 ≤ eγ2t ·
‖ΠX0‖2.

Relating the norms, we have‖Φt − ϕ∗‖1 ≤
√

w(V ) · ‖ΠXt‖2 ≤
√

w(V ) · e−γ2t · ‖ΠX0‖2.

Observe that‖ΠX0‖22 ≤ 〈X0,X0〉 = 〈ϕ0,W
−1ϕ0〉 ≤ 1

minu wu
.

Hence, it follows that‖Φt − ϕ∗‖1 ≤ 1√
ϕ∗
min

· e−γ2t, which is at mostδ, for t ≥ 1
γ2

log 1
δ
√

ϕ∗
min

.

5.2 Bottlenecks for the Hypergraph Diffusion Process

In this section we prove that if the hypergraph diffusion process mixes slowly, then it must have a set of
vertices having small expansion (Theorem 3.5).

Theorem 5.4 (Restatement of Theorem 3.5)Given a hypergraphH = (V,E,w) and a probability
distributionϕ0 : V → [0, 1], letϕt denote the probability distribution at timet according to the diffusion
process (Figure 3.1) andϕ∗ be the stationary distribution.

Let δ > 0. Suppose initially‖ϕ0 − ϕ∗‖1 > δ and for some timeT > 0, ‖ϕT − ϕ∗‖1 > δ. Then, there
exists a setS ⊂ V such thatϕ∗(S) ≤ 1

2 and

φ(S) ≤ O
(

1

T
ln
‖ϕ0 − ϕ∗‖1√

ϕ∗
min · δ

)
.

Proof: We consider the transformationxt := W− 1
2ϕt. We denote byΠ the orthogonal projection

operator into the subspace orthogonal tox1 := W
1
2

�

1. Consider the projection̂xt := Πxt onto the
subspace orthogonal tox1. Denotex∗ := W− 1

2ϕ∗ = 1
w(V ) ·W

1
2

�

1, which is the projection ofx0 into the

subspace spanned byx1 := W
1
2

�

1.

Observe thatxt = x∗ + x̂t, wherex∗ is the stationary component and̂xt is the transient component.
Moreover,ϕt − ϕ∗ = W

1
2 x̂t.

The diffusion process on the measure space induces the differential equation on̂xt as follows:
dx̂t

dt = −Lx̂t.
By expressing Lemma 4.10 (1) in terms of the normalized space, we have

d‖x̂t‖2
dt = −2R(x̂t) · ‖x̂t‖2.

Integrating fromt = 0 to T and simplifying, we have

ln ‖x̂0‖
‖x̂T ‖ =

∫ T
0 R(x̂t)dt ≥ T · R(x̂T ),

where the last inequality holds becauseR(x̂t) is decreasing according to Lemma 4.10 (3).

Since the norms are related by
√
wmin · ‖x‖2 ≤ ‖ϕ‖1 ≤

√
w(V ) · ‖x‖2, we have

R(x̂T ) ≤ 1
T ln ‖x̂0‖

‖x̂T ‖ ≤ 1
T ln( 1√

ϕ∗
min

· ‖ϕ0−ϕ∗‖1
‖ϕT−ϕ∗‖1

) ≤ 1
T ln

‖ϕ0−ϕ∗‖1√
ϕ∗
min·δ

.
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Finally, observing that̂xT ⊥ x1, Proposition 6.2 implies that there exists a setS ⊂ V such thatϕ∗(S) ≤
1
2 , andφ(S) ≤ O

(√
R(x̂T )

)
≤ O

(
1
T ln

‖ϕ0−ϕ∗‖1√
ϕ∗
min·δ

)
.

5.3 Lower Bounds on Mixing Time

Next we prove Theorem 3.6.

Theorem 5.5 (Formal statement of Theorem 3.6)Given a hypergraphH = (V,E,w), suppose there
exists a vectory ⊥ x1 in the normalized space such thatR(y) ≤ γ. Then, there exists an initial
probability distributionϕ0 ∈ RV

+ in the measure space such that‖ϕ0 − ϕ∗‖1 ≥ 1
2 . Moreover, for any

δ > 0 andt ≤ 1
4γ ln

√
ϕ∗
min

2δ , at timet of the diffusion process, we have

‖ϕt − ϕ∗‖1 ≥ δ.

We consider the diffusion process from the perspective of the normalized space. Recall thatx1 := W
1
2

�

1

is an eigenvector of the normalized LaplacianL with eigenvalue 0. From Lemma 4.11 (1),L(x) ⊥ x1
for all x ∈ RV . Therefore, the diffusion process has no effect on the subspace spanned byx1, and we
can focus on its orthogonal space.

Lemma 5.6 Supposey ∈ RV is a non-zero vector in the normalized space such thaty ⊥ x1 and
R(y) = γ. If we start the diffusion process withy0 := y, then after timet ≥ 0, we have‖yt‖2 ≥
e−γt · ‖y0‖2.

Proof: By Lemma 4.10 (1) interpreted for the normalized space, we have

d‖yt‖2
dt = −2R(yt) · ‖yt‖2 ≥ −2γ · ‖yt‖2, where the last inequality holds because from Lemma 4.10 (3),

t 7→ R(yt) is a decreasing funtion, which implies thatR(yt) ≤ R(y0) = γ.

Integrating the above gives

‖yt‖2 ≥ e−2γt · ‖y0‖2.
The next lemma shows that given a vector in the normalized space that is orthogonal tox1, a correspond-
ing probability distribution in the measure space that has large distance from the stationary distribution

ϕ∗ := W
�

1

w(V ) can be constructed.

Lemma 5.7 Supposey ∈ RV is a non-zero vector in the normalized space such thaty ⊥ x1 and
R(y) = γ. Then, there existŝy ⊥ x1 such thatR(ŷ) ≤ 4γ andϕ0 := ϕ∗ + W

1
2 ŷ is a probability

distribution (i.e.,ϕ0 ≥ 0), and
∥∥∥W 1

2 ŷ
∥∥∥
1
≥ 1

2 .

Proof: One could try to considerϕ∗ + W
1
2 (αy) for someα ∈ R, but the issue is that to ensure that

every coordinate is non-negative, the scalarα might need to have very small magnitude, leading to a

very small
∥∥∥W 1

2 (αy)
∥∥∥
1
.

We construct the desired vector in several steps. We first considerz := y+ cx1 for an appropriate scalar
c ∈ R such that bothw(supp(z+)) andw(supp(z−)) are at most12 · w(V ), wherez+ is obtained from
z by keeping only the positive coordinates, andz− is obtained similarly from the negative coordinates.
Observe that we havez = z+ + z−.

We useΠ to denote the projection operator into the space orthogonalto x1 in the normalized space.
Then, we havey = Πz = Πz+ + Πz−. Without loss of generality, by replacingz with −z, we can
assume that‖Πz+‖ ≥ 1

2 ‖y‖.
Observe that〈Πz+,LΠz+〉 = 〈z+,Lz+〉 ≤ 〈z,Lz〉 = 〈y,Ly〉,
where the middle inequality follows because〈z,Lz〉 =∑e∈E wemaxu,v∈e( zu√

wu
− zv√

wv
)2.
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Hence, we haveR(Πz+) ≤ 4R(y), and we consider an appropriate scaled vectorŷ := Πẑ, where

ẑ = cz+ for somec > 0 such that〈�1,W 1
2 ẑ〉 = 1.

Hence, it follows that̂y = ẑ − 〈W 1
2

�

1,ẑ〉
w(V ) ·W

1
2

�

1, which implies thatW
1
2 ŷ = W

1
2 ẑ − ϕ∗.

Therefore, we haveϕ0 := ϕ∗ +W
1
2 ŷ = W

1
2 ẑ ≥ 0.

Moreover,
∥∥∥W 1

2 ŷ
∥∥∥
1
≥ 〈�1,W 1

2 ẑ〉 − w(supp(z+))
w(V ) + w(supp(z−))

w(V ) ≥ 1
2 , where the last inequality follows

from w(supp(z+)) ≤ 1
2w(V ).

Proof of Theorem 5.5: Using Lemma 5.7, we can constructŷ from y such that̂y ⊥ x1 andR(ŷ) ≤ 4γ.

Then, we can define the initial probability distributionϕ0 := ϕ∗ +W
1
2 ŷ in the measure space with the

correspondingy0 := ŷ vector in the normalized subspace orthogonal tox1.

By Lemma 5.6, at timet of the difffusion process, we have‖yt‖2 ≥ e−4γt · ‖y0‖2.

Relating the norms of the measure space and the normalized space, we have

‖ϕt − ϕ∗‖1 ≥
√
wmin ·‖yt‖2 ≥

√
wmin ·e−4γt ·‖y0‖2 ≥

√
ϕ∗
min ·e−4γt ·‖ϕ0 − ϕ∗‖1 ≥

√
ϕ∗
min ·e−4γt · 12 .

Hence, fort ≤ 1
4γ ln

√
ϕ∗
min

2δ , we have‖ϕt − ϕ∗‖1 ≥ δ, as required.

Remark 5.8 Observe that we do not know how to efficiently findx2 ⊥ x1 to attainR(x2) = γ2.
However, the approximation algorithm in Theorem 8.2 allowsus to efficiently compute somey such that
R(y) ≤ O(log r) · γ2.

Hence, we can compute a probability distributionϕ0 in polynomial time such

‖ϕ0 − ϕ∗‖1 ≥
1

2
and tmix

δ (ϕ0) ≥ Ω(
1

γ2 log r
log

ϕ∗
min

δ
).

5.4 Hypergraph Diameter

In this section we prove Theorem 3.7.

Theorem 5.9 (Restatement of Theorem 3.7)Given a hypergraphH = (V,E,w), its hop-diameter is

diam(H) = O
(
logNw

γ2

)
,

whereNw := maxu∈V
w(V )
wu

andγ2 is the eigenvalue of the normalized Laplacian as defined in Theo-
rem 4.1.

We start by defining the notion of discretized diffusion operator.

Definition 5.10 (Discretized Diffusion Operator) Recalling that a diffusion process in the measure
space is defined in Section 4.1 bydϕ

dt = −Lϕ, we define a discretized diffusion operator on the measure
space byM := I− 1

2 · L.

Moreover, using the isomorphism between the measure space and the normalized space, we define the
corresponding operator on the normalized spaceM := I− 1

2 · L.

When we consider the diffusion process, it is more convenient to think in terms of the measure space.
However, the normalized space is more convenient for considering orthogonality.

Next, we bound the norm of the discretized diffusion operator.

Lemma 5.11 For a vectorx in the normalized space such thatx ⊥ x1 := W
1
2

�

1, we have‖Mx‖2 ≤√
1− γ2

2 · ‖x‖2.
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Proof: Fix x ⊥ x1 := W
1
2

�

1. Observe thatMx = M̂x for some symmetric matrix̂M := I − 1
2 · L̂,

where the matrix̂L depends onx and has the form̂L := I −W− 1
2 ÂW− 1

2 . The precise definition of̂A
(depending onx) is given in Section 4.1, but the important property is thatÂ is a non-negative symmetric
matrix such that sum of entries in rowu is wu.

Standard spectral graph theory and linear algebra state that RV has a basis consisting of orthonormal
eigenvectors{v1, v2, . . . , vn} of L̂, whose eigenvalues are in[0, 2]. Hence, the matrix̂M has the same
eigenvectors; suppose the eigenvalue ofvi is λi ∈ [0, 1].

We write x :=
∑n

i=1 civi for some realci’s. Then, we have‖Mx‖22 =
∑

i λ
2
i c

2
i ≤

∑
i λic

2
i =

〈x,Mx〉 = 〈x, x〉 − 1
2〈x,Lx〉 ≤ (1− γ2

2 ) ‖x‖
2
2,

where the last inequality follows from〈x,Lx〉 ≥ γ2 ‖x‖22, because of the definition ofγ2 andx ⊥ x1.

Hence, the result follows.

Proof of Theorem 3.7: The high level idea is based on the following observation. SupposeS is
the support of a non-negative vectorϕ in the measure space. Then, applying the discretized diffusion
operatorM toϕ has the effect of spreading the measure onS to vertices that are within one hop fromS,
where two verticesu andv are within one hop from each other if there is an edgee that contains bothu
andv.

