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ABSTRACT
Our goal is to enable robots to time their motion in a way
that is purposefully expressive of their internal states, mak-
ing them more transparent to people. We start by investi-
gating what types of states motion timing is capable of ex-
pressing, focusing on robot manipulation and keeping the
path constant while systematically varying the timing. We
find that users naturally pick up on certain properties of the
robot (like confidence), of the motion (like naturalness), or
of the task (like the weight of the object that the robot is car-
rying). We then conduct a hypothesis-driven experiment to
tease out the directions and magnitudes of these effects, and
use our findings to develop candidate mathematical mod-
els for how users make these inferences from the timing.
We find a strong correlation between the models and real
user data, suggesting that robots can leverage these models
to autonomously optimize the timing of their motion to be
expressive.
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1. INTRODUCTION
Robot motion trajectories have two components. There is

a kinematic component, which is the geometric path through
the robot’s configurations space – a sequence of configura-
tions that the robot will traverse. But there is also a timing
component – a function that assigns a time stamp to each
configuration along the path, dictating how the robot will
traverse the configuration sequence.

Robotics motion planners for manipulation tend to focus
on the path [18, 19, 33, 27], with few exceptions explicitly
incorporating timing, for instance to improve efficiency or
conservative obstacle avoidance [5, 4]. Most commonly, tim-
ing is an after-thought in robotics, left to the controller to
assign post-hoc.

And yet, timing is crucial in HRI. Imagine seeing a robot
arm carry a cup smoothly across the table, like in the top
image in Fig.1. Now, imagine seeing a different arm pausing
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Figure 1: Different timings of the same motion convey different
things about the robot. We find effects on perceived confidence,
naturalness, even the perceived weight of the object being manipu-
lated. We develop mathematical models for these perceptions that
correlate with user data and enable robots to optimize their timing
for expressiveness.

and restarting, slowing down and then speeding back up,
like in the bottom image. The path might be the same, but
the difference in timing might make us think very differently
about the robots and about what they are doing. We might
think that the second robot is less capable, or maybe that
its task is more difficult. Perhaps it doesn’t have as much
payload, perhaps the cup is heavier, or perhaps it does not
know what to do:

The timing of a path affects how observers perceive the
robot and the task that it is performing.

Studies have already shown that the average velocity and
changes in velocity of motion affect perceptions of expressed
emotion [7], intent [10], elation [2], animacy [32], arousal
and dominance [25], and energy [3]. When it comes to robot
motion, human observers will interpret the timing regard-
less of whether the robot is planning to express anything or
not. Our goal is to give robots control over what their timing
inadvertently expresses:

Robots should leverage timing to be more expressive
of their internal states.

Techniques from animation can be useful in improving
robot expressiveness [29, 24], and animated characters have
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long taken advantage of timing, both for making motion
more natural (e.g. ease-in ease-out is one of the 12 animation
principles [31]), and more expressive [23, 25]. This made
timing a center of focus in the graphics community, devel-
oping automated tools for assigning timing to a path. Most
tools still leave the animator in control of the timing, but sim-
plify the assignment process (e.g. by allowing the animator
to “act out” the timing of a motion with something like a
pen and tablet [30]). Other tools align timing to a different
trajectory or an external event like a beat [17, 14]. Others yet
re-time a particular motion to satisfy new constraints (like
finishing faster) while maintaining physical realism [21].

Overall, although realistic timing can be automated, even
virtual characters still rely on an external expert when it
comes to expressive timing – be it on an animator or on an
artist’s trajectory. Robots, on the other hand, can’t afford to
rely on experts for every motion they need to perform. They
plan their motion autonomously, and have to autonomously
decide on how to time it.

Our focus is on enabling robots to produce expressive tim-
ing. Two questions remain in this area. First, there is the
question of what timing can express in the first place – prior
work looked at effects on perceived emotional state, but are
there also effects on function-related properties? Second,
there is the synthesis question – how can we enable robots
to autonomously generate timing from scratch that is purpose-
fully expressive, rather than efficient or physically realis-
tic. We take a step in this direction by analyzing motion
timing during manipulation, from an open ended study, to
hypothesis-driven experiments, to candidate mathematical
models that capture human timing-based inferences.

