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A

Upper bounds for Newton’s method on
monotone polynomial systems, and P-time model checking of
probabilistic one-counter automata

Alistair Stewart, University of Edinburgh
Kousha Etessami, University of Edinburgh
Mihalis Yannakakis, Columbia University

A central computational problem for analyzing and model checking various classes of infinite-state recur-
sive probabilistic systems (including quasi-birth-death processes, multi-type branching processes, stochastic
context-free grammars, probabilistic pushdown automata and recursive Markov chains) is the computa-
tion of termination probabilities, and computing these probabilities in turn boils down to computing the
least fixed point (LFP) solution of a corresponding monotone polynomial system (MPS) of equations, denoted
x = P (x).

It was shown in [Etessami and Yannakakis 2009] that a decomposed variant of Newton’s method con-
verges monotonically to the LFP solution for any MPS that has a non-negative solution. Subsequently,
[Esparza et al. 2010] obtained upper bounds on the convergence rate of Newton’s method for certain classes
of MPSs. More recently, better upper bounds have been obtained for special classes of MPSs ([Etessami et al.
2010; Etessami et al. 2012]).

However, prior to this paper, for arbitrary (not necessarily strongly-connected) MPSs, no upper bounds
at all were known on the convergence rate of Newton’s method as a function of the encoding size |P | of the
input MPS, x = P (x).

In this paper we provide worst-case upper bounds, as a function of both the input encoding size |P |,
and ε > 0, on the number of iterations required for decomposed Newton’s method (even with rounding) to
converge to within additive error ε > 0 of q∗, for an arbitrary MPS with LFP solution q∗. Our upper bounds
are essentially optimal in terms of several important parameters of the problem.

Using our upper bounds, and building on prior work, we obtain the first P-time algorithm (in the stan-
dard Turing model of computation) for quantitative model checking, to within arbitrary desired precision,
of discrete-time QBDs and (equivalently) probabilistic 1-counter automata, with respect to any (fixed) ω-
regular or LTL property.

Categories and Subject Descriptors: F.2.1 [Theory of Computing]: Analysis of Algorithms—Numerical
Algorithms and Problems; G.3 [Probability and Statistics]: Stochastic Processes; G.1.5 [Mathematics of
Computing]: Numerical Analysis—Roots of Nonlinear Equations

General Terms: Algorithms, Theory, Probability, Model Checking

1. INTRODUCTION
In recent years, there has been extensive work on the analysis of various classes
of infinite-state recursive probabilistic systems, including recursive Markov chains,
probabilistic pushdown systems, stochastic context-free grammars, multi-type branch-
ing processes, quasi-birth-death processes and probabilistic 1-counter automata (e.g.
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[Etessami and Yannakakis 2009; 2012; Esparza et al. 2006; Etessami et al. 2012; Etes-
sami et al. 2010; Brázdil et al. 2011]). These are all finitely-presentable models that
specify an infinite-state underlying probabilistic system. These classes of systems arise
in a variety of fields and have been studied by various communities. Recursive Markov
chains (RMC), and the equivalent model of probabilistic pushdown systems (pPDS),
are natural models for probabilistic programs with recursive procedures [Etessami and
Yannakakis 2009; Esparza et al. 2006]. Quasi-birth-death (QBD) processes, which are
essentially equivalent (in discrete-time) to probabilistic 1-counter automata (p1CA),
are used in queueing theory and performance evaluation [Neuts 1981; Latouche and
Ramaswami 1999]. Stochastic context-free grammars are a central model in natural
language processing and are used also in biology [Durbin et al. 1999], and branch-
ing processes are a classical probabilistic model with many applications, including in
population genetics ([Harris 1963]).