Therefore, to prove that a hypergraph has hop-diameter at most l, it suffices to show that, starting from
a measure vectorϕ whose support consists of only one vertex, applying the operatorM to ϕ for l times
spreads the support to all vertices. Since we consider orthogonal projection, it will be more convenient
to perform the calculation in the normalized space.

Given a vertexu ∈ V , denoteχu ∈ RV as the corresponding characteristic unit vector in the normalized
space. The goal is to show that ifl is large enough, then for all verticesu andv, we have〈χu,Ml(χv)〉 >
0.

We useΠ to denote the projection operator into the subspace that is orthogonal tox1 := W
1
2

�

1. Then,
we haveχu =

√
wu

w(V ) · x1 +Πχu.

Lemma 4.11 implies that for allx,M(x) ⊥ x1, and for all realα,M(αx1 + x) = αx1 +M(x).

Hence, we have〈χu,Mlχv〉 =
√
wuwv

w(V ) + 〈Πχu,Ml(Πχv)〉. Observe that the first term
√
wuwv

w(V ) ≥ 1
Nw

,

whereNw := maxu∈V
w(V )
wu

.

For the second term, we have〈Πχu,Ml(Πχv)〉 ≤ ‖Πχu‖2 ·
∥∥Ml(Πχv)

∥∥
2
≤ (1− γ2

2 )
l/2, where the first

inequality follows from Cauchy-Schwartz and the second inequality follows from applying Lemma 5.11
for l times.

Hence, forl larger than2 logNw

log 1

1−
γ2
2

= O
(
logNw

γ2

)
, we have〈Πχu,Ml(Πχv)〉 > 0, as required.

6 Cheeger Inequalities for Hypergraphs

In this section, we generalize the Cheeger inequalities to hypergraphs. For the basic version, we relate
the expansion of a hypergraph with the eigenvalueγ2 of the LaplacianL defined in Section 4. However,
at the moment, we cannot exploit the higher order spectral properties ofL. Instead, we achieve higher
order Cheeger inequalities in terms of the orthogonal minimaximizers defined in Section 3.3.

6.1 Basic Cheeger Inequalities for Hypergraphs

We prove the basic Cheeger inequalities for hypergraphs.
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Theorem 6.1 (Restatement of Theorem 3.8)Given an edge-weighted hypergraphH, we have:

γ2
2
≤ φH ≤ γ2 + 2

√
γ2
rmin

≤ 2
√
γ2,

whereφH is the hypergraph expansion andγ2 is the eignenvalue ofL as in Theorem 4.1.

Towards proving this theorem, we first show that agood line-embedding of the hypergraph suffices to
upper bound the expansion.

Proposition 6.1 LetH = (V,E,w) be a hypergraph with edge weightsw : E → R+ and letf ∈ RV
+

be a non-zero vector. Then, there exists a setS ⊆ supp(f) such that

φ(S) ≤
∑

e∈E wemaxu,v∈e |fu − fv|∑
uwufu

.

Proof: The proof is similar to the proof of the corresponding statement for vertex expansion in
graphs [LRV13]. Observe that in the result, the upper bound on the right hand side does not change
if f is multiplied by a positive scalar. Hence, we can assume, without loss of generality, thatf ∈ [0, 1]V .

We define a family of functions{Fr : [0, 1]→ {0, 1}}r∈[0,1] as follows.

Fr(x) =

{
1 x ≥ r

0 otherwise
.

For r ≥ 0 and a vectorf ∈ [0, 1]V , we consider the induced vectorFr(f) ∈ {0, 1}V , whose coordinate
corresponding tov is Fr(fv). LetSr denote the support of the vectorFr(f). For anya ∈ [0, 1] we have

∫ 1

0
Fr(a) dr = a . (6.1)

Now, observe that ifa − b ≥ 0, thenFr(a) − Fr(b) ≥ 0,∀r ∈ [0, 1]; similarly, if a − b ≤ 0 then
Fr(a)− Fr(b) ≤ 0,∀r ∈ [0, 1]. Therefore,

∫ 1

0
|Fr(a)− Fr(b)| dr =

∣∣∣∣
∫ 1

0
Fr(a)dr −

∫ 1

0
Fr(b)dr

∣∣∣∣ = |a− b| . (6.2)

Also, for a hyperedgee, if u = argmaxu∈e fu andv = argminu∈e fu, then

|Fr(fu)− Fr(fv)| ≥ |Fr(fu′)− Fr(fv′)| , ∀r ∈ [0, 1] and∀u′, v′ ∈ e . (6.3)

Therefore, we have
∫ 1
0

∑
ewemaxu,v∈e |Fr(fu)− Fr(fv)| dr∫ 1

0

∑
uwuFr(fu)dr

=

∑
ewemaxu,v∈e

∫ 1
0 |Fr(fu)− Fr(fv)| dr∫ 1

0

∑
uwuFr(fu)dr

(Using 6.3)

=

∑
ewemaxu,v∈e

∣∣∣
∫ 1
0 Fr(fu)dr−

∫ 1
0 Fr(fv)dr

∣∣∣
∑

uwu

∫ 1
0 Fr(fu)dr

(Using 6.2)

=

∑
ewemaxu,v∈e |fu − fv|∑

uwufu
. (Using 6.1)

Therefore, there existsr′ ∈ [0, 1] such that
∑

ewemaxu,v∈e |Fr′(fu)− Fr′(fv)|∑
uwuFr′(fu)

≤
∑

ewemaxu,v∈e |fu − fv|∑
uwufu

.
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SinceFr′(·) takes value in{0, 1}, we have
∑

ewemaxu,v∈e |Fr′(fu)− Fr′(fv)|∑
u∈V wuFr′(fu)

=

∑
ewe · I [e is cut bySr′ ]∑

u∈Sr′
wu

= φ(Sr′) .

Therefore,

φ(Sr′) ≤
∑

ewemaxu,v∈e |fu − fv|∑
uwufu

and Sr′ ⊆ supp(f) .

Proposition 6.2 Given an edge-weighted hypergraphH = (V,E,w) and a non-zero vectorf ∈ RV

such thatf ⊥w
�

1, there exists a setS ⊂ V such thatw(S) ≤ w(V )
2 and

φ(S) ≤ Dw(f) + 2

√
Dw(f)

rmin
,

whereDw(f) =
∑

e∈E we maxu,v∈e (fu−fv)2∑
u∈V wuf2

u
andrmin = mine∈E |e|.

Proof: Let g = f + c
�

1 for an appropriatec ∈ R such that bothw(supp(g+)) andw(supp(g−)) are at
most w(V )

2 . For instance, sort the coordinates off such thatf(v1) ≤ f(v2) ≤ · · · ≤ f(vn) and pick

c = f(vi), wherei is the smallest index such that
∑i

j=1w(vj) ≥
w(V )
2 .

Sincef ⊥w
�

1, it follows that 〈g, �

1〉w = c〈�1, �

1〉w. Hence, we have〈f, f〉w = 〈g, g〉w − 2c〈g, �

1〉w +

c2〈�1, �

1〉w = 〈g, g〉w − c2〈�1, �

1〉w ≤ 〈g, g〉w .

Therefore, we have

Dw(f) =

∑
e∈E wemaxu,v∈e(gu − gv)

2

〈f, f〉w
≥
∑

e∈E wemaxu,v∈e(gu − gv)
2

〈g, g〉w
= Dw(g) .

For anya, b ∈ R, we have
(a+ − b+)2 + (a− − b−)2 ≤ (a− b)2.

Therefore, we have

Dw(f) ≥ Dw(g) =

∑
e∈E wemaxu,v∈e(gu − gv)

2

∑
uwug2u

≥
(∑

e∈E wemaxu,v∈e(g+u − g+v )
2
)
+
(∑

e∈E wemaxu,v∈e(g−u − g−v )
2
)

∑
uwu(g

+
u )2 +

∑
u wu(g

−
u )2

≥ min

{∑
e∈E wemaxu,v∈e(g+u − g+v )

2

∑
uwu(g

+
u )2

,

∑
e∈E wemaxu,v∈e(g−u − g−v )

2

∑
u wu(g

−
u )2

}

= min
{
Dw(g

+),Dw(g
−)
}
.
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Let h ∈ {g+, g−} be the vector corresponding the minimum in the previous inequality. Then, we have
∑

e∈E
we max

u,v∈e

∣∣h2u − h2v
∣∣ =

∑

e∈E
we max

u,v∈e
|hu − hv| (hu + hv)

=
∑

e∈E
we max

u,v∈e
(hu − hv)

2 + 2
∑

e∈E
wemin

u∈e
hu max

u,v∈e
|hu − hv|

≤
∑

e∈E
we max

u,v∈e
(hu − hv)

2 + 2

√∑

e∈E
we max

u,v∈e
(hu − hv)2

√√√√
∑

e∈E
we ·

∑
u∈e h

2
u

rmin

=
∑

e∈E
we max

u,v∈e
(hu − hv)

2 + 2

√∑

e∈E
we max

u,v∈e
(hu − hv)2

√∑
u∈V wuh2u
rmin

,

where the inequality follows from the Cauchy-Schwarz’s Inequality.

UsingDw(h) ≤ Dw(f),

∑
e∈E wemaxu,v∈e

∣∣h2u − h2v
∣∣

∑
uwuh2u

≤ Dw(h) + 2

√
Dw(h)

rmin
≤ Dw(f) + 2

√
Dw(f)

rmin
.

Invoking Proposition 6.1 with vectorh2, we get that there exists a setS ⊂ supp (h) such that

φ(S) ≤ Dw(f) + 2

√
Dw(f)

rmin
and w(S) ≤ w(supp (h)) ≤ w(V )

2
.

The “hypergraph orthogonal separators” construction due to [LM14b] can also be used to prove Propo-
sition 6.2, albeit with a much larger absolute constant in the bound on the expansion of the setS.

We are now ready to prove Theorem 6.1.

Proof of Theorem 6.1 (and 3.8):

1. LetS ⊂ V be any set such thatw(S) ≤ w(V )
2 , and letg ∈ {0, 1}V be the indicator vector ofS.

Let f be the component ofg orthogonal to
�

1 (in the weighted space). Then,g = f + c
�

1, where

c = 〈g,�1〉w
〈�1,�1〉w

= w(S)
w(V ) .

Moreover, as in the proof of Proposition 6.2, we have〈f, f〉w = 〈g, g〉w − c2〈�1, �

1〉w = w(S) ·
(1− w(S)

w(V )) ≥
w(S)
2 .

Then, sinceg 6= �

1, we have0 6= f ⊥w
�

1 and so we have

γ2 ≤ Dw(f) =

∑
ewemaxu,v∈e(gu − gv)

2

〈f, f〉w
≤ w(∂S)

w(S)/2
= 2φ(S).

Since the choice of the setS was arbitrary, we haveγ22 ≤ φH .

2. Invoking Proposition 6.2 with the minimizerh2 such thatγ2 = Dw(h2), we get thatφH ≤
γ2 + 2

√
γ2
rmin

.

For γ2 ≤ 1
4 , we observe thatrmin ≥ 2 and haveφH ≤ (12 +

√
2) · √γ2 ≤ 2

√
γ2; for γ2 > 1

4 ,
observe that we haveφH ≤ 1 ≤ 2

√
γ2.
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We remark that the constant 2 in the upper bound can be improved slightly by optimizing the
threshold forγ2 in the above case analysis, and further considering cases whetherrmin = 2 or
rmin ≥ 3.

6.2 Higher Order Orthogonal Minimaximizers

As mentioned in Section 3.3, we do not yet know about higher order spectral properties of the Laplacian
L. Hence, to achieve results like higher order Cheeger-like inequalities, we consider the notion of
orthogonal minimaximizers with respect to the discrepancyratio.

In Section 3.3, the parametersξk andζk are defined in terms of the normalized space. We can equiv-
alently define them in terms of the weighted space asξk := minf1,...,fk maxi∈[k]Dw(fi) and ζk :=
minf1,...,fk max{Dw(f) : f ∈ span{f1, . . . , fk}}, where the minimum is overk non-zero mutually or-
thogonal vectorsf1, f2, . . . , fk in the weighted space. The proofs shall work with either the normalized
or the weighted space, depending on which is more convenient.