We make three contributions:
Exploring the possible effects of timing. So far, stud-
ies focusing on timing mainly looked for effects on per-
ceived emotional state. We designed and conducted a study
to identify what types of variables timing influences more
broadly. Rather than biasing users with questionnaires that
already suggest how the timing should be interpreted, we
used simple open-ended questions. We systematically ma-
nipulated timing across three axes inspired by prior work
in a factorial design, and asked users to characterize the
robot and the task. We clustered their responses to iden-
tify common interpretations, and uncovered robot compe-
tence, confidence, disposition, along with (unsurprisingly)
motion naturalness, and a manipulation-specific character-
istic of the task: the weight of the object being manipulated
by the robot. This list of variables by no means comprise the
entirety of timing effects, nor is it as specific as we would
ultimately desire. It does, however, provide us with a rich
set of dependent measures for more in-depth analysis.
Experiments that test these effects. Only after identifying
candidate dependent variables based on open-ended ques-
tions did we put these effects to the test. We conducted a
hypothesis-driven experiment to understand the magnitude
and directionality for each. Some of our findings support in-
tuition, like the robot being perceived as less confident if it
pauses during the motion. Others are quite surprising. For
instance, when the robot is carrying an object, we found that
people estimated that object to have approximately the same
weight regardless of whether or not the timing had pauses
or speed changes. Overall, pausing had a much stronger
effect than speed.
Mathematical models and evaluation. Our experiment
shows what effects timing has, but not why. For robots to
generate their timing autonomously in different situations,
they need a mechanism for generalizing these findings. We

attempt such a mechanism for three of the dependent vari-
ables. We introduce mathematical models for the inferences
that humans make from motion timing. We take a Bayesian
inference approach, in which the timing serves as an obser-
vation to the human about the states that they can’t observe,
like the robot’s confidence or the object’s weight. We show
strong correlations between these models and the real user
data. The models are constructive, in the sense that robots
can use them to optimize their timing to be expressive.

Overall, this paper shows how several timing features in-
teract to affect perceptions of the robot and task, and uses
these findings to introduce optimization criteria that cor-
relate with the user data and that robots could use to au-
tonomously time motion in a way that is expressive (e.g. of
the robot’s confidence). We look forward to future work on
further analysis and refinement of these criteria to ensure
generality across settings, as well as further exploration of
effects that are more difficult to model, such as how timing
influences the robot’s perceived disposition.

2. NOTATION
A trajectory in our experiment consists of two compo-

nents: the sequence of of way point configurations that the
robot moves through, and the time at which the robot reaches
each way point. We use qi to represent the ith robot config-
uration. Ti is the time that the robot reaches the ith config-
uration. We assume that trajectories begin at time 0. TN is
the total duration of the trajectory (i.e., the time at which the
robot reaches the final configuration).

We will usually be interested in the speed the robot travels
over the course of its trajectory. We use

vi =
qi+1 − qi
Ti+1 − Ti

to represent this velocity (in radians per second). We use

vEE
i =

φ(qi+1)− φ(qi)

Ti+1 − Ti

where φ is the robot’s forward kinematics function, to rep-
resent the velocity of the end effector (in meters per second).

To summarize:
q: A sequence of robot configurations that represents
the kinematic component (path) of a trajectory.
qi: The ith robot configuration in the trajectory.
T: A sequence of time stamps that represents the timing
component of a trajectory.
Ti: The time when the robot reaches qi.

TN : The total time taken by the trajectory.
vi: The velocity of the robot from qi to qi+1.

vEE
i : The end effector velocity of the robot from qi to qi+1.

3. EXPLORATORY STUDY
We start with a study that builds on prior work to find

what kinds of effects timing can have on what people infer
about the robot during a manipulation task. Our goal with
this study is to find the different dimensions of perception
that timing affects, i.e. the dependent measures we should
test – is it energy, elation, dominance, or something differ-
ent? We need to avoid biasing the users towards a particu-
lar interpretation, so we ask the users open-ended questions
and use their responses to form hypotheses for our next ex-
periment.
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Figure 2: Norm of the robot’s configuration space velocity vi for each way point configuration qi in each of our 20 conditions. Each column
is a different speed change pattern, with the top row representing the conditions without a pause and the bottom representing the conditions
with a pause, where we see the velocity go to 0. Each plot contains both the slow motion (lighter color) and its fast counterpart (darker color).