A central problem for the analysis and model checking of these systems is the com-
putation of their associated termination probabilities. Computing these probabilities
amounts to solving a system of fixed-point multivariate equations x = P (x), where x is
a (finite) vector of variables and P is a vector of polynomials with positive coefficients;
such a system of equations is called a monotone polynomial system (MPS) because P
defines a monotone operator from the nonnegative orthant to itself. Each of the above
classes has the property that, given a model M in the class, we can construct in poly-
nomial time a corresponding MPS x = P (x) such that the termination probabilities of
M (for various initial states) are the least fixed point (LFP) solution of the system, i.e.,
they satisfy the system, and any other nonnegative solution is at least as large in every
coordinate. In general, a monotone polynomial system may not have any nonnegative
fixed point solution; consider for example x = x + 1. However, if it has a nonnega-
tive fixed point, then it has a least fixed point (LFP). The systems constructed from
probabilistic systems as above always have a LFP, which has values in [0, 1] since its
coordinates give the termination probabilities.

The equations are in general nonlinear, and their LFP solution (the vector of ter-
mination probabilities) is in general irrational even when all the coefficients of the
polynomials (and the numerical input data of the given probabilistic model) are ratio-
nal. Hence we seek to compute the desired quantities up to a desired accuracy ε > 0.
The goal is to compute them as efficiently as possible, as a function of the encoding size
of the input (the given probabilistic model, or the MPS) and the accuracy ε. We first
review some of the relevant previous work and then describe our results.

Previous Work. An algorithm for computing the LFP of MPSs, based on Newton’s
method, was proposed in [Etessami and Yannakakis 2009]. Given a MPS, we can first
identify in polynomial time the variables that have value 0 in the LFP and remove
them from the system, yielding a new so-called cleaned system. Then a dependency
graph between the variables is constructed, the variables and the MPS are decom-
posed into strongly connected components (SCCs), and Newton’s method is applied
bottom-up on the SCCs, starting from the all-0 vector. It was shown in [Etessami and
Yannakakis 2009] that, for any MPS that has a (nonnegative) solution, the decomposed
variant of Newton’s method converges monotonically to the LFP. Optimized variants
of decomposed Newton’s method have by now been implemented in several tools (see,
e.g., [Wojtczak and Etessami 2007; Nederhof and Satta 2008]), and they perform quite
well in practice on many instances.

Esparza, Kiefer and Luttenberger studied in detail the rate of convergence of New-
ton’s method on MPSs [Esparza et al. 2010] (with or without decomposition). On the
negative side, they showed that there are instances of MPSs x = P (x) (in fact even sim-
ple RMCs), with n variables, where it takes an exponential number of iterations in the
input size to get even within just one bit of precision (i.e. accuracy 1/2). On the positive
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side, they showed that after some initial number kP of iterations in a first phase, New-
ton’s method thereafter gains bits of precision at a linear rate, meaning that kP + cP · i
iterations suffice to gain i bits of precision, where both kP and cP depend on the input,
x = P (x). For strongly connected MPSs, they showed that the length, kP , of the ini-
tial phase is upper bounded by an exponential function of the input size |P |, and that
cP = 1. For general MPSs that are not strongly connected (and for general RMCs and
pPDSs), they showed that cP = n2n suffices, but they provided no upper bound at all
on kP (and none was known prior to the present paper). Thus, they obtained no upper
bounds, as a function of the size of the input, x = P (x), for the number of iterations
required to get to within even the first bit of precision (e.g., to estimate within < 1/2
the termination probability of a RMC) for general MPSs and RMCs. Proving such a
general bound was left as an open problem in [Esparza et al. 2010].