We do not know an efficient method to findk orthonormal vectors that achieveξk or ζk. In Section 8,
we describe how approximations of these vectors can be obtained.

We prove Lemma 3.9 that compares the parametersγk, ξk andζk by the following claims.

Claim 6.2 For k ≥ 1, ξk ≤ γk.

Proof: Suppose the procedure produces{γi : i ∈ [k]}, which is attained by orthonormal vectors
Xk := {xi : i ∈ [k]} in the normalized space. Observe thatmaxi∈[k]D(xi) = D(xk) = γk, sincexk
could have been a candidate in the minimum for definingγi becausexk ⊥ xj, for all j ∈ [k − 1].

SinceXk is a candidate for taking the minimum over sets ofk orthonormal vectors in the definition of
ξk, it follows thatξk ≤ γk.

Claim 6.3 For k ≥ 1, γk ≤ ζk.

Proof: Fork = 1, γ1 = ζ1 = 0.

For k > 1, suppose the{γi : i ∈ [k − 1]} have already been constructed with the corresponding
orthonormal minimizersXk−1 := {xi : i ∈ [k − 1]}.
Let Yk := {yi : i ∈ [k]} be an arbitrary set ofk orthonormal vectors. Since the subspace orthogonal to
Xk−1 has rankn−k+1 and the span ofYk has rankk, there must be a non-zeroy ∈ span(Yk)∩X⊥

k−1.

Hence, it follows thatγk = min�

0 6=x∈X⊥
k−1

D(x) ≤ maxy∈span(Yk)D(y). Since this holds for any setYk

of k orthonormal vectors, the result follows.

Claim 6.4 Given anyk orthogonal vectors{fi : i ∈ [k]} in the weighted space. We have,

ζk ≤ kmax
i∈[k]

Dw(fi).

Moreover, if thefi’s have disjoint support, we have

ζk ≤ 2max
i∈[k]

Dw(fi).

Proof: Here it will be convenient to consider the equivalent discrepancy ratios for the weighted space.

It suffices to show that for anyh ∈ span({fi : i ∈ [k]}), Dw(h) ≤ kmaxi∈[k]Dw(fi).

Suppose for some scalarsαi’s, h =
∑

i∈[k] αifi.
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Foru, v ∈ V we have

(h(u) − h(v))2 = (
∑

i∈[k]
αi(fi(u)− fi(v)))

2

≤ k
∑

i∈[k]
α2
i (fi(u)− fi(v))

2,

where the last inequality follows from Cauchy-Schwarz inequality. In the casefi’s have disjoint support,
we have

(h(u)− h(v))2 ≤ 2
∑

i∈[k]
α2
i (fi(u)− fi(v))

2.

For eache ∈ E we have

max
u,v∈e

(h(u)− h(v))2 ≤ max
u,v∈e

k
∑

i∈[k]
α2
i (fi(u)− fi(v))

2

≤ k
∑

i∈[k]
α2
i max
u,v∈e

(fi(u)− fi(v))
2.

Therefore, we have

Dw(h) =

∑
ewemaxu,v∈e (h(u) − h(v))2∑

u∈V wuh(u)2

≤
k
∑

i∈[k] α
2
i

∑
ewemaxu,v∈e (fi(u)− fi(v))

2

∑
i∈[k] α

2
i

∑
u∈V wufi(u)2

≤ kmax
i∈[k]

Dw(fi),

as required.

Claim 6.5 We haveγ2 = ζ2.

Proof: From Claim 6.3, we already haveγ2 ≤ ζ2. Hence, it suffices to show the other direction. We
shall consider the discrepancy ratio for the weighted space.

Supposef ⊥w 1 attainsDw(f) = γ2. Then, we have

ζ2 ≤ max
g=af+b1

∑
e∈E wemaxu,v∈e (gu − gv)

2

∑
v∈V wvg2v

= max
g=af+b1

∑
e∈E wemaxu,v∈e a2(fu − fv)

2

∑
v∈V wv(afv + b)2

= max
g=af+b1

∑
e∈E wemaxu,v∈e a2(fu − fv)

2

∑
v∈V wv(a2f2

v + b2) + 2ab
∑

v∈V wvfv

≤ max
g=af+b1

∑
e∈E wemaxu,v∈e a2(fu − fv)

2

∑
v∈V a2wvf2

v

= γ2.

6.3 Small Set Expansion

Even though we do not have an efficient method to generatek orthonormal vectors that attainξk. As a
warm up, we show that an approximation can still give us a bound on the expansion of a set of size at
mostO(nk ).
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Theorem 6.6 (Formal Statement of 3.11)SupposeH = (V,E,w) is a hypergraph, andf1, f2, . . . , fk
are k orthonormal vectors in the weighted space such thatmaxs∈[k]Dw(fs) ≤ ξ. Then, a random set

S ⊂ V can be constructed in polynomial time such that withΩ(1) probability, |S| ≤ 24|V |
k and

φ(S) ≤ Cmin{
√

r log k, k log k log log k ·
√

log r} ·
√

ξ,

whereC is an absolute constant andr is the size of the largest hyperedge inE.

Our proof is achieved by a randomized polynomial time Algorithm 1 that computes a setS satisfying
the conditions of the theorem, given vectors whose discrepancy ratios are at mostξ. We will use the
following orthogonal separator[LM14b] subroutine. We say that a setS cutsanother sete, if there
existu, v ∈ e such thatu ∈ S andv 6∈ S.

Fact 6.7 (Orthogonal Separator [LM14b]) There exists a randomized polynomial time algorithm that,
given a set of unit vectors{ū}u∈V , parametersβ ∈ (0, 1) and τ ∈ Z+, outputs a random set̂S ⊂
{ū}u∈V such that for some absolute constantc1 andα = Θ( 1τ ), we have the following.

1. For everyū, Pr[ū ∈ Ŝ] = α.

2. For everyū, v̄ such that〈ū, v̄〉 ≤ β,

Pr[ū ∈ Ŝ and v̄ ∈ Ŝ] ≤ α

τ
.

3. For anye ⊂ {ū}u∈V

Pr[e is “cut” by Ŝ] ≤ c1√
1− β

· ατ log τ log log τ
√

log |e| · max
ū,v̄∈e

‖ū− v̄‖ .

Remark 6.8 We remark that the vectors do not have to satisfy theℓ22-constraints in this version of
orthogonal separators [LM14b].

Algorithm 1 Small Set Expansion

1. Spectral Embedding. Let f1, . . . , fk be orthonormal vectors in theweighted spacesuch that
maxs∈[k]Dw(fs) ≤ ξ. We map a vertexi ∈ V to a vectorui ∈ Rk defined as follows. Fori ∈ V
ands ∈ [k],

ui(s) = fs(i) .

In other words, we map the vertexu to the vector formed by taking the coordinate corresponding
to vertexu from f1, . . . , fk. We consider the Euclideanℓ2 norm inRk.

2. Normalization. For everyi ∈ V , let ũi =
ui

‖ui‖ .

3. Random Projection. Using Fact 6.7 (orthogonal separator), sample a random setŜ from the set
of vectors{ũi}i∈V with β = 99/100 andτ = k, and define the vectorX ∈ RV as follows.

Xi :=

{
‖ui‖2 if ũi ∈ Ŝ

0 otherwise
.

4. Sweep Cut. Sort the coordinates of the vectorX in decreasing order and output the prefix having
the least expansion (See Proposition 6.1).

35



We first prove some basic facts about the spectral embedding (Lemma 6.9), where the analogous facts
for graphs are well known.

Lemma 6.9 (Spectral embedding)We have the following.

1. ∑
e∈E wemaxi,j∈e ‖ui − uj‖2∑

i∈V wi ‖ui‖2
≤ max

s∈[k]
Dw(fs) .

2. ∑

i∈V
wi ‖ui‖2 = k .

3. ∑

i∈V
wi 〈uj , ui〉2 = ‖uj‖2 , ∀j ∈ V .

4. ∑

e∈E
wemax

i∈e
‖ui‖ ·max

i,j∈e
‖ui − uj‖ ≤ k ·

√
max
s∈[k]

Dw(fs).

Proof:

1. For the first statement, we have
∑

e∈E we maxi,j∈e‖ui−uj‖2∑
i∈V wi‖ui‖2

=
∑

e∈E we maxi,j∈e

∑
s∈[k](fs(i)−fs(j))2∑

i∈V wi

∑
s∈[k] fs(i)

2

≤
∑

s∈[k]

∑
e∈E we maxi,j∈e(fs(i)−fs(j))2∑

s∈[k]

∑
i∈V wifs(i)2

≤ maxs∈[k]Dw(fs).

2. The second statement follows because eachfs has norm1 in the weighted space.

3. For the third statement,

∑

i∈V
wi 〈uj , ui〉2 =

∑

i∈V
wi


∑

s∈[k]
fs(j)fs(i)




2

=
∑

i∈V
wi

∑

s,t∈[k]
fs(j)fs(i)ft(j)ft(i)

=
∑

s,t∈[k]
fs(j)ft(j)

∑

i∈V
wifs(i)ft(i)

=
∑

s,t∈[k]
fs(j)ft(j) · 〈fs, ft〉w

=
∑

s,t∈[k]
fs(j)ft(j) · I [s = t]

=
∑

s∈[k]
uj(s)

2

= ‖uj‖2 .

4. For the fourth statement, using the Cauchy-Schwarz inequality, we have
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∑

e∈E
wemax

i∈e
‖ui‖ ·max

i,j∈e
‖ui − uj‖ ≤

√∑

e∈E
wemax

i∈e
‖ui‖2 ·

√∑

e∈E
wemax

i,j∈e
‖ui − uj‖2

=
∑

e∈E
wemax

i∈e
‖ui‖2 ·

√√√√
∑

e∈E wemaxi,j∈e ‖ui − uj‖2∑
e∈E wemaxi∈e ‖ui‖2

≤
∑

e∈E
wemax

i∈e
‖ui‖2 ·

√
max
s∈[k]

Dw(fs),

where the last inequality follows from the first statement.

To finish with the proof, observe that
∑

e∈E wemaxi∈e ‖ui‖2 ≤
∑

i∈V wi ‖ui‖2 = k, where the last equality follows from the second
statement.

We denoteD := τ√
1−β
· log τ log log τ · √log r.

Main Analysis To prove that Algorithm 1 outputs a set which meets the requirements of Theorem 6.6,
we will show that the vectorX meets the requirements of Proposition 6.1. We prove an upperbound
on the numerator

∑
e∈E wemaxi,j∈e |Xi −Xj | in Lemma 6.11 and a lower bound on the denominator∑

i∈V wiXi in Lemma 6.13. We first show a technical lemma.

Lemma 6.10 For any non-zero vectorsu andv, ‖ũ− ṽ‖ ≤ 2 ‖u−v‖√
‖u‖2+‖v‖2

.

Proof: Denotea := ‖u‖, b := ‖v‖ andθ := 〈ũ, ṽ〉. Then, we have

‖ũ− ṽ‖2 (‖u‖2 + ‖v‖2) = (2− 2θ)(a2 + b2)

≤ 4(a2 − 2abθ + b2) = 4 ‖u− v‖2 ,

where the inequality is equivalent to(1 + θ)(a2 + b2)− 4abθ ≥ 0.

To see why this is true, consider the functionh(θ) := (1 + θ)(a2 + b2) − 4abθ for θ ∈ [−1, 1]. Since
h′(θ) is independent ofθ, h is either monotonically increasing or decreasing. Hence, to show thath is
non-negative, it suffices to check that bothh(−1) andh(1) are non-negative.

Lemma 6.11 We haveE[
∑

e∈E wemaxi,j∈e |Xi −Xj|] ≤ O(D) · √ξ.

Proof: For an edgee ∈ E we have

E[max
i,j∈e
|Xi −Xj|] ≤ max

i,j∈e

∣∣∣‖ui‖2 − ‖uj‖2
∣∣∣ · Pr[ũi ∈ Ŝ ∀i ∈ e] +max

i∈e
‖ui‖2 · Pr[e is cut byŜ]. (6.4)

By Fact 6.7 (1), the probability in the first term is at mostΘ( 1k ). Hence, the first term is at most

Θ(1)

k
·max
i,j∈e

∣∣∣‖ui‖2 − ‖uj‖2
∣∣∣ ≤ Θ(1)

k
·max
i,j∈e
‖ui − uj‖ · ‖ui + uj‖ ≤

Θ(1)

k
·max
i,j∈e
‖ui − uj‖max

i∈e
‖ui‖ .