3.1 Study Design
Robot Task. We used a Kinova 6DOF Mico arm (Fig.1) in
our study. We chose one of the most common interactive
manipulation tasks for the robot: a handover [6, 28, 20, 22].
The robot carried an object (a cup) from a table to a handover
configuration (see Fig.1).
Manipulated Factors. The biggest challenge in studying
the effects of timing on people’s perceptions is identifying
which timing variations to test. A simple answer would be
to randomly sample timings, which would uniformly cover
the space of all timings. However, they would almost uni-
formly be interpreted in the same way – as erratic and un-
natural. Instead, we decided to systematically generate tim-
ings by manipulating several factors.

Our first factor is overall speed. Previous studies found
that overall robot speed has effects on perceptions [2, 25].
We use 2 levels for this factor: slow and fast.

Our second factor is change in speed. In studies on ab-
stract characters and human motion, changes in speed have
been shown to affect perceived animacy [32], emotion con-
tent [7], and energy [3]. Here, we considered 0, 1, and 2
changes, leading to a total of 5 levels for this factor: none (no
change), StoF (starting to go faster), FtoS (slowing down),
StoFtoS (faster, then slower), and FtoStoF (slower, than faster).
Fig.2 (top) shows the magnitude of the velocity vi across the
trajectory way points for each of these patterns, and for both
the overall slow and the overall fast levels.

Finally, we also explore an edge case of change in speed:
coming to a full stop. Our third factor is thus pause, with 2
levels: either the robot pauses or it does not. The pausing
variants are at the bottom of Fig.2, and they differ in that the
velocity goes to 0 for a portion of the trajectory.

We used a 2 by 5 by 2 factorial design, leading to a total
of 20 conditions, each corresponding to a different timing T
for a path q (shown in Fig.2).

Dependent Measures. We asked users to describe how
the robot moved the cup, what adjectives they would use to
characterize the robot, and what they think is in the cup.
Subject Allocation. We wanted a within-subjects design
to enable users to see multiple possible timings and have
bases for comparisons, as they would if they would interact
with the robot on a longer term. However, we had 20 con-
ditions, making within-subjects infeasible. We opted for a
randomized assignment, where each participant evaluated
8 randomly sampled conditions. There were a total of 61
participants (63% male and 37% female, median age = 36)
all from the United States and recruited through Amazon’s
Mechanical Turk platform. All had a minimum approval
rating of 95% on Mechanical Turk.

3.2 Analysis
We started by computing word counts for each question.

Fig.3 shows the word cloud that this induced for the ques-
tion of describing the robot, and identifying what the robot
is carrying.1 We then clustered the words into equivalence
classes for easier analysis, ignoring words that appear fewer
than 3 times in the data.
Adjectives. Two of the most common adjectives used to de-
scribe the robot were literal: slow and fast (or quick, speedy,
rapid, efficient), giving rise to two of our clusters. But be-
yond those, many users described the motion as smooth,
natural, predictable, or fluid, which formed the natural clus-
ter with the highest word count (left histogram in Fig.3). The
counterparts were also present (unnatural, jerky, robotic, me-
chanical, uneven, awkward), forming the unnatural cluster.
And finally, users described the robot as careful, cautious,

1We quickly realized that when asked to describe how the robot moved the
cup, users quite literally described what the robot did (e.g. “move the cup
slowly away from the table”), and we are not including the analysis for that
question.
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Figure 3: Words that participants in the exploratory study used to characterize the robot (left) and what it was carrying (right). The histograms
cluster words into equivalence classes. We use these classes to devise the 5 dependent measures for our experiment, 4 of which are perceptions
of the robot and its motion: competence, confidence, disposition, and naturalness. The other dependent measure is functional, the perceived
weight of the object in the handover.

deliberate, hesitant, indecisive, calculated. We split these
into two clusters: one that suggests low confidence but high
ability, like deliberate, and one that suggests low confidence
and low ability, like hesitant. The exact split of these is dif-
ficult to determine, so the relative counts for deliberate and
hesitant should be taken with a grain of salt. The sum of
the two, however, is important, and is larger than any of
our other clusters, suggesting the importance of timing in
perceptions of competence/confidence. Their counterpart,
careless, is also present. The histogram plots clusters with
more than 10 entries, and groups the remaining words into
“other”.