For special classes of probabilistic models (and MPSs) better results are now known.
For the class of quasi-birth-death processes (QBDs) and the equivalent class of prob-
abilistic 1-counter automata (p1CA), it was shown in [Etessami et al. 2010] that the
decomposed Newton method converges in a polynomial number of iterations in the size
of the input and the bits of precision, and hence the desired termination probabilities
of a given p1CA M can be computed within absolute error ε = 2−i in a number of
arithmetic operations that is polynomial in the size |M | of the input and the number
i = log(1/ε) of bits of precision. Note that this is not polynomial time in the standard
Turing model of complexity, because the numbers that result from the arithmetic oper-
ations in general can become exponentially long (consider n successive squarings of a
number). Thus, the result of [Etessami et al. 2010] shows that the termination problem
for p1CAs can be solved in polynomial time in the unit-cost exact rational arithmetic
model, a model in which arithmetic operations cost 1 time unit, regardless of how long
the numbers are. It is not known exactly how powerful the unit-cost rational model
is, but it is believed to be strictly more powerful than the ordinary Turing model. The
question whether the termination probabilities of a p1CA (and a QBD) can be com-
puted in polynomial time (in the standard model) was left open in [Etessami et al.
2010].

Building on the results of [Etessami et al. 2010] for computation of termination prob-
abilities of p1CAs, more recently [Brázdil et al. 2011] showed how to do quantitative
model checking of ω-regular properties (given by a deterministic Rabin automaton)
for p1CAs, i.e., compute within desired precision ε > 0 the probability that a run of
a given p1CA, M , is accepted by a given deterministic Rabin automaton, R, in time
polynomial in M,R, log(1/ε) in the unit-cost rational arithmetic model. The complexity
in the standard Turing model was left open.

For the classes of stochastic context-free grammars, multi-type branching processes,
and the related class of 1-exit RMCs, we showed recently in [Etessami et al. 2012]
that termination probabilities can be computed to within precision ε in polynomial
time in the size of the input model and log(1/ε) (i.e. the # of bits of precision) in the
standard Turing model [Etessami et al. 2012]. The algorithm is a variant of Newton’s
method, where the preprocessing identifies and eliminates (in P-time [Etessami and
Yannakakis 2009]) the variables that have value 1 in the LFP (besides the ones with
value 0). Importantly, the numbers throughout the computation are not allowed to
grow exponentially in length, but are always rounded down to a polynomial number
of bits. The analysis then shows that the rounded Newton’s algorithm still converges
to the correct values (the LFP) and the number of iterations and the entire time com-
plexity is polynomially bounded.

For general RMCs (and pPDSs) and furthermore for general MPSs, even if the LFP
is in [0, 1]n, there are negative results indicating that it is probably impossible to com-
pute the termination probabilities and the LFP in polynomial time in the standard
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Turing model. In particular, we showed in [Etessami and Yannakakis 2009] that ap-
proximating the termination probability of a RMC within any constant additive error
< 1

2 , is at least as hard as the square-root-sum problem, a longstanding open problem
that arises often in computational geometry, which is not even known to be in NP, and
that it is also as hard as the more powerful problem, called PosSLP [Allender et al.
2009], which captures the essence of unit-cost rational arithmetic. Thus, if one can ap-
proximate the termination probability of a RMC in polynomial time then it is possible
to simulate unit-cost rational arithmetic in polynomial time in the standard model,
something which is highly unlikely.

As we mentioned at the beginning, computing termination probabilities is a key in-
gredient for performing other, more general analyses, including model checking [Etes-
sami and Yannakakis 2012; Esparza et al. 2006].

Our Results. We provide a thorough analysis of decomposed Newton’s method and
show upper bounds on its rate of convergence as a function of the input size and the de-
sired precision, which holds for arbitrary monotone polynomial systems. Furthermore,
we analyze a rounded version of the algorithm where the results along the way are not
computed exactly to arbitrary precision but are rounded to a suitable number of bits
(proportional to the number of iterations k of Newton’s method that are performed),
while ensuring that the algorithm stays well-defined and converges to the LFP. Thus,
the bounds we show hold for the standard Turing model and not only the unit-cost
model. Note that all the previous results on Newton’s method that we mentioned, ex-
cept for [Etessami et al. 2012], assume that the computations are carried out in exact
arithmetic. To carry out k iterations of Newton’s method with exact arithmetic can re-
quire exponentially many bits, as a function of k, to represent the iterates. In general,
the fact that Newton’s method converges with exact arithmetic does not even imply
automatically that rounded Newton iterations will get anywhere close to the solution
when we round to, say, only polynomially many bits of precision as a function of the
number of iterations k, let alone that the same bounds on the convergence rate will
continue to hold. We nevertheless show that suitable rounding works for MPSs.