(6.5)
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To bound the second term in (6.4), we divide the edge setE into E1 andE2 as follows.

E1 :=

{
e ∈ E : max

i,j∈e
‖ui‖2

‖uj‖2
≤ 2

}
and E2 :=

{
e ∈ E : max

i,j∈e
‖ui‖2

‖uj‖2
> 2

}
.

E1 is the set of those edges whose vertices have roughly equal lengths andE2 is the set of those edges
whose vertices have large disparity in lengths.

Claim 6.12 SupposeE1 andE2 are as defined above. Then, the following holds.

(a) For e ∈ E1, we have
Pr[e is cut byŜ] ≤ O(αD) · maxi,j∈e‖ui−uj‖

maxi∈e‖ui‖ .

(b) For e ∈ E2, we havemaxi∈e ‖ui‖2 ≤ 4maxi∈e ‖ui‖maxi,j∈e ‖ui − uj‖.

Proof: We prove the two statements.

(a) Fore ∈ E1, using Lemma 6.10 and Fact 6.7, the probability thate is cut byŜ is at most

O(αD) ·max
i,j∈e

‖ui − uj‖√
‖ui‖2 + ‖uj‖2

≤ O(αD) · maxi,j∈e ‖ui − uj‖
maxi∈e ‖ui‖

,

where the inequality follows becausee ∈ E1.

(b) Fix anye ∈ E2, and suppose the vertices ine = [r] are labeled such that‖u1‖ ≥ ‖u2‖ ≥ . . . ≥ ‖ur‖.
Then, from the definition ofE2, we have

‖u1‖2

‖ur‖2
> 2 .

Hence,maxi,j∈e ‖ui − uj‖ ≥ ‖u1 − ur‖ ≥ (1− 1√
2
)·‖u1‖. Therefore,maxi∈e ‖ui‖2 ≤ 4maxi∈e ‖ui‖maxi,j∈e ‖ui − u

For a hyperedgee ∈ E1, using Claim 6.12 (a), the second term in (6.4) is at most
O(D)
k maxi∈e ‖ui‖maxi,j∈e ‖ui − uj‖.

For e ∈ E2, in the second term of (6.4), we can just upperbound the probability trivially by 1 ≤ O(D)
k ,

and use Claim 6.12 (b) to conclude that the second term is alsoat most
O(D)
k maxi∈e ‖ui‖maxi,j∈e ‖ui − uj‖.

Hence, inequality (6.4) becomes:

E[max
i,j∈e
|Xi −Xj|] ≤

O(D)

k
·max

i∈e
‖ui‖max

i,j∈e
‖ui − uj‖ .

Summing over all hyperedgese ∈ E, we have

E[
∑

e∈E
wemax

i,j∈e
|Xi −Xj |] ≤

O(D)

k
·
∑

e∈E
wemax

i∈e
‖ui‖ ·max

i,j∈e
‖ui − uj‖

≤ O(D) ·
√

ξ,

where the last inequality follows from Lemma 6.9 (4).
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Lemma 6.13 We have

Pr[
∑

i∈V
wiXi >

1

2
] ≥ 1

12
.

Proof: We denoteY :=
∑

i∈V wiXi. We first computeE[Y ] as follows.

E[Y ] =
∑

i∈V
wi ‖ui‖2 Pr[ũ ∈ Ŝ]

=
∑

i∈V
wi ‖ui‖2 · α (From Fact 6.7 (1))

= kα (Using Lemma 6.9 (2)).

Next we give an upper bound ofE[Y 2].

E[Y 2] =
∑

i,j∈V
wiwj ‖ui‖2 ‖uj‖2 Pr[ũi, ũj ∈ Ŝ]

≤
∑

i,j:
〈ũi,ũj〉≤β

wiwj ‖ui‖2 ‖uj‖2 Pr[ũi, ũj ∈ Ŝ] +
∑

i,j:
〈ũi,ũj〉>β

wiwj ‖ui‖2 ‖uj‖2 Pr[ũi, ũj ∈ Ŝ].

We use Fact 6.7 (2) to bound the first term, and use the trivial bound of 1
k (Fact 6.7 (1)) to bound

Pr[ũi, ũj ∈ S] in the second term. Therefore,

E[Y 2] ≤
∑

i,j:
〈ũi,ũj〉≤β

wiwj ‖ui‖2 ‖uj‖2 ·
α

k
+

∑

i,j:
〈ũi,ũj〉>β

wiwj ‖ui‖2 ‖uj‖2 ·
〈ũi, ũj〉2

β2
· α

≤
∑

i,j

wiwj

(
α ‖ui‖2 ‖uj‖2

k
+

α

β2
〈ui, uj〉2

)

=
α

k

(∑

i

wi ‖ui‖2
)2

+
α

β2

∑

i,j

wiwj 〈ui, uj〉2

=
α

k
· k2 + α

β2
· k = αk(1 +

1

β2
) ≤ 3kα. (Using Lemma 6.9)

SinceY is a non-negative random variable, we get using the Paley-Zygmund inequality that

Pr[Y ≥ 1

2
E[Y ]] ≥

(
1

2

)2
E[Y ]2

E[Y 2]
=

1

4
· 1
3
=

1

12
.

This finishes the proof of the lemma.

We are now ready to finish the proof of Theorem 6.6.

Proof of Theorem 6.6:

(1) We first show that Algorithm 1 givesS ⊂ V such that|S| = O(nk ) andφ(S) = O(k log k log log k ·√
ξ log r).

By the definition of Algorithm 1,

E[|supp(X)|] = n

k
.

Therefore, by Markov’s inequality,

Pr[|supp(X)| ≤ 24n

k
] ≥ 1− 1

24
. (6.6)
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Using Markov’s inequality and Lemma 6.11, for some large enough constantC1 > 0,

Pr[
∑

e∈E
we max

u,v∈e
|Xu −Xv| ≤ C1D ·

√
ξ] ≥ 1− 1

48
. (6.7)

Therefore, using a union bound over (6.6), (6.7) and Lemma 6.11, we get that with probability at least
1
48 , the following happens.

(1)
∑

e∈E we maxi,j∈e|Xi−Xj |∑
i∈V wiXi

≤ O(D) · √ξ, and

(2) |supp(X)| ≤ 24n
k .

When these two events happen, from Proposition 6.1, Algorithm 1 outputs a setS such thatφ(S) ≤
O(D) · √ξ and|S| ≤ |supp(X)| = O(nk ), as required.

(2) We next show that algorithmic version [LRTV12, LOT12] of Fact 3.10 for 2-graphs can give us
S ⊂ V such that|S| = O(nk ) andφ(S) = O(

√
rξ log k).

Given edge-weighted hypergraphH = (V,E,w), we define an edge-weighted 2-graphG = (V,E′) as
follows. For eache ∈ E, wherere = |e|, add a complete graph one with each pair having weightwe

re−1 .
Observe that eventually a pair{u, v} in G has weight derived from alle ∈ E such that bothu andv are
in e. In this construction, each vertexu has the same weight inH andG.

We first relate the discrepancy ratios of the two graphs by showing thatDG
w(f) ≤ r

2 · DH
w (f). Since the

denominators are the same, we compare the contribution of each hyperedgee ∈ E to the numerators.
For e ∈ E with re = |e|, its contribution to the numerator ofDG

w(f) is we

re−1

∑
{u,v}∈(e2)

(fu − fv)
2 ≤

we · re2 ·maxu,v∈e(fu − fv)
2, which is re

2 times the contribution ofe to the numerator ofDH
w (f).

Hence, Fact 3.10 for 2-graphs implies that given vectors orthogonal vectorsf1, f2, . . . , fk in the weighted
space (wheremaxi∈[k]DG

w(fi) ≤ rξ
2 ), there is a procedure to returnS such that|S| = O(nk ) and

φG(S) = O(
√
rξ log k).

Therefore, it suffices to prove thatφH(S) ≤ φG(S). Again, the denominators involved are the same.
Hence, we compare the numerators. For each hyperedgee ∈ ∂S, supposere = |e| andae = |e ∩ S|,
where0 < ae < re. Then, the contribution ofe to the numerator ofφG(S) is we

re−1 · ae(re − ae) ≥ we,
which is exactly the contribution ofe to the numerator ofφH(S). Hence, the result follows.

6.4 Higher Order Cheeger Inequalities for Hypergraphs

In this section, we achieve an algorithm that, givenk orthonormal vectorsf1, f2, . . . , fk in the weighted
space such thatmaxs∈[k]Dw(fs) ≤ ξ, returnsΘ(k) non-empty disjoint subsets with small expansion.

Theorem 6.14 (Restatement of Theorem 3.12)SupposeH = (V,E,w) is a hypergraph. Then, we
have the following.

(a) Supposef1, f2, . . . , fk arek orthonormal vectors in the weighted space such thatmaxs∈[k]Dw(fs) ≤
ξ. There is a randomized procedure that runs in polynomial time such that for everyǫ ≥ 1

k , with
Ω(1) probability, returns⌊(1 − ǫ)k⌋ non-empty disjoint setsS1, . . . , S⌊(1−ǫ)k⌋ ⊂ V such that

max
i∈[⌊(1−ǫ)k⌋]

φ(Si) = O
(

k2

ǫ1.5
log

k

ǫ
log log

k

ǫ

√
log r ·

√
ξ

)
.

(b) For anyk disjoint non-empty setsS1, . . . , Sk ⊂ V

max
i∈[k]

φ(Si) ≥
ζk
2
,
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whereζk is defined in Section 3.3.

Proof of Theorem 6.14 (b):

For an arbitrary collection ofk disjoint non-empty sets{Sl}l, let fl be the corresponding indicator
functionSl. Then, the vectorsfl’s have disjoint support, and by Claim 6.4, we have

ζk
2
≤ max

l∈[k]
Dw(fl) = max

l∈[k]
φ(Sl).

For statement (a), the proof is similar to Section 6.3, and wealso have a similar sampling algorithm.

Algorithm 2 Sample algorithm

1: Supposef1, . . . , fk are orthonormal vectors in the weighted space such thatmaxs∈[k]Dw(fs) ≤ ξ.
We map a vertexi ∈ V to a vectorui ∈ Rk defined as follows. Fori ∈ V ands ∈ [k],

ui(s) = fs(i) .

2: For eachi ∈ V , normalizeũi ← ui

‖ui‖ .

3: Using Fact 6.7 (orthogonal separator), sampleT := 2 log 4n
α independent subsetsS1, . . . , ST ⊂ V

with the set of vectors{ũi}i∈V , β = 1− ǫ
72 andτ = 16k

ǫ .
4: Define measureµ(S) :=

∑
i∈S wi ‖ui‖2.

For eachl ∈ [T ], defineS′
l as follows:

S′
l =

{
Sl if µ(Sl) ≤ 1 + ǫ

4 ;

∅ otherwise.

5: For eachl ∈ [T ], letS′′
l = S′

l\(∪j∈[l−1]S
′
j).

6: Arbitrarily merge sets from{S′′
l } to form sets havingµ-measure in[14 , 1+

ǫ
4 ] (while discarding sets

with total measure at most14 ). We name the resulting sets to beB = {B1, . . . , Bt}.
7: For eachj ∈ [t], setB̂j = {i ∈ Bj : ‖ui‖2 ≥ rj}, whererj is chosen to minimizeφ(B̂j).
8: Output the non-empty setŝBj with the smallest expansionφ(B̂j), for j ∈ [t].

Forming Disjoint Subsets.The algorithm first uses orthogonal separator to generate subsetsSl’s inde-
pendently. If theµ-measure of a subset is larger than1 + ǫ

4 , then it is discarded. We first show that with
high probability, each vertex is contained in some subset that is not discarded.

Lemma 6.15 (Similar to [LM14a, Lemma 2.5]) For every vertexi ∈ V , andl ∈ [T ], we have

Pr[i ∈ S′
l] ≥

α

2
.