Based on these clusters, we see that motion timing might
affect perceived motion naturalness, but also two important
other variables: perceived competence and perceived confi-
dence. Confidence alone is not sufficient, because it doesn’t
enable us to differentiate between hesitation and delibera-
tion. But taken together, these two variables can help rep-
resent our clusters. Surprisingly, none of the descriptions
directly related to arousal, dominance, energy (with the ex-
ception of the word “aggressive”). Previous studies found
effects when directly measuring these, but they do not seem
to specifically occur when users aren’t directly asked about
them. However, the adjectives that participants used could
be interpreted as suggesting higher or lower values for these
variables, and we capture them with a broader term: per-
ceived disposition (with positive or negative values).
Object. For what the robot was carrying, the most com-
mon words were “water” and “nothing”. While this is not
surprising, their difference is important: the cup is heavier
when it has something inside. Participants provided many
other options, and we differentiated them between standard
(e.g. something, water, soda, etc.), options that mentioned
hot liquids (e.g. coffee), and solids that cannot be spilled,
e.g. (jell-o, or even metal). Hot contents and solid contents
were uncommon (right histogram) and not generalizable far
beyond open containers, so we identify one variable here:
perceived weight of the object that the robot is carrying.

4. EXPERIMENTS ON TIMING EFFECTS
We designed our experiments based on the findings from

the exploratory study. The word counts already suggest cer-
tain effects, e.g. that slower motion tends to be more often
described as careful or cautious or deliberate than fast mo-
tion (all three appear in top 15 words for slow and do not
for fast).

However, we noticed that the difference remains the same
when considering changes in speed and when not. Because
of this and because changes in speed and pauses are re-

lated, we decided to separate into two experiments rather
than testing all possible interactions: a first one focusing
on speed and pauses, and a second focusing on the speed
change patterns.

4.1 Speed, Pauses, and Their Interaction

4.1.1 Experiment Design
Manipulated Factors. In this experiment, we manipulate
the speed and pause factors as we did in Sec. 3.1.
Dependent Measures. We use the measures we identi-
fied in the previous section. We measure perceived compe-
tence, confidence, disposition, naturalness, and weight us-
ing 7-point scales.

For each dependent measure, the scales were labeled at
either end and in the very middle. For example, the disposi-
tion scale was labeled “very negative”, “neither positive nor
negative”, and “very positive” on the leftmost, middle, and
rightmost options, respectively. We chose to label the scales
in this fashion instead of having participants mark their
agreement with a statement (as is typical in Likert scales)
such as “The robot’s disposition is positive.” We did so be-
cause disagreeing with that statement does not necessarily
mean the same thing as the robot having a “very negative”
disposition: disagreeing with positive does not imply agree-
ing with negative. This is important because here, we are
just as interested in whether timing can cause the percep-
tion of negative disposition as we are in whether timing can
cause the perception of a positive one.
Subject Allocation. The experiment was within-subjects,
every participant saw each of the 4 conditions. There were a
total of 40 participants (80% male and 20% female, median
age = 29). As in the exploratory study, all participants were
from the United States and were recruited through Ama-
zon’s Mechanical Turk, with a minimum approval rating of
95%.
Hypotheses. We state generic and intuitive hypotheses,
motivated in part by prior work findings when it comes to
disposition and weight, and extrapolating to confidence and
competence. However, the devil is in the details, and as
we will see in the analysis, not all factors will have their
anticipated effects, nor the effect sizes will be the same. Our
mathematical models will leverage these details.

We hypothesize that faster motion is more positively per-
ceived (it has already been shown before to positively affect
disposition-related perceptions [3], and this could extrapo-
late), and makes objects look lighter (known from animating
dropping objects [23]):

H1. Increasing speed positively affects perceived competence,
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Figure 4: Our first hypothesis-driven experiment measured the effect of overall speed and pausing and their interaction. Speed significantly
affected perceived confidence and weight. Pausing significantly affected perception of every property except weight.

confidence, disposition, naturalness, and negatively affects per-
ceived weight.

In contrast, pausing (incorporating infinitesimally slow
motion) should have the opposite effect:

H2. Pausing negatively affects perceived competence, confi-
dence, disposition, naturalness, and positively affects perceived
weight.