In more detail, suppose that the given (cleaned) MPS x = P (x) has a LFP q∗ > 0. The
decomposition into strongly connected components yields a DAG of SCCs with depth d,
and we wish to compute the LFP with (absolute) error at most ε. Let q∗min and q∗max be
the minimum and maximum coordinate of q∗. Then the rounded decomposed Newton’s
method will converge to a vector q̃ within ε of the LFP, i.e., such that ‖q∗ − q̃‖∞ ≤ ε in
time polynomial in the size |P | of the input, log(1/ε), log(1/q∗min), log(q∗max), and 2d (the
depth d in the exponent can be replaced by the maximum number of nonlinear SCCs in
any path of the DAG of SCCs). We also obtain bounds on q∗min and q∗max in terms of |P |
and the number of variables n, so the overall time needed is polynomial in |P |, 2n and
log(1/ε). We provide actually concrete expressions on the number of iterations and the
number of bits needed. As we shall explain, the bounds are essentially optimal in terms
of several parameters. The analysis is quite involved and builds on the previous work.
It uses several results and techniques from [Etessami and Yannakakis 2009; Esparza
et al. 2010; Etessami et al. 2012], and develops substantial additional machinery.

We apply our results then to probabilistic 1-counter automata (p1CAs). Using our
analysis for the rounded decomposed Newton method and properties of p1CAs from
[Etessami et al. 2010], we show that termination probabilities of a p1CAM (and QBDs)
can be computed to desired precision ε in polynomial time in the size |M | of the p1CA
and log(1/ε) (the bits of precision) in the standard Turing model of computation, thus
solving the open problem from [Etessami et al. 2010].

Furthermore, combining with the results of [Brázdil et al. 2011] and [Etessami and
Yannakakis 2012], we show that one can do quantitative model checking of ω-regular
properties for p1CAs in polynomial time in the standard Turing model, i.e., we can
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compute to desired precision ε the probability that a run of a given p1CA M satisfies
an ω-regular property in time polynomial in |M | and log(1/ε) (and exponential in the
property if it is given for example as a non-deterministic Büchi automaton or polyno-
mial if it is given as a deterministic Rabin automaton).

The rest of the paper is organized as follows. In Section 2 we give basic defini-
tions and background, and discuss preliminaries. In Section 3 we consider strongly-
connected MPS, and we prove a central theorem which both provides upper bounds on
Newton’s method for strongly-connected MPSs and also crucially provides bounds on
how much the LFP of a strongly-connected MPS would change if certain parameter val-
ues defining the MPS are decreased. In Section 4, we consider general MPS, building
on the results we establish for the strongly connected case, we establish upper bounds
on Newton’s method for general MPSs. We then also discuss several senses in which
our results are essentially optimal for MPSs. In Section 5 we analyze the special MPSs
associated with probabilistic 1-counter automata (p1CAs), and we apply results from
Section 4 to show that termination probabilities for these can be computed in P-time;
we then use this to conclude that computing the model checking probability (to within
desired precision) that a given p1CA satisfies a (fixed) LTL or ω-regular property can
be done in P-time.

2. DEFINITIONS AND BACKGROUND
We first recall basic definitions about MPSs from [Etessami and Yannakakis 2009]. A
monotone polynomial system of equations (MPS) consists of a system of n equations in
n variables, x = (x1, . . . , xn), the equations are of the form xi = Pi(x), i = 1, . . . , n, such
that Pi(x) is a multivariate polynomial in the variables x, and such that the monomial
coefficients and constant term of Pi(x) are all non-negative. More precisely, for α =
(α1, α2, . . . , αn) ∈ Nn, we use the notation xα to denote the monomial xα1

1 xα2
2 . . . xαnn .