Proof: Recall that we sampleSl using Fact 6.7 withβ = 1− ǫ
72 andτ = 16k

ǫ .

Fix i ∈ V . If i ∈ Sl, then i ∈ S′
l unlessµ(Sl) > 1 + ǫ

4 . Hence , we only need to show that
Pr[µ(Sl) > 1 + ǫ

4 |i ∈ Sl] ≤ 1
2 .

Define the setsV1 andV2 as follows

V1 = {j ∈ V : 〈ũi, ũj〉 > β}

and
V2 = {j ∈ V : 〈ũi, ũj〉 ≤ β}.
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We next give an upper bound forµ(V1). From Fact 6.9 (3), we have

1 =
∑

j∈V
wj ‖uj‖2 〈ũi, ũj〉2 ≥ β2

∑

j∈V1

wj ‖uj‖2 = β2 · µ(V1).

Hence,µ(V1) ≤ β−2 ≤ 1 + ǫ
8 .

For anyj ∈ V2, we have〈ũi, ũj〉 ≤ β. Hence, by Fact 6.7 (2) of orthogonal separators,

Pr[j ∈ Sl|i ∈ Sl] ≤
1

τ
.

Therefore,

E[µ(Sl ∩ V2)|i ∈ Sl] ≤
µ(V2)

τ
≤ µ(V )

τ
=

ǫ

16
,

where the equality holds becauseµ(V ) = k andτ = 16k
ǫ .

By Markov’s inequality,Pr[µ(Sl ∩ V2) ≥ ǫ
8 |i ∈ Sl] ≤ 1

2 .

Sinceµ(Sl) = µ(Sl ∩ V1) + µ(Sl ∩ V2), we get

Pr[µ(Sl) > 1 + ǫ
4 |i ∈ Sl] ≤ Pr[µ(Sl ∩ V2) ≥ ǫ

8 |i ∈ Sl] ≤ 1
2 , as required.

Lemma 6.16 With probability at least34 , every vertex is contained in at least oneS′
l. Moreover, when

this happens, Algorithm 2 returns at leastt ≥ ⌊k(1 − ǫ)⌋ non-empty disjoint subsets.

Proof: From Lemma 6.15, the probability that a vertex is not included in S′
l for all l ∈ [T ] is at most

(1 − α
2 )

T ≤ exp(−αT
2 ) ≤ 1

4n . Hence, by the union bound, the probability that there exists a vertex not
included in at least oneS′

l is at most14 .

When every vertex is included in someS′
l , then the totalµ-measure of theS′′

l ’s is exactlyµ(V ) = k.
Since we merge theS′′

l ’s to form subsets ofµ-measure in the range[14 , 1 +
ǫ
4 ], at most a measure of14

will be discarded.

Hence, the number of subsets formed is at leastt ≥ k− 1
4

1+ ǫ
4
≥ (1 − ǫ)k, where the last inequality holds

because1k ≤ ǫ < 1.

Bounding Expansion.After we have shown that the algorithm returns enough numberof subsets (each
of which havingµ-measure at least14 ), it remains to show that their expansion is small. In addition to
measureµ, we also consider measure

ν(S) :=
∑

e⊂S wemaxi,j∈e(‖ui‖2 − ‖uj‖2) +
∑

e∈∂S wemaxi∈S∩e ‖ui‖2 .
The next lemma shows that there is a non-empty subset ofS having expansion at mostν(S)µ(S) .

Lemma 6.17 SupposeS is a subset ofV . For r ≥ 0, denoteSr := {i ∈ S : ‖ui‖2 ≥ r}. Then, there

existsr > 0 such thatSr 6= ∅ andφ(Sr) ≤ ν(S)
µ(S) .

Proof: Supposer is sampled uniformly from the interval(0,M), whereM := maxi∈S ‖ui‖2. Observe
that forr ∈ (0,M), Sr is non-empty.

Then, it follows that an edgee can be in∂Sr only if e ⊂ S or e ∈ ∂S.

Fore ⊂ S, e ∈ ∂Sr iff there existsi, j ∈ e such that‖ui‖2 < r ≤ ‖uj‖2.
On the other hand, ife ∈ ∂S, thene ∈ ∂Sr iff r ≤ maxi∈S∩e ‖ui‖2.

Hence,E[w(∂Sr)] =
ν(S)
M .

Similarly, i ∈ S is in Sr iff r ≤ ‖ui‖2. Hence,E[w(Sr)] =
µ(S)
M .
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Therefore, there existsM > ρ > 0 such thatφ(Sρ) =
w(∂Sρ)
w(Sρ)

≤ E[w(∂Sr)]
E[w(Sr)]

= ν(S)
µ(S) .

In view of Lemma 6.17, it suffices to show that the algorithm generates subsets with smallν-measure.

Lemma 6.18 Algorithm 2 produces subsetsBj ’s such that

E[max
l∈[t]

ν(Bl)] ≤ O(D) · k
√

ξk,

whereD = τ√
1−β
· log τ log log τ√log r, andr = maxe∈E |e|.

Proof:

LetEcut := ∪l∈[t]∂Bl be the set of edges cut byB1, . . . , Bt. Then, for alll ∈ [t],

ν(Bl) ≤
∑

e∈Ecut
wemaxi∈e ‖ui‖2 +

∑
e∈E we maxi,j∈e(‖ui‖2 − ‖uj‖2).

Hence,maxl∈[t] ν(Bj) also has the same upper bound. Taking expectation, we have

E[max
l∈[t]

ν(Bj)] ≤ E[
∑

e∈Ecut

wemax
i∈e
‖ui‖2] +

∑

e∈E
wemax

i,j∈e
(‖ui‖2 − ‖uj‖2). (6.8)

The second term in (6.8) is
∑

e∈E
wemax

i,j∈e
(‖ui‖2 − ‖uj‖2) ≤

∑

e∈E
wemax

i,j∈e
‖ui − uj‖ · ‖ui + uj‖

≤ 2
∑

e∈E
wemax

i,j∈e
‖ui − uj‖max

i∈e
‖ui‖ .

To bound the first term in (6.8), we divide the edge setE into two partsE1 andE2 as follows

E1 = {e ∈ E : max
i,j∈e

‖ui‖2

‖uj‖2
≤ 2} and E2 = {e ∈ E : max

i,j∈e
‖ui‖2

‖uj‖2
> 2}.

The first term in (6.8) is

E[
∑

e∈Ecut

wemax
i∈e
‖ui‖2] ≤

∑

e∈E1

Pr[e ∈ ∪l∈[t]∂Bl] · wemax
i∈e
‖ui‖2 +

∑

e∈E2

we max
i∈e
‖ui‖2 . (6.9)

We next bound the contribution from edges inE1. Fix an edgee ∈ E1. Recall that forl ∈ [T ], the set
Sl is generated independently by the orthogonal separator (Lemma 6.7). Forl ∈ [T ], we defineEl to be
the event that forl′ ∈ [l − 1], Sl′ ∩ e = ∅ ande ∈ ∂Sl.

Observe thate ∈ ∪l∈[t]∂Bl implies that there existsl ∈ [T ] such that the eventEl happens. Next, if̂S is

sampled from the orthogonal separator in Lemma 6.7, then Lemma 6.15 implies thatPr[Ŝ ∩ e = ∅] ≤
1− α

2 , and Claim 6.12 (a) states that

Pr[e ∈ ∂Ŝ] ≤ O(αD) · maxi,j∈e‖ui−uj‖
maxi∈e‖ui‖ .

Therefore, we have
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Pr[e ∈ ∪l∈[t]∂Bl] ≤
∑

l∈[T ]

Pr[El]

≤
∑

l∈[T ]

(1− α

2
)l−1 · Pr[e ∈ ∂Ŝ]

≤ 2

α
· Pr[e ∈ ∂Ŝ]

≤ O(D) · maxi,j∈e ‖ui − uj‖
maxi∈e ‖ui‖

.

Hence, the first term in (6.9) is
∑

e∈E1
Pr[e ∈ ∪l∈[t]∂Bl] · wemaxi∈e ‖ui‖2 ≤

∑
e∈E1

wemaxi,j∈e ‖ui − uj‖ ·maxi∈e ‖ui‖ .
Fore ∈ E2, Claim 6.12 (b) implies that the second term in (6.9) is
∑

e∈E2
wemaxi∈e ‖ui‖2 ≤

∑
e∈E2

4wemaxi∈e ‖ui‖maxi,j∈e ‖ui − uj‖.
Therefore, it follows that

E[max
l∈[t]

ν(Bl)] = O(D) ·
∑

e∈E
wemax

i∈e
‖ui‖max

i,j∈e
‖ui − uj‖

≤ O(D) · k
√

max
s∈[k]

Dw(fs)

≤ O(D) · k ·
√

ξ,

where the second to last inequality comes from Lemma 6.9 (4).

Proof of Theorem 6.6 (a): We run Algorithm 2. By Lemma 6.16, with probability at least3
4 , it

produces at leastt ≥ (1− ǫ)k subsetsB1, . . . , Bt, each of which hasµ-measure at least14 .

Using Markov’s inequality and Lemma 6.18, with probabilityat least34 , we havemaxl∈[t] ν(Bl) ≤
4E[maxl∈[t] ν(Bl)] = O(Dk) · √ξ.

By union bound, with probability at least12 , the algorithm produces at leastt ≥ (1− ǫ)k disjoint subsets
Bl, each of which satisfiesν(Bl) = O(Dk) · √ξ andµ(Bl) ≥ 1

4 .

Hence, Lemma 6.17 implies that each suchBl contains a non-empty subset̂Bl such thatφ(B̂j) ≤
ν(Bl)
µ(Bl)

= O(Dk) · √ξ, as required.

7 Vertex Expansion in2-Graphs and Hardness

As mentioned in Section 3.4, vertex expansion in2-graphs is closely related to hyperedge expansion.
Indeed, Reduction 3.14 implies that vertex expansion ind-regular graphs can be reduced to hyperedge
expansion. We show that this reduction also relates the parameterλ∞ (see (3.2)) defined by Bobkovet
al. [BHT00] with the parameterγ2 associated with the Laplacian we define (in Section 4.1) for hyper-
graphs.

Theorem 7.1 (Restatement of Theorem 3.17)LetG = (V,E) be a undirectedd-regular2-graph with
parameterλ∞, and letH = (V,E′) be the hypergraph obtained in Reduction 3.14 having parameter γ2.
Then,

γ2
4
≤ λ∞

d
≤ γ2 .
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Proof: Using Theorem 4.1 for hypergraphs, the parameterγ2 of H can be reformulated in terms of the
weighted space as:

γ2 = min
f⊥1

∑
u∈V maxi,j∈({u}∪N(u)) (fi − fj)

2

d
∑

u∈V f2
u

.

Therefore, it follows thatλ∞

d ≤ γ2.

Next, using(x+ y)2 ≤ 4max
{
x2, y2

}
for anyx, y ∈ R, we get

γ2 = min
f⊥1

∑
u∈V maxi,j∈({u}∪N(u)) (fi − fu + fu − fj)

2

d
∑

u∈V f2
u

≤ min
f⊥1

∑
u∈V 4maxv∼u (fv − fu)

2

d
∑

u∈V f2
u

=
4λ∞
d

.

7.1 Hardness via the Small-Set Expansion Hypothesis

We state the Small-Set Expansion Hypothesis proposed by Raghavendra and Steurer [RS10].

Hypothesis 1 (Small-Set Expansion (SSE) Hypothesis) For every constantη > 0, there exists suffi-
ciently smallδ > 0 such that, given a graphG (with unit edge weights), it is NP-hard to distinguish the
following two cases:

YES: there exists a vertex setS with δ ≤ |S|
n ≤ 10δ and edge expansionφ(S) ≤ η,

NO: all vertex setsS with δ ≤ |S|
n ≤ 10δ have expansionφ(S) ≥ 1− η.

Small-Set Expansion Hypothesis Apart from being a natural optimization problem, the small-set ex-
pansion problem is closely tied to the Unique Games Conjecture. Recent work by Raghavendra-Steurer
[RS10] established the reduction from the small-set expansion problem to the well known Unique Games
problem, thereby showing that Small-Set Expansion Hypothesis implies the Unique Games Conjecture.
We refer the reader to [RST12] for a comprehensive discussion on the implications of Small-Set Expan-
sion Hypothesis. We shall use the following hardness resultfor vertex expansion based on Small-Set
Expansion Hypothesis.