4.1.2 Analysis
We first performed a multivariate analysis on the data,

and found that the different items were not highly correlated
(we computed item reliability, and found Cronbach’s α =
.67), so we proceeded with separate analyses for each.

We used a factorial repeated measures ANOVA with speed
and pause as factors for each dependent measure. Fig.4
plots the results.
Competence. We found a significant main effect for pause
(F(1, 163) = 65.81, p < .0001), and no other effects (main or
interaction). Pausing made the robot seem less competent.
Surprisingly, moving faster made the robot seem only ever-
so-slightly more competent, suggesting that it is not overall
efficiency that matters for perceived competence.
Confidence. Pausing made the robot seem significantly
less confident (F(1, 163) = 45.60, p < .0001). But unlike for
competence, higher speed made the robot seem significantly
more confident (F(1, 163) = 10.79, p = 0013), but resulted
in a smaller mean difference than pausing. The interaction
effect was not significant.
Disposition. Pausing resulted in a more negative disposi-
tion (F(1, 163) = 24.08, p < .0001). Surprisingly, speed did
not have a significant effect, though moving faster did result
in a sightly more positive perception, in line with prior work
[3].
Naturalness. Again, we found that pausing has a signif-
icant main negative effect (F(1, 163) = 68.01, p < .0001).
Pausing made the motion less natural, intuitively because
it is not as smooth, or because it does not match what a per-
son would expect the robot to do. Speed had a very marginal
positive effect (F(1, 163) = 1.85, p = .1766), though perhaps
looking at other values for overall speed would lead to the
motion becoming less natural.
Weight. In the case of weight, it was speed that had a signif-
icant negative effect (F(1, 163) = 19.97, p < .0001), with mov-
ing faster resulting in the object being perceived as lighter.
This is in line with animation advice for animating objects

dropping, and physically it makes sense that objects that
drop faster are lighter. But seeing this effect on a robot is
important because the object is no longer free, but rather being
moved by an agent. The robot does not need to move any dif-
ferent when the object is heavier, and yet people do make
inferences on weight based on how the robot moves. Sur-
prisingly, pausing did not affect weight, even though paus-
ing did make the robot seem less confident and competent,
which could suggest that it is carrying something heavier.
Summary. Overall, the effects we did find were intuitive:
pausing negatively affected competence, confidence, dispo-
sition, and naturalness, while speed positively affects confi-
dence and negatively affects weight. Participant comments
suggested that pauses make the robot look like it is “plan-
ning” – it is uncertain about something or trying to locate
something. We build on this uncertainty idea in our model
in the next section.

It is the effects that we did not find that were surpris-
ing. For instance, speed did not seem to influence perceived
competence, but influenced perceived confidence. Pausing
did not seem to influence perceived weight. Of course, not
finding an effect does not mean it is not there, but here the
means suggest a small effect size, if at all. We dig deeper
into these findings in our model section.

4.2 Speed Change Patterns

4.2.1 Experiment Design
Manipulated Factors. We manipulated speed changes as
in Sec. 3.1, using the levels for 1 and 2 changes (previous
experiment already evaluated 0 changes).
Dependent Measures. We used the same measures as in
Sec. 4.1.
Subject Allocation. There were 40 participants (59% male
and 41% female, median age = 37), selected and allocated
as in 4.1.
Hypothesis. We hypothesize that changes in speed will
make the robot seem more hesitant and have a negative dis-
position, but make the object look heavier:

H3. More changes in speed have a negative effect on perceived
competence, confidence, disposition, naturalness, and a positive
effect on perceived weight.

Which kind of changes (e.g. StoF vs FtoS) have which
effect remains to be determined.
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4.2.2 Analysis
Number of Speed Changes. We first analyzed the ef-
fects that the number of speed changes has, combining data
from this experiment with data from the former. A regres-
sion analysis shows, in line with our hypothesis, that hav-
ing more changes significantly decreases perceived compe-
tence (F(1, 163) = 21.30, p < .0001), confidence (F(1, 192) =
12.24,p = 0.006), disposition (F(1, 163) = 14.59, p = .0002),
and naturalness (F(1, 163) = 37.23, p < .0001). It does
not, however, significantly affect perceived weight, and in
fact the slope on the linear fit is very close to 0, namely
.02. This is consistent with our finding that pausing did not
significantly affect perceived weight, but counter-intuitive
nonetheless.
Speed Change Patterns. Aside from number of changes,
the actual pattern is interesting as well – does it make a
difference, for instance, if the robot starts slower and accel-
erates, or starts faster and decelerates? We ran a repeated
measures ANOVA for each dependent measure, and found
a significant effect for every case but perceived weight, so
we followed up with Tukey HSD. The results are plotted in
Fig.5.