(Note that by definition x(0,...,0) = 1.) Then for each polynomial Pi(x), i = 1, . . . , n, there
is some finite subset of Nn, denoted Ci, and for each α ∈ Ci, there is a positive (rational)
coefficient ci,α > 0, such that Pi(x) ≡

∑
α∈Ci ci,αx

α.
For computational purposes, we assume each polynomial Pi(x) has rational coeffi-

cients1, and that it is encoded succinctly by specifying the list of pairs 〈(ci,α, α) | α ∈ Ci〉,
where each rational coefficient ci,α is represented by giving its numerator and denom-
inator in binary, and each integer vector α is represented in sparse representation, by
only listing its non-zero coordinates, i1, . . . , ik, by using a list 〈(i1, αi1), . . . , (ik, αik)〉, giv-
ing each integer αij in binary. (Proposition 2.1 below, from [Etessami and Yannakakis
2009; Etessami et al. 2012], shows that using such a sparse representation does not
entail any extra computational cost.)

We use vector notation, using x = P (x) to denote the entire MPS. We use |P | to
denote the encoding size (in bits) of the MPS x = P (x) having rational coefficients,
using the succinct representation just described. Let R≥0 denote the non-negative real
numbers. We shall often use 0 (respectively, 1) to refer to an all 0 (respectively, all 1)
vector of appropriate dimension, where the dimension will be clear from the context.
For vectors a and b, we use a ≤ b (respectively a < b) to mean inequality (respectively,
strict inequality) in every coordinate.

Note that P (x) defines a monotone operator on the non-negative orthant Rn≥0. In
other words, P : Rn≥0 → Rn≥0, and if 0 ≤ a ≤ b, then P (a) ≤ P (b). In general, an
MPS need not have any real-valued solution: consider x = x + 1. However, because of
monotonicity of P (x), if there exists a solution a ∈ Rn≥0 such that a = P (a), then there
exists a least fixed point (LFP) solution q∗ ∈ Rn≥0 such that q∗ = P (q∗), and such that

1although we also reason about MPSs with positive real-valued coefficients in our proofs.
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q∗ ≤ a for all solutions a ∈ Rn≥0. Indeed, if for z ∈ Rn we define P 0(z) = z, and define
P k+1(z) = P (P k(z)), for all k ≥ 0, then (as shown in [Etessami and Yannakakis 2009])
value iteration starting at the all-0 vector converges monotonically to q∗: in other words
∀k ≥ 0 P k(0) ≤ P k+1(0), and limk→∞ P k(0) = q∗.2

Unfortunately, standard value iteration P k(0), k → ∞, can converge very slowly to
q∗, even for a fixed MPS with 1 variable, even when q∗ = 1; specifically, x = (1/2)x2+1/2
already exhibits exponentially slow convergence to its LFP q∗ = 1 ([Etessami and Yan-
nakakis 2009]). It was shown in [Etessami and Yannakakis 2009] that a decomposed
variant of Newton’s method also converges monotonically to q∗ for an MPS with LFP
solution q∗. More recently, in [Etessami et al. 2012], a version of Newton’s method
with suitable rounding between iterations was studied. Rounding is necessary if one
wishes to consider the complexity of Newton’s method in the standard (Turing) model
of computation, which does not allow unit-cost arithmetic operations on arbitrarily
large numbers. In this paper we will apply a version of Newton’s method to MPSs
which uses both rounding and decomposition. Before describing it, we need some fur-
ther background.