Fact 7.2 ([LRV13]) For everyη > 0, there exists an absolute constantC1 such that∀ε > 0 it is SSE-
hard to distinguish between the following two cases for a given graphG = (V,E,w) with maximum
degreed ≥ 100/ε and minimum degreec1d (for some absolute constantc1).

YES : There exists a setS ⊂ V of size|S| ≤ |V | /2 such that

φV(S) ≤ ε

NO : For all setsS ⊂ V ,
φV(S) ≥ min

{
10−10, C1

√
ε log d

}
− η.

Reduction 3.14 implies that vertex expansion in2-graphs is closely related to hyperedge expansion.
Therefore, the hardness of vertex expansion as stated in Fact 7.2 should imply the hardness of hyperedge
expansion. We formalize this intuition in the following theorems.

Theorem 7.3 (Formal statement of 3.18)For everyη > 0, there exists an absolute constantC such
that for all ε̂ > 0 it is SSE-hard to distinguish between the following two cases for a given hypergraph
H = (V,E,w) with maximum hyperedge sizer such that̂εr log r ∈ [η2, c2] (for some absolute constant
c2) andrmin ≥ c1r (for some absolute constantc1).
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YES : There exists a setS ⊂ V such that
φH(S) ≤ ε̂

NO : For all setsS ⊂ V ,

φH(S) ≥ C

√
ε̂ · log r

r
.

Proof: Given an undirected graphG with maximum degreed and minimum degreeΩ(d) as in Fact 7.2,
we apply Reduction 3.14 to obtain a hypergraphH with maximum edge cardinalityr = d + 1. Then,

Fact 3.15 implies that for any subsetS of vertices,ci · φH(S) ≤ φV
G
(S)

d+1 ≤ φH(S).

Fix some small enoughη > 0 and correspondingC1 > 0 as in Fact 7.2. Letε > 100
d+1 = 100

r .

Under the YES case of vertex expansion in Fact 7.2, there is some subsetS such that|S| ≤ |V |
2 and

φV
G(S) ≤ ε. This implies thatφH(S) ≤ ε

c1r
, and we denotêε := ε

c1r
> 100

c1r2
.

Under the NO case of vertex expansion in Fact 7.2, we have the fact that anyS ⊂ V has vertex expansion

φV
G(S) ≥ min

{
10−10, C1

√
ε log d

}
− η.

This implies that for some constantC ′ depending onC1 andc1,

φH(S) ≥ φV
G(S)
r ≥ min

{
10−10

r , C ′
√

ε̂ · log rr

}
− η

r .

Observe that this lower bound is non-trivial under the case

10−10

r ≥ C ′
√

ε̂ · log rr ≥ 2 · ηr , which is equivalent tôεr log r ∈ [η2, c2], for some constantc2 depending

onC1 andc1. Hence, under this case, we haveφH(S) ≥ C′

2 ·
√

ε̂ · log rr .

Hence, theSSE-hardness in Fact 7.2 finishes the proof.

Theorem 7.4 (Formal statement of 3.19)For everyη > 0, there exists an absolute constantC such
that ∀ε > 0 it is SSE-hard to distinguish between the following two cases for a given hypergraph
H = (V,E,w) with maximum hyperedge sizer such thatεr log r ∈ [η2, c2] (for some absolute constant
c2), rmin ≥ c1r (for some absolute constantc1) andγ2 ≤ 1

r whereγ2 is the parameter associated with
H as in Theorem 6.1.

YES : γ2 ≤ ε.

NO : γ2 ≥ Cε log r.

Proof: We shall use the hardness result in Theroem 7.3, and the Cheeger inequality for hyeprgraphs in
Theorem 6.1 and Proposition 6.2.

Given a hypergraphH, we have

γ2
2 ≤ φH ≤ γ2 + 2

√
γ2
rmin

≤ O(
√

γ2
r ), where the last inequality follow becausermin = Ω(r) and

γ2 ≤ 1
r .

Hence, the YES case in Theorem 7.3 implies thatγ2 ≤ 2ε̂.

The NO case in Theorem 7.3 implies thatγ2 = Ω(ε̂ log r).

Therefore, the hardness result in Theorem 7.3 finishes the proof.
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8 Polynomial Time Approximation Algorithm for Procedural M inimiz-
ers

Observe the procedures in Section 6 takek orthonormal vectorsf1, f2, . . . , fk in the weighted space
such thatmaxi∈[k]Dw(fi) is small. However, we do not know of an efficient algorithm to generate such
k vectors to attain the minimumξk. In this section, we consider an approximation algorithm toproduce
these vectors.

Theorem 8.1 (Restatement of Theorem 3.21)There exists a randomized polynomial time algorithm
that, given a hypergraphH = (V,E,w) and a parameterk < |V |, outputsk orthonormal vectors
f1, . . . , fk in the weighted space such that with high probability, for each i ∈ [k],

Dw(fi) ≤ O (i log r · ξi) .

Observe that Theorem 8.1 gives a way to generatek orthonormal vectors in the weighted space such
that the maximum discrepancy ratioDw(·) is at mostk log r · ξk. Hence, these vectors can be used as
inputs for the procedures in Theorem 6.1 (more precisely, weuse an approximatef2 in Proposition 6.1),
Theorems 6.6 and 6.14 to give approximation algorithms as described in Corollaries 3.22, 3.23 and 3.24.

The approximate algorithm in Theorem 8.1 achieves thek vectors by starting withf1 ∈ span(
�

1), and
repeatedly using the algorithm in the following theorem to generate approximate procedural minimizers.

Theorem 8.2 (Restatement of Theorem 3.20)Suppose fork ≥ 2, {fi}i∈[k−1] is a set of orthonormal

vectors in the weighted space, and defineγ := min{Dw(f) :
�

0 6= f ⊥w {fi : i ∈ [k − 1]}}. Then,
there is a randomized procedure that produces a non-zero vector f that is orthogonal to{fi}i∈[k−1] in
polynomial time, such that with high probability,Dw(f) = O (γ log r), wherer is the size of the largest
hyperedge.

Proof of Theorem 8.1: On a high level, we start withf1 :=
�

1∥∥∥
�

1

∥∥∥
w

. For 1 < i ≤ k, assuming that

orthonormal vectors{fl : l ∈ [i − 1]} are already constructed, we apply Theorem 8.2 to generatefi.
Hence, it suffices to show thatDw(fi) ≤ O (i log r · ξi).
We prove that ifξ := min{Dw(f) :

�

0 6= f ⊥w {fl : l ∈ [i− 1]}}, thenξ ≤ i · ξi. Hence, Theorem 8.2
implies thatDw(fi) ≤ O (ξ log r) ≤ O (i log r · ξi).
Therefore, it remains to showξ ≤ i · ξi. Supposeg1, g2, . . . , gi are orthonormal vectors in the weighted
space that attainζi (which is defined in Section 6.2).

Sincespan({g1, g2, . . . , gi}) has dimensioni, there exists non-zerog ∈ span({g1, g2, . . . , gi}) such that
g ⊥w {f1, f2, . . . , fi−1}. By the definition ofζi, we haveDw(g) ≤ ζi ≤ iξi, where the last inequality
follows from Claim 6.4. Hence, we haveξ ≤ iξi, as required.

We next give anSDP relaxation (8.3) and a rounding algorithm (Algorithm 3) to prove Theorem 8.2.

8.1 AnSDP Relaxation to Approximate Procedural Minimizers: Proof of Theorem 8.2

We present SDP 8.3 to compute a vector in the weighted space that is orthogonal tof1, . . . , fk−1 hav-
ing the least discrepancy ratioDw(·). In the SDP, for eachu ∈ V , the vector

�

gu represents theu-th
coordinate of the vectorf ∈ RV that we try to compute. The objective function of the SDP and equa-
tion (8.1) seek to minimize the discrepancy ratioDw(·). We shall see that equation (8.2) ensures that
after rounding, the resulting vectorf is orthogonal tof1, . . . , fk−1 in the weighted space and achieves
O (log r)-approximation with constant probability.
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SDP 8.3
SDPval := min

∑

e∈E
we max

u,v∈e

∥∥ �

gu − �

gv
∥∥2

subject to ∑

v∈V
wv

∥∥ �

gv
∥∥2 = 1 (8.1)

∑

v∈V
wvfi(v)

�

gv =
�

0 ∀i ∈ [k − 1] (8.2)

Algorithm 3 Rounding Algorithm for Computing Eigenvalues

1: SolveSDP 8.3 to generate vectors
�

gv ∈ Rn for v ∈ V .
2: Sample a random Gaussian vector

�

z ∼ N (0, 1)n. Forv ∈ V , setf(v) :=
〈

�

gv,
�

z
〉
.

3: Outputf .

Lemma 8.4 (Feasibility) With probability 1, Algorithm 3 outputs a non-zero vectorf such thatf ⊥w

{f1, f2, . . . , fk−1}.

Proof: Because of equation (8.1), there existsv ∈ V such that
�

gv 6=
�

0. Hence, when
�

z is sampled
fromN (0, 1)n, the probability thatf(v) := 〈�z, �

gv〉 is non-zero is 1.

For anyi ∈ [k − 1], we use equation 8.2 to achieve:

〈f, fi〉w =
∑

v∈V
wv

〈
�

gv,
�

z
〉
fi(v) =

〈∑

v∈V
wvfi(v)

�

gv,
�

z

〉
= 0 .

Lemma 8.5 (Approximation Ratio) With probability at least124 , Algorithm 3 outputs a vectorf such
thatDw(f) ≤ 384 log r · SDPval.

Proof: To give an upper bound onDw(fk), we prove an upper bound on the numerator and a lower
bound on the denominator in the definition ofDw(·).
For the numerator, we have

E

[∑

e∈E
w(e) max

u,v∈e
(f(u)− f(v))2

]
=
∑

e∈E
w(e) · E

[
max
u,v∈e

(f(u)− f(v))2
]

≤ 8 log r
∑

e∈E
w(e) max

u,v∈e

∥∥ �

gu − �

gv
∥∥2 (Using Fact 8.6)

= 8 log r · SDPval,

where the inequality follows from Fact 8.6 in the following manner. For eache ∈ E, observe that
themaxu,v∈e is over a set of cardinality

(r
2

)
≤ r2

2 . Moreover foru, v ∈ e, f(u) − f(v) = 〈 �

gu −
�

gv,
�

z〉 is a normal distribution with variance
∥∥ �

gu − �

gv
∥∥2 and mean 0. Hence, Fact 8.6 implies that

E
[
maxu,v∈e(f(u)− f(v))2

]
≤ 8 log r ·maxu,v∈e

∥∥ �

gu − �

gv
∥∥2.

Therefore, by Markov’s Inequality,

Pr

[∑

e∈E
w(e) max

u,v∈e
(f(u)− f(v))2 ≤ 192 log r · SDPval

]
≥ 1− 1

24
. (8.3)
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For the denominator, using linearity of expectation, we get

E

[∑

v∈V
wvf(v)

2

]
=
∑

v∈V
wvE

[〈
�

gv,
�

z
〉2]

=
∑

v∈V
wv

∥∥ �

gv
∥∥2 = 1 (Using Equation 8.1).

Now applying Fact 8.7 to the denominator we conclude

Pr

[∑

v∈V
wvf(v)

2 ≥ 1

2

]
≥ 1

12
. (8.4)

Using the union bound on Inequality (8.3) and Inequality (8.4) we get that

Pr [Dw(f) ≤ 384 log r · SDPval] ≥ 1

24
.

Fact 8.6 (Variant of Massart’s Lemma) SupposeY1, Y2, . . . , Yd are normal random variables that are
not necessarily independent. For eachi ∈ [d], supposeE [Yi] = 0 andE

[
Y 2
i

]
= σ2

i . Denoteσ :=
maxi∈[d] σi. Then, we have

1. E
[
maxi∈[d] Y

2
i

]
≤ 4σ2 ln d, and

2. E
[
maxi∈[d] |Yi|

]
≤ 2σ ·

√
ln d.