For competence, we found that FtoS was the best option,
significantly better than StoFtoS, the worst option (p = .0372).
This was similar for confidence, but here the worst option
was FtoStoF. Disposition had the same result as confidence.
For naturalness, FtoS was better than every other option, all
with p < .03.
Summary. Overall, more speed changes negatively im-
pacted all perceptions but weight. Slowing down was the
most positively perceived speed change of all. At least for
manipulation tasks, if the robot is going to change speed,
slowing down will make it seem more competent, confident,
and natural compared to speeding up or even speeding up
and then slowing back down. This is somewhat surprising,
but likely has to do with the notion of reaching a goal that
the robot needs to do something with, like handing over the
bottle or picking it up. Indeed, participants did often com-
ment in this condition that the robot is changing speed to
hand the object over more smoothly.

Surprisingly, speed changes had no effect (close to 0 slope)
on perceived weight, even though intuitively the ability to
change speed could indicate a lighter object, and the need
to change speed could indicate a heavier object. Neither
option seemed to be the case.

5. CANDIDATE MATHEMATICAL
MODELS FOR TIMING-BASED
HUMAN INFERENCES

Our findings inform us about the effects of motion timing,
but they are only descriptive and not constructive: the robot
can’t use them to time its motion automatically in order to
express what it wants. All the robot can do now is compare
the specific timings we explored and predict what users will
infer based on them. But what it needs instead is to be able
to predict how any timing will be interpreted.

We take an inferential approach to enabling generalization
in this section. We construct models of the inferences that
people make from robot motion timing based on our find-
ings so far, and show how they correlate with the real user
data. Armed with such models, the robot can simulate what
a new timing T would convey to a person, given a path, and
even optimize its timing to purposefully convey something.

5.1 General Formulation
We start with a general approach, and then fill in the de-

tails for confidence, weight, and naturalness.
We will model people’s inference on some hidden robot

or task state θ (e.g., the robot’s confidence) given timing T
and path q as evidence. Thus, we model people as esti-
mating P(θ|T, q) via Bayesian inference from an observation
model P(T|q, θ). If the robot can approximate the person’s
P(θ|T, q), then it knows what T conveys about θ.

To model P(T|q, θ), we suppose that the person expects
the timing to be based on some criterion, with different hid-
den variables leading to different criteria. We use C(T; q, θ)
to represent the criterion for a timing given a θ value (e.g., a
weight or a confidence value) and a path q. Given θ and q,
the probability of a trajectory timing is

P(T|q, θ) ∝ e−λC(T;q,θ) (1)

Such a formulation has been used for paths and general ac-
tions in an MDP in [8, 1, 11, 12].

In our experiments, the users observe timed trajectories
and infer θ. To get this from our model, we apply Bayes’
rule to compute

P(θ|T, q) ∝ P(T|θ, q)P(θ|q) (2)

Note that given this probability distribution, the robot can
also search for a timing for its path that maximizes the prob-
ability of a particular θ, e.g. maxT P(θ1|T, q).
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Figure 6: Correlation between our model predictions and real user data. We varied the timing of the trajectories across 8 different conditions
(described in Section 4) and the plots above have one data point per condition. The x-coordinate of each data point is the best model’s
prediction for that condition and the y-coordinate is the mean subject response, with a 95% confidence interval. We also show a 95%
confidence interval on the regression. We see that higher probability for the robot being confident, the object being heavy, and the motion
being natural usually does imply a higher rating along these criteria from the users. This suggests that the models are good candidates for
capturing the inferences that people make, enabling robots to predict what their timing will convey. We also test how well the models can fit
random data as opposed to real user data to check that they actually approximate the inferences that people make and not just overfitting.