An MPS, x = P (x), is said to be in simple normal form (SNF) if for every i = 1, . . . , n,
the polynomial Pi(x) has one of two forms: (1) Form∗: Pi(x) ≡ xjxk is simply a quadratic
monomial; or (2) Form+: Pi(x) is a linear expression

∑
j∈Ci pi,jxj + pi,0, for some ra-

tional non-negative coefficients pi,j and pi,0, and some index set Ci ⊆ {1, . . . , n}. In
particular, in any MPS in SNF form every polynomial Pi(x) has multivariate degree
bounded by at most 2 in the variables x. We will call such MPSs quadratic MPSs.

As shown in [Etessami and Yannakakis 2009; Etessami et al. 2012], it is easy to
convert any MPS to SNF form, by adding auxiliary variables and equations:

PROPOSITION 2.1. (Propos. 7.3 [Etessami and Yannakakis 2009], and Propos. 2.1
of [Etessami et al. 2012]) Every MPS, x = P (x), with LFP q∗, can be transformed in P-
time to an “equivalent” quadratic MPS y = Q(y) in SNF form, such that |Q| ∈ O(|P |).
More precisely, the variables x are a subset of the variables y, and y = Q(y) has LFP p∗

iff x = P (x) has LFP q∗, and projecting p∗ onto the x variables yields q∗.

Furthermore, for any MPS, x = P (x), we can in P-time find and remove any variables
xi, such that the LFP solution has q∗i = 0.3

PROPOSITION 2.2. (Proposition 7.4 of [Etessami and Yannakakis 2009]) There is a
P-time algorithm that, given any MPS3, x = P (x), over n variables, determines for each
i ∈ {1, . . . , n} whether q∗i = 0.

Thus, for every MPS, we can detect in P-time all the variables xj such that q∗j = 0,
remove their equation xj = Pj(x), and set the variable xj to 0 on the RHS of the

2Indeed, even if an MPS does not have a finite LFP solution q∗ ∈ Rn≥0, it always does have an LFP solution
over the extended non-negative reals. Namely, we can define the LFP of any MPS, x = P (x), to be the vector
q∗ ∈ Rn≥0 over R≥0 = (R≥0 ∪{+∞}), given by q∗ := limk→∞ Pk(0). In general, it is PosSLP-hard to decide
whether a given MPS has a finite LFP. (This follows easily from results in [Etessami and Yannakakis 2009],
although it is not stated there: is was shown there that it is PosSLP-hard to decide if q∗1 ≥ 1 in an MPS
with finite LFP q∗ ∈ Rn≥0. Then just add a variable x0, and an equation x0 = x0x1 + 1 to the MPS. In
the new MPS, q∗0 = +∞ if and only if q∗1 ≥ 1.) However, various classes of MPSs, including those whose
LFP corresponds to termination probabilities of various recursive probabilistic systems do have a finite LFP.
Thus in this paper we will only consider LFP computation for MPSs that have a finite LFP q∗ ∈ Rn≥0. So
when we say “x = P (x) is an MPS with LFP solution q∗”, we mean q∗ ∈ Rn≥0, unless specified otherwise.
3This proposition holds regardless whether the LFP q∗ is finite or is over the extended non-negative reals,
R≥0. Such an extended LFP exists for any MPS. See footnote 2.
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remaining equations. We obtain as a result a cleaned MPS, x′ = Q(x′), which has an
LFP q∗ > 0.

Applying Propositions 2.1 and 2.2, we assume wlog in the rest of this paper that
every MPS is a cleaned quadratic MPS, with LFP q∗ > 0.4

In order to describe decomposed Newton’s method, for a cleaned MPS, x = P (x) we
need to define the dependency graph, GP = (V,E), of the MPS. The nodes V of GP
are the variables xi, and the edges are defined as follows: (xi, xj) ∈ E if and only if xj
appears in some monomial in Pi(x) that has a positive coefficient.

We shall decompose the cleaned system of equation x = P (x), into strongly connected
components (SCCs), using the dependency graph GP of variables, and we shall apply
Newton’s method separately on each SCC “bottom-up”.