Proof: For i ∈ [d], we writeYi = σiZi, whereZi has the standard normal distributionN (0, 1).
Observe that for any real numbersx1, x2, . . . , xd, for any positive integerp, we havemaxi∈[d] x2i ≤
(
∑

i∈[d] x
2p
i )

1
p . Hence, we have

E

[
max
i∈[d]

Y 2
i

]
≤ E





∑

i∈[d]
Y 2p
i




1
p


 ≤


E


∑

i∈[d]
Y 2p
i






1
p

(by Jensen’s Inequality, becauset 7→ t
1
p is concave )

≤ σ2


E


∑

i∈[d]
Z2p
i






1
p

= σ2


∑

i∈[d]

(2p)!

(p)!2p




1
p

(ForZi ∼ N (0, 1), E
[
Z2p
i

]
=

(2p)!

(p)!2p
)

≤ σ2pd
1
p . (using

(2p)!

p!
≤ (2p)p )

Picking p = ⌈log d⌉ gives the first resultE
[
maxi∈[d] Y

2
i

]
≤ 4σ2 log d. Moreover, the inequality

E [|Y |] ≤
√

E [Y 2] immediately gives the second result.

Fact 8.7 Let Y1, . . . , Ym be normal random variables (that are not necessarily independent) having
mean 0 such thatE

[∑
i Y

2
i

]
= 1 then

Pr

[∑

i

Y 2
i ≥

1

2

]
≥ 1

12
.

Proof: We will bound the second moment of the random variableR :=
∑

i Y
2
i as follows.
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E
[
R2
]
=
∑

i,j

E
[
Y 2
i Y

2
j

]

≤
∑

i,j

(
E
[
Y 4
i

]) 1
2
(
E
[
Y 4
j

]) 1
2 (Using Cauchy-Schwarz Inequality)

=
∑

i,j

3E
[
Y 2
i

]
E
[
Y 2
j

]
(UsingE

[
Z4
]
= 3

(
E
[
Z2
])2

for GaussianZ)

= 3

(∑

i

E
[
Y 2
i

]
)2

= 3.

By the Paley-Zygmund inequality,

Pr

[
R ≥ 1

2
· E [R]

]
≥
(
1

2

)2

· E [R]2

E [R2]
≥ 1

12
.

9 Sparsest Cut with General Demands

In this section, we study the Sparsest Cut with General Demands problem (defined in Section 3.6) and
give an approximation algorithm for it (Theorem 3.25).

Theorem 9.1 (Restatement of Theorem 3.25)There exists a randomized polynomial time algorithm
that given an instance of the hypergraph Sparsest Cut problem with hypergraphH = (V,E,w) andk
demand pairs inT = {({si, ti},Di) : i ∈ [k]}, outputs a setS ⊂ V such that with high probability,

Φ(S) ≤ O
(√

log k log r log log k
)
ΦH ,

wherer = maxe∈E |e|.

Proof: We prove this theorem by giving anSDP relaxation for this problem (SDP 9.2) and a rounding
algorithm for it (Algorithm 4). We introduce a variablēu for each vertexu ∈ V . Ideally, we would want
all vectorsū to be in the set{0, 1} so that we can identify the cut, in which casemaxu,v∈e ‖ū− v̄‖2 will
indicate whether the edgee is cut or not. Therefore, our objective function will be

∑
e∈E w(e)maxu,v∈e ‖ū− v̄‖2.

Next, we add (9.1) as a scaling constraint. Finally, we addℓ22-triangle inequality constraints (9.2) be-
tween all triplets of vertices, as all integral solutions ofthe relaxation will trivially satisfy this. Therefore,
SDP 9.2 is a relaxation of the problem and its objective valueis at mostΦH .

SDP 9.2
min

∑

e∈E
we max

u,v∈e
‖ū− v̄‖2

subject to ∑

i∈[k]
Di · ‖s̄i − t̄i‖2 = 1 (9.1)

‖ū− v̄‖2 + ‖v̄ − w̄‖2 ≥ ‖ū− w̄‖2 ∀u, v, w ∈ V (9.2)

Our main ingredient is the following result due to [ALN08].

Fact 9.3 ([ALN08]) Let (V, d) be an arbitrary metric space, and letU ⊂ V be anyk-point subset. If
the space(V, d) is a metric of the negative type, then there exists a1-Lipschitz mapf : V → ℓ2 such
that the mapf |U : U → ℓ2 has distortionO

(√
log k log log k

)
.
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Algorithm 4 Rounding Algorithm for Sparsest Cut

1: Solve SDP 9.2.
2: Compute the mapf : (V, ℓ22) → Rn using Fact 9.3, withU being the set of vertices that appear in

the demand pairs inT .
3: Sample

�

z ∼ N (0, 1)n and definex ∈ RV such thatx(v) :=
〈

�

z, f(v)
〉

for eachv ∈ V .
4: Arrange the vertices ofV asv1, . . . , vn such thatx(vj) ≤ x(vj+1) for each1 ≤ j ≤ n− 1. Output

the sparsest cut of the form
({v1, . . . , vi} , {vi+1, . . . , vn}) .

Without loss of generality, we may assume that the mapf is such thatf |U has the least distortion (on
vertices in demand pairs) among all1-Lipschitz mapsf : (V, ℓ22) → ℓ2 ([ALN08] gives a polynomial
time algorithm to compute such a map.) For the sake of brevity, letΛ = O

(√
log k log log k

)
denote the

distortion factor guaranteed in Fact 9.3. Since SDP 9.2 is a relaxation ofΦH , we also get that objective
value of theSDP is at mostΦH . Supposex ∈ RV is the vector produced by the rounding algorithm.

We next analyze the following quantity. The numerator is related to the objective function, and the
denominator is related to the expression in (9.1):

ϕ(x) :=

∑
e∈E wemaxu,v∈e |x(u)− x(v)|∑

i∈[k]Di · |x(si)− x(ti)|
. (9.3)

The following analysis is similar to the proof of Lemma 8.5.

For each edgee, obsever that foru, v ∈ e, xu− xv is a random variable having normal distribution with
mean 0 and variance‖f(u)− f(v)‖2. Hence, using Fact 8.6 (2), we get

E

[
max
u,v∈e

|x(u)− x(v)|
]
≤ 4
√

log rmax
u,v∈e

‖f(u)− f(v)‖ ≤ 4
√

log rmax
u,v∈e

‖ū− v̄‖2 ,

where the last inequality follows becausef : (V, ℓ22)→ ℓ2 is 1-Lipschitz.

The expectation of the numerator of (9.3) is

E
[∑

e∈E wemaxu,v∈e |x(u)− x(v)|
]
≤ 4
√
log r · ΦH .

Using Markov’s inequality, we have

Pr[
∑

e∈E
we max

u,v∈e
|x(u)− x(v)| ≤ 96

√
log r · ΦH ] ≥ 1− 1

24
. (9.4)

For the denominator, observing thatx(si) − x(ti) has a normal distribution with mean 0 and variance

‖f(si)− f(ti)‖2 and a random variableZ having distributionN (0, 1) satisfiesE [|Z|] =
√

2
π , we have

E


∑

i∈[k]
Di · |x(si)− x(ti)|


 =

√
2

π

∑

i∈[k]
Di ‖f(si)− f(ti)‖ ≥

√
2

π
· 1
Λ

∑

i∈[k]
Di ·‖s̄i − t̄i‖2 =

√
2

π
· 1
Λ
,

where the inequality follows from the distortion off |U as guaranteed by Fact 9.3, and the last equality
follows from (9.1).

We next prove a variant of Fact 8.7.
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Claim 9.4 Let Y1, . . . , Ym be normal random variables (that are not necessarily independent) having
mean 0. DenoteR :=

∑
i |Yi|. Then,

Pr

[
R ≥ 1

2
E [R]

]
≥ 1

12
.

Proof: For eachi, letσ2
i = E [Yi]. Then,E [R] =

√
2
π

∑
i σi.

Moreover, we have

E
[
R2
]
=
∑

i,j E [|Yi| · |Yj |] ≤
∑

i,j

√
E
[
Y 2
i

]
· E
[
Y 2
j

]
=
∑

i,j σiσj =
π
2 · E [R]2,

where the inequality follows from Cauchy-Schwarz.

Finally, using the Paley-Zygmund Inequality, we have

Pr

[
R ≥ 1

2
· E [R]

]
≥
(
1

2

)2

· E [R]2

E [R2]
≥ 1

12
.

Hence, using Fact 8.7, we get

Pr[
∑

i∈[k]
Di |x(si)− x(ti)| ≥

√
1

2π
· 1
Λ
] ≥ 1

12
. (9.5)

Using (9.4) and (9.5), we get that with probability at least1
24 ,

ϕ(x) =

∑
ewemaxu,v∈e |x(u)− x(v)|∑

i∈[k]Di · |x(si)− x(ti)|
≤ O

(√
log r

)
· ΛΦH .

We next apply an analysis that is similar to Proposition 6.1.For r ∈ R, defineSr := {v ∈ V : x(v) ≤
r}. Observe that ifr is sampled uniformly at random from the interval[minv x(v),maxv x(v)], then
two verticesu andv are separated by the cut(Sr, Sr) with probability proportional to|x(u)− x(v)|.
Hence, an averaging argument implies that there existsr ∈ R such thatΦ(Sr) ≤ ϕ(x) ≤ O

(√
log k log r log log k

)
ΦH ,

as required in the output of Step 4.
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A Hypergraph Tensor Forms

Let A be anr-tensor. For any suitable norm‖·‖
�

, e.g. ‖.‖22, ‖.‖rr, we define tensor eigenvalues as
follows.

Definition A.1 We defineλ1, the largest eigenvalue of a tensorA as follows.

λ1 := max
X∈Rn

∑
i1,i2,...,ir

Ai1i2...irXi1Xi2 . . . Xir

‖X‖
�

,

v1 := argmaxX∈Rn

∑
i1,i2,...,ir

Ai1i2...irXi1Xi2 . . . Xir

‖X‖
�

.

We inductively define successive eigenvaluesλ2 ≥ λ3 ≥ . . . as follows.

λk := max
X⊥{v1,...,vk−1}

∑
i1,i2,...,ir

Ai1i2...irXi1Xi2 . . . Xir

‖X‖
�

,

vk := argmaxx⊥{v1,...,vk−1}

∑
i1,i2,...,ir

Ai1i2...irXi1Xi2 . . . Xir

‖X‖
�

.

Informally, the Cheeger’s Inequality states that a graph has a sparse cut if and only if the gap between
the two largest eigenvalues of the adjacency matrix is small; in particular, a graph is disconnected if and
only if its top two eigenvalues are equal. In the case of the hypergraph tensors, we show that there exist
hypergraphs having no gap between many top eigenvalues while still being connected. This shows that
the tensor eigenvalues are not relatable to expansion in a Cheeger-like manner.

Proposition A.1 For anyk ∈ N, there exist connected hypergraphs such thatλ1 = . . . = λk.
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Proof: Let r = 2w for somew ∈ Z+. LetH1 be a large enough completer-uniform hypergraph. We
constructH2 from two copies ofH1, sayA andB, as follows. Leta ∈ E(A) andb ∈ E(B) be any two
hyperedges. Leta1 ⊂ a (resp.b1 ⊂ b) be a set of anyr/2 vertices. We are now ready to defineH2.

H2 := (V (H1) ∪ V (H2), (E(H1) \ {a}) ∪ (E(H2) \ {b}) ∪ {(a1 ∪ b1), (a2 ∪ b2)})

Similarly, one can recursively defineHi by joining two copies ofHi−1 (this can be done as long as
r > 22i). The construction ofHk can be viewed as ahypercube of hypergraphs.

Let AH be the tensor form of hypergraphH. ForH2, it is easily verified thatv1 = 1. Let X be the
vector which has+1 on the vertices corresponding toA and−1 on the vertices corresponding toB. By
construction, for any hyperedge{i1, . . . , ir} ∈ E

Xi1 . . . Xir = 1

and therefore, ∑
i1,i2,...,ir

Ai1i2...irXi1Xi2 . . . Xir

‖X‖
�

= λ1 .

Since〈X,1〉 = 0, we getλ2 = λ1 andv2 = X. Similarly, one can show thatλ1 = . . . = λk for Hk.
This is in sharp contrast to the fact thatHk is, by construction, a connected hypergraph.