Model Evaluation and Parameter Selection. Next, we con-
sider what C can be for confidence, weight, and naturalness.
We will evaluate these models by measuring the correlation
between the model prediction, for a given trajectory timing,
with the mean subject response for that timing. Our models
include some free parameters (e.g., λ in (1)) that we fit to
the data by doing a grid search and selecting the parameters
that correlate best with the data.

This means that there are two possible explanations for a
high correlation: either the model actually explains people’s
inferences, or it is complex enough that it can overfit to any
data. Thus, we have a confound. To address it, we run the
same procedure on randomly generated synthetic data: if
we get a high correlation with random data, then it is likely
that our model has overfit. On the other hand, a low corre-
lation with random synthetic data suggests that our model
does actually help explain the predictions that users made.

5.2 Confidence
Model. We observed that high speed led to an increase in
perceived confidence and pausing led to a decrease in per-
ceived confidence. We propose that a mathematical model
for confidence can be the precision (i.e., inverse variance) in
the robot’s belief state.

We thus model the observer as assuming, for simplicity,
that the robot’s belief state is a Gaussian N (µ, σ2) with ini-
tial precision

τ0 =
1

σ2
0

where high τ0 corresponds to high confidence and vice versa.
The robot gets observations at a constant rate over the

course of the trajectory. Our observer expects the robot to
use a different timing depending on the confidence – intu-
itively, if it starts with low precision, it needs to get more
observations than if it starts with high precision. More con-
cretely, the timing that the observer will expect for an initial
precision, τ0, is related to the cost C that the observer expects
the robot to optimize when timing motion. We propose that
C should target high final precision τf , while trading off

with being efficient on the task:

C(T; q, τ0) = kTN +
1
τf

(3)

If the robot moves faster, it gets fewer observations so its
final precision is lower. k controls the relative importance
of speed versus precision. If each of these observations has
Gaussian noise with precision τobs, then the robot’s belief
state updates with a Kalman filter [16]. The precision at the
end of the trajectory is thus

τf = nobsτobs + τ0 (4)

where nobs is the number of observations the robot gets dur-
ing the trajectory.

This first model attempt explains the interaction between
speed and perceived confidence, but can not explain the in-
teraction with pauses; paused trajectories in our experiment
still have the same overall duration, so the effect we found
for pausing can not be explained by the current model.

To account for pauses, we further suppose that the quality
of each observation depends on the robot’s velocity. If the
robot is not moving, then it gets observations with precision
τobs. As the robot speeds up, the precision of its observations
decreases. This gives us the following formula for τf :

τf = τ0 + ∑
i
(Ti+1 − Ti)

τobs
1 + r ‖vi‖

. (5)

Recall that Ti is the time the robot reaches configuration qi
and vi is the corresponding velocity. r governs how quickly
the observation precision falls off as the robot speeds up.

The inference task is to determine the value of τ0, given
a timed trajectory. We consider two possible values for τ0:
τ0 = 1 represents “high confidence” and τ0 = 0.5 represents
“low confidence.”
Evaluation. We used grid search to fit r, k and λ. For
each parameter we consider 10 values between 10−2 and 102,
evenly distributed in log space. The best fit parameters were
r = 102, k = 0.6, λ = 12.9. The corresponding correlation is
0.86. The average best-fit correlation with random data was



0.3. Fig.6 (left) plots the confidence model’s output versus
the mean student ratings for confidence.

5.3 Weight
Model. Previous work has shown that humans make in-
ferences about the weights of objects based on their motions
and that their perceptions can be modelled as Bayesian in-
ference with a simplified physics model [26, 13]. However,
this work focused on objects in free fall and collisions, while
we are interested in objects being moved by a different en-
tity, namely the robot. We found that human inferences
about weight depend primarily on the speed of the object.
A higher speed led users to infer that the held object was
lighter.

It is tempting to apply a model where trajectories trade off
between, e.g., energy for the robot (sum of squared torques
on its joints) and the duration of the trajectory. This would
lead to the appropriate inference with respect to speed; a
higher weight means that the same torque results in a lower
speed. However a sum of squared torques cost does not give
a good explanation of the impact speed changes or pauses
had on the inferred weight. A robot minimizing sum of
squared torques will pay a higher penalty to pause with a
heavy object, so pausing would change the inferred weight
in this model.