We first recall basic definitions for (a rounded down version of) Newton’s method
applied to MPSs. For an MPS, x = P (x), with n variables, we define B(x) = P ′(x) to
be the n × n Jacobian matrix of partial derivatives of P (x). In other words, B(x)i,j =
∂Pi(x)
∂xj

. For a vector z ∈ Rn, assuming that the matrix (I − B(z)) is non-singular, a
single iteration of Newton’s method (NM) on x = P (x) at z is defined via the following
operator:

NP (z) := z + (I −B(z))−1(P (z)− z) (1)
Let us now recall from [Etessami et al. 2012] the rounded down Newton’s method, with
parameter h, applied to an MPS:

Definition 2.3. Rounded-down Newton’s method (R-NM) , with rounding pa-
rameter h.) Given an MPS, x = P (x), with LFP q∗, where 0 < q∗, in the rounded down
Newton’s method (R-NM) with integer rounding parameter h > 0, we compute a se-
quence of iteration vectors x[k], where the initial starting vector is x[0] := 0, and such
that for each k ≥ 0, given x[k], we compute x[k+1] as follows:

(1) First, compute x{k+1} := NP (x[k]), where the Newton iteration operator NP (x) was
defined in equation (1). (Of course we need to show that all such Newton iterations
are defined.)

(2) For each coordinate i = 1, . . . , n, set x[k+1]
i to be equal to the maximum (non-

negative) multiple of 2−h which is ≤ max(x{k+1}
i , 0). (In other words, round down

x{k+1} to the nearest multiple of 2−h, while making sure that the result is non-
negative.)

Now we describe the Rounded-down Decomposed Newton’s Method (R-DNM)
applied to an MPS, x = P (x), with real-valued LFP q∗ ≥ 0. Firstly, we use Proposition
2.2 to remove 0 variables, and thus we can assume we are given a cleaned MPS, x =
P (x), with real-valued LFP q∗ > 0.

Let HP be the DAG of SCCs of the dependency graph GP . We work bottom-up in HP ,
starting at bottom SCCs. For each SCC, S, suppose its corresponding equations are
xS = PS(xS , xD(S)), where D(S) denotes the union of the variables in “lower” SCCs,
below S, on which S depends. In other words, a variable xj ∈ D(S) iff there is some
variable xi ∈ S such that there is directed path in Gp from xi to xj . If the system
xS = PS(xS , q∗D(S)) is a linear system (in xS), we call S a linear SCC, otherwise S is a
nonlinear SCC. Assume we have already calculated (using R-DNM) an approximation
q̃D(S) to the LFP solution q∗D(S) for these lower SCCs. We plug in q̃D(S) into the equa-
tions for S, obtaining the equation system xS = PS(xS , q̃D(S)). We denote the actual

4For compatibility when quoting prior work, it will sometimes be convenient to assume quadratic MPSs,
rather than the more restricted SNF form MPSs.
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LFP solution of this new equation system by q′S . (Note that q′S is not necessarily equal
to q∗S , because q̃D(S) is only an approximation of q∗D(S).)

If S is a nonlinear SCC, we apply a chosen number g of iterations of R-NM on the
system xS = PS(xS , q̃D(S)) to obtain an approximation q̃S of q′S ; if S is linear then
we just apply 1 iteration of R-NM, i.e., we solve the linear system and round down
the solution. We of course want to make sure our approximations are such that ‖q∗S −
q̃S‖∞ ≤ ε, for all SCCs S, and for the desired additive error ε > 0. We shall establish
upper bounds on the number of iterations g, and on the rounding parameter h, needed
in R-DNM for this to hold, as a function of various parameters: the input size |P |
and the number n of variables; the nonlinear depth f of P , which is defined as the
maximum, over all paths of the DAG HP of SCCs, of the number of nonlinear SCCs on
the path; and the maximum and minimum coordinates of the LFP.
Bounds on the size of LFPs for an MPS. For a positive vector v > 0, we use
vmin = mini vi to denote its minimum coordinate, and we use vmax = maxi vi to de-
note its maximum coordinate. Slightly overloading notation, for an MPS, x = P (x),
we shall use cmin to denote the minimum value of all positive monomial coefficients
and all positive constant terms in P (x). Note that cmin also serves as a lower bound
for all positive constants and coefficients for entries of the Jacobian matrix B(x), since
B(x)ij = ∂Pi(x)