B Examples

We give examples of hypergraphs to show that some propertiesare not satisfied. For convenience,
we consider the properties in terms of the weighted space. Weremark that the examples could also
be formulated equivalently in the normalized space. In our examples, the procedural minimizers are
discovered by trial-and-error using programs. However, weonly describe how to use Mathematica to
verify them. Our source code can be downloaded at the following link:

http://i.cs.hku.hk/ ˜ algth/project/hyper_lap/main.html

Verifying Procedural Minimizers. In our examples, we need to verify that we have the correct value
for γk := min�

0 6=f⊥w{f1,f2,...,fk−1}
Dw(f), and a certain non-zero vectorfk attains the minimum.

We first check thatfk is perpendicular to{f1, . . . , fk−1} in the weighted space, andDw(fk) equalsγk.

Then, it suffices to check that for all
�

0 6= f ⊥w {f1, f2, . . . , fk−1}, Dw(f) ≥ γk. As the numerator in
the definition ofDw(f) involves the maximum operator, we use a program to consider all cases of the
relative order of the vertices with respect tof .

For each permutationσ : [n] → V , for e ∈ E, we defineSσ(e) := σ(max{i : σ(i) ∈ e}) and
Iσ(e) := σ(min{i : σ(i) ∈ e}).
We consider the mathematical programP (σ) := min

∑
e∈E we·(f(Sσ(e))−f(Iσ(e)))2−γk·

∑
u∈V wuf(u)

2

subject tof(σ(n)) ≥ f(σ(n − 1)) ≥ · · · f(σ(1)) and∀i ∈ [k − 1], 〈fi, f〉 = 0. Since the objective
function is a polynomial, and all constraints are linear, the Mathematica functionMinimize can solve
the program.

Moreover, the following two statements are equivalent.

1. For all
�

0 6= f ⊥w {f1, f2, . . . , fk−1}, Dw(f) ≥ γk.
2. For all permutationsσ, P (σ) ≥ 0.

Hence, to verify the first statement, it suffices to use Mathematica to solveP (σ) for all permutationsσ.

Example B.1 The sequence{γk} generated by the procedural minimizers is not unique.

Proof: Consider the following hypergraph with5 vertices and5 hyperedges each with unit weight.
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dcba e

e1 e2 e3 e4 e5

We have verified that different minimizers forγ2 can lead to different values forγ3.

i γi fT
i γ′i f ′T

i

1 0 (1, 1, 1, 1, 1) 0 (1, 1, 1, 1, 1)
2 5/6 (1, 1, 1,−4,−4) 5/6 (2, 2,−3,−3,−3)
3 113/99 (2, 2,−6, 3,−6) 181/165 (4,−5,−5, 5, 5)

Example B.2 There exists a hypergraph such thatξ2 < γ2.

Proof: Consider the following hypergraphH = (V,E) with V = {a, b, c, d} andE = {ei : i ∈ [5]}.
For i 6= 3, edgeei has weight 1, and edgee3 has weight 2. Observe that every vertex has weight3.

e1 e2

e3

e4
a

b

c

d

e5

We can verify thatγ2 = 2
3 with the corresponding vectorf2 := (1, 1,−1,−1)T.

Recall thatξ2 = ming1,g2 maxi∈[2]Dw(gi), where the minimum is over all non-zerog1 andg2 such that
g1 ⊥w g2. We can verify thatξ2 ≤ 1

3 by considering the the two orthogonal vectorsg1 = (0, 0, 1, 1)T

andg2 = (1, 1, 0, 0)T in the weighted space.

Example B.3 (Issues with Distributing Hyperedge Weight Evenly) SupposeLw is the operator on
the weighted space that is derived from the Figure 3.1 by distributing the weightwe evenly among
Se(f)×Ie(f). Then, there exists a hypergraph such that any minimizerf2 attainingγ2 := min�

0 6=f⊥w

�

1
Dw(f)

is not an eigenvector ofLw or evenΠw
�

1

⊥w
Lw.

Proof: We use the same hypergraph as in Example B.2. Recall thatγ2 = 2
3 with the corresponding

vectorf2 := (1, 1,−1,−1)T.

We next show thatf2 is the only minimizer, up to scalar multiplication, attaining γ2.

According to the definition,

γ2 = min
(a,b,c,d)⊥w1

(a− b)2 + (b− d)2 + 2(c − d)2 +maxx,y∈e5(x− y)2

3(a2 + b2 + c2 + d2)
.
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Without loss of generality, we only need to consider the following three cases:

1. a ≥ b ≥ c: Then, by substitutinga = −b− c− d,

(a− b)2 + (b− d)2 + 2(c− d)2 + (a− c)2

3(a2 + b2 + c2 + d2)
≥ 2

3

⇐⇒ (c− d)2 + 2(b+ c)2 ≥ 0,

and the equality is attained only whena = b = −c = −d.

2. a ≥ c ≥ b: Then, by substitutingd = −a− b− c,

(a− b)2 + (b− d)2 + 2(c− d)2 + (a− b)2

3(a2 + b2 + c2 + d2)
≥ 2

3

⇐⇒ (a+ 2b+ c)2 + 8c2 + 4(a − c)(c − b) ≥ 0,

and the equality cannot be attained.

3. b ≥ a ≥ c: Then, by substitutingd = −a− b− c,

(a− b)2 + (b− d)2 + 2(c − d)2 + (b− c)2

3(a2 + b2 + c2 + d2)
≥ 2

3

⇐⇒ 4(b+ c)2 + 2(a+ c)2 + 2(b− a)(a − c) ≥ 0,

and the equality is attained only whena = b = −c = −d.

Therefore, all minimizers attainingγ2 must be inspan(f2).

We next showt thatf2 is not an eigenvector ofΠw
�

1

⊥w
Lw. Observe that only the hyperedgee5 = {a, b, c}

involves more than 2 vertices. In this case, the weight ofe5 is distributed evenly between{a, c} and
{b, c}. All other edges keep their weights. Hence, the resulting weighted adjacency matrixA and
I−W−1A are as follows:

A =




3
2 1 1

2 0
1 1

2
1
2 1

1
2

1
2 0 2

0 1 2 0


 andI−W−1A =




1
2 −1

3 −1
6 0

−1
3

5
6 −1

6 −1
3

−1
6 −1

6 1 −2
3

0 −1
3 −2

3 1


 .

Hence,Lwf2 = (I−W−1A)f2 = (13 , 1,−2
3 ,−2

3 )
T /∈ span(f2). Moreover,Πw

�

1

⊥w
Lwf2 = (13 , 1,−2

3 ,−2
3)

T /∈
span(f2).

In comparison, in our approach, sinceb is already connected tod with edgee2 of weight 1, it follows
that the weight ofe5 should all go to the pair{a, c}. Hence, the resulting adjacency matrix is:

A =




1 1 1 0
1 1 0 1
1 0 0 2
0 1 2 0


 .

One can verify thatLwf2 = (I−W−1A)f2 =
2
3f2, as claimed in Theorem 4.1.

Example B.4 (Third minimizer not eigenvector of Laplacian) There exists a hypergraph such that
for all procedural minimizers{(fi, γi)}i∈[3] of Dw, the vectorf3 is not an eigenvector ofLw or even
Πw

F⊥w
2

Lw, whereLw is the operator on the weighted space defined in Lemma 4.8, andF2 := {f1, f2}.
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Proof: Consider the following hypergraph with4 vertices and2 hyperedges each with unit weight.

e1

b

c

d

a

e2

We can verify the first 3 procedural minimizers.

i γi fT
i

1 0 (1, 1, 1, 1)

2 5−
√
5

4 (
√
5− 1, 3−

√
5

2 ,−1,−1)
3 11+

√
5

8 (
√
5− 1,−1, 4 −

√
5,−1)

3′ 11+
√
5

8 (
√
5− 1,−1,−1, 4 −

√
5)

We next show thatf3 andf3′ are the only minimizers, up to scalar multiplication, attaining γ3.

According to the definition,

γ2 = min
(a,b,c,d)⊥w1

(a− b)2 +maxx,y∈e2(x− y)2

a2 + 2b2 + c2 + d2
.

Observe thatc andd are symmetric, we only need to consider the following two cases,

1. c ≥ b ≥ d: Then, by substitutinga = −2b− c− d,

(a− b)2 + (c− d)2

a2 + 2b2 + c2 + d2
≥ 1

⇐⇒ 5b2 + 2(c − b)(b− d) ≥ 0.

2. b ≥ c ≥ d: Then, by substitutinga = −2b− c− d,

(a− b)2 + (b− d)2

a2 + 2b2 + c2 + d2
≥ 5−

√
5

4

⇐⇒ (5 + 3
√
5)b2 + (

√
5− 3)c2 + (

√
5− 1)d2 + (2

√
5 + 2)bc+ (2

√
5− 2)bd + (

√
5− 1)cd ≥ 0.

Let f(b, c, d) denotes the function above. Sincef is a quadratic function ofc and the coefficient
of c2 is negative, the minimum must be achieved whenc = b or d. In other words,f(b, c, d) ≥
min{f(b, b, d), f(b, d, d)}. Note that

f(b, b, d) = (6
√
5 + 4)b2 + (3

√
5− 3)bd + (

√
5− 1)d2 ≥ 0

andf(b, d, d) = (5 + 3
√
5)b2 + 4

√
5bd+ (3

√
5− 5)d2 ≥ 0.

and the equality holds only whenc = d = −3+
√
5

2 b.

Therefore,γ2 =
5−

√
5

4 , fT
2 = (

√
5− 1, 3−

√
5

2 ,−1,−1).
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Now we are ready to calculateγ3.

γ3 = min
(a,b,c,d)⊥w1,f2

(a− b)2 +maxx,y∈e2(x− y)2

a2 + 2b2 + c2 + d2
.

Note that,

(a, b, c, d) ⊥w
�

1, f2 ⇐⇒
{
a+ 2d+ c+ d = 0

(
√
5− 1)a+ (3−

√
5)b− c− d = 0

⇐⇒
{
a = (1−

√
5)b

c+ d = (
√
5− 3)b

1. c ≥ b ≥ d: which is equivalent toc ≥ −
√
5+3
4 (c+ d) ≥ d, then

(a− b)2 + (c− d)2

a2 + 2b2 + c2 + d2
≥ 11 +

√
5

8

⇐⇒ (c−
√
5 + 3

4
(c+ d))(d−

√
5 + 3

4
(c+ d)) ≤ 0.

2. b ≥ c ≥ d: which is equivalent to(4−
√
5)b+ d ≥ 0 ≥ (3−

√
5)b+ 2d, then

(a− b)2 + (b− d)2

a2 + 2b2 + c2 + d2
≥ 11 +

√
5

8

⇐⇒ ((4−
√
5)b+ d)((3 +

√
5)((3−

√
5)b+ 2d)− (

√
5− 1)((4 −

√
5)b+ d)) ≤ 0.

Therefore,γ3 =
11+

√
5

8 , and the correspondingfT
3 = (

√
5−1,−1, 4−

√
5,−1) or (

√
5−1,−1,−1, 4−√

5).

We letf = f3 = (
√
5 − 1,−1, 4 −

√
5,−1)T, and we apply the procedure described in Lemma 4.8 to

computeLwf .

Observe thatwa = wc = wd = 1 andwb = 2, andf(b) = f(d) < f(a) < f(c).

For edgee1,∆1 = f(a)−f(b) =
√
5 andc1 = w1 ·∆1 =

√
5. For edgee2,∆2 = f(c)−f(b) = 5−

√
5,

andc2 = w2 ·∆2 = 5−
√
5. Hence,ra = − c1

wa
, rc = − c2

wc
, andrb = rd = c1+c2

wb+wd
.

Therefore,Lwf = −r = (
√
5,−5

3 , 5 −
√
5,−5

3)
T.

Moreover,Πw
F⊥w
2

Lwf = (−1
2 +

7
6 ·
√
5,−4

3 − 1
6 ·
√
5, 5912 − 11

12 ·
√
5,−7

4 + 1
12 ·
√
5)T /∈ span(f).

The case whenf3 = (
√
5− 1,−1,−1, 4 −

√
5)T is similar, with the roles ofc andd reversed.
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