As an alternative, we model the robot as attempting to
control the overall momentum of the object it is holding. In
this model, the robot is not minimizing the effort it expends
to move the object, but rather it minimizes the amount of
effort it would take to bring the object to a halt. The overall
cost function trades off between duration and the sum of
momentums across the trajectory:

C(T; q, m) = kTN + m ∑
i

∥∥∥vEE
i

∥∥∥ (6)

where m is the mass of the object being held, TN is the dura-
tion, and vEE

i is the velocity of the end effector. In this model,
the inferred mass of the object will depend on the average
velocity of the object and does not have any dependence on
speed changes that occur during the trajectory. This is in
contrast to cost functions that minimize the sum of squared
torques or the kinetic energy of the object.

The inference task is to determine m, given a timed tra-
jectory. We considered two physically plausible values of m:
m = 0.5kg represents a light mass and m = 0.8kg represents
a heavy mass.
Evaluation. We used grid search to fit k and λ. For each
parameter we considered 10 values between 10−2 and 102,
evenly distributed in log space. The best fit parameters were
k = 4.6, λ = 35.9. The corresponding correlation is 0.93.
The average best-fit correlation with random data was 0.18.
Fig.6 (center) plots the confidence model’s output versus the
mean student ratings for confidence.

5.4 Naturalness
Model. Our model for naturalness is the simplest of the
three. Natural human arm motions can be modeled as min-
imizing an objective function defined as the magnitude of
jerk integrated over the motion [9]. In the case of robot-
human handovers (the task used in our experiment), it has
been shown that minimum jerk motions lead to faster reac-
tion times from the human [15].

The cost function for naturalness inference is therefore a
tradeoff between the duration of the trajectory (as before)

and the sum of squared jerks along the trajectory:

C(T; q, k) = kTN + ∑
i
||Ji||2 (7)

where k is the naturalness parameter that governs how nat-
ural the trajectory should be in comparison to its duration.
Ji is the jerk associated with the ith we can express this in
terms of stepwise velocities as

Ji = vi+1 + vi−1 − 2vi (8)

The inference task is to determine k given a trajectory tim-
ing. We suppose that k can take on two possible value khigh
and klow that we fit to the data.
Evaluation. We used grid search to fit khigh, klow, and λ.
We considered 10 values between 10−2 and 102, evenly dis-
tributed in log space. During the grid search, we enforced
the constraint that khigh > klow. The best fit was khigh =
100, klow = 1.66, λ = 4.64. The corresponding correlation
was 0.90. The average best-fit correlation with random data
was 0.29. Fig.6 (right) plots the naturalness model’s output
versus the mean student ratings for naturalness.

6. DISCUSSION
Summary. We already knew from prior work that timing
is important, and expected to see effects on perceptions of
non-functional properties of the robot, like disposition and
naturalness. More exciting is that we have also found effects
on perceptions of functional properties as well, like compe-
tence, capability, and carried object weight.

We introduced mathematical models for some of these
perceptions, whose predictions strongly correlated with the
perceptions of actual users. These contribute to enabling
robots to anticipate what their timing will convey, as well
as to optimize their timing, given a path, to purposefully
convey that they are not confident, that they are handing
the person over a heavy object, or to simply produce more
natural or predictable motion.
Limitations and Future Work. Despite these promising
results supporting the importance of timing and bringing
us closer to autonomous expressive timing, we have just
scratched the surface of this deep area of research. Timing is
complex and multi-faceted, and we have only studied three
factors that contribute to timing: speed, changes of speed
(in particular ways), and pausing (at particular times).

Our models for weight, confidence, and naturalness help
generalize to new timings outside of the conditions in our
study. But more investigation is needed to put each model to
the test with novel timing situations, new paths, new robots,
and new tasks. Further, the fact that the current models cor-
relate with the data we collected does not necessarily imply
that they produce useful timings when optimized. Perform-
ing the timing generation and adjusting the models accord-
ingly is our main direction of future work.

Finally, for each of our current models we defined a tim-
ing cost function based on some physical or informational
quantity (e.g., momentum in the weight cost or precision in
the confidence cost). Doing the analogous for effects like
disposition is a significant future challenge, because such
quantities are hard to directly relate to concrete physical
properties.
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