∂xj
.

We prove the following theorem in the appendix, establishing bounds on the maxi-
mum and minimum coordinates of the LFP q∗ of an MPS x = P (x).

THEOREM 2.4. If x = P (x) is a quadratic MPS in n variables, with LFP q∗ > 0,
and where P (x) has rational coefficients and total encoding size |P | bits, then

(1) q∗min ≥ 2−|P |(2
n−1), and

(2) q∗max ≤ 22(n+1)(|P |+2(n+1) log(2n+2))·5n .

3. STRONGLY CONNECTED MONOTONE POLYNOMIAL SYSTEMS
The following theorem is at the heart of this paper. The theorem firstly establishes
bounds on the distance between the LFP of a strongly connected MPS, and the LFP of
another MPS obtained from it by decreasing values of some positive parameters. Sec-
ondly, the theorem establishes bounds on the number of iterations required by rounded
down Newton’s method to converge to within desired error ε > 0, on the MPS with de-
creased parameter values. Because decomposed Newton’s method works by running
Newton’s method on strongly connected components sequentially, in a bottom-up fash-
ion, we will later be able to use the bounds obtained in this theorem to analyze decom-
posed Newton’s method on arbitrary MPSs in an inductive fashion.

THEOREM 3.1. Let P (x, y) be an n-vector of monotone polynomials with degree ≤ 2
in variables which are coordinates of the n-vector x and the m-vector y, where n ≥ 1 and
m ≥ 1.

Given non-negative m-vectors y1 and y2 such that 0 < y1 ≤ 1 and 0 ≤ y2 ≤ y1, let
P1(x) ≡ P (x, y1) and P2(x) ≡ P (x, y2). Suppose that x = P1(x) is a strongly-connected
MPS with LFP solution 0 < q∗1 ≤ 1.
Let α = min{1, cmin}min{ymin,

1
2q
∗
min}, where cmin is the smallest non-zero constant or

coefficient of any monomial in P (x, y), where ymin is the minimum coordinate of y1, and
finally where q∗min is the minimum coordinate of q∗1 . Then:

1. The LFP solution of the MPS x = P2(x) is q∗2 with 0 ≤ q∗2 ≤ q∗1 , and

‖q∗1 − q∗2‖∞ ≤
√

4nα−(3n+1)‖P (1, 1)‖∞‖y1 − y2‖∞ (2)
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Furthermore, if x = P1(x) is a linear system, then:

‖q∗1 − q∗2‖∞ ≤ 2nα−(n+2)‖P (1, 1)‖∞‖y1 − y2‖∞ (3)

2. Moreover, for every 0 < ε < 1, if we use g ≥ h−1 iterations of rounded down Newton’s
method with parameter

h ≥ d2 + n log
1
α

+ log
1
ε
e

applied to the MPS, x = P2(x), starting at x[0] := 0, to approximate q∗2 , then the
iterations are all defined, and ‖q∗2 − x[g]‖∞ ≤ ε.

The proof of Theorem 3.1 is rather involved, and will require a number of lemmas.
Before starting to prove it, we first establish the following easy corollary of Theorem
3.1:

COROLLARY 3.2. Let x = P (x) be a strongly connected MPS with n variables, and
with LFP q∗ where 0 < q∗ ≤ 1. Let α = min{1, cmin} 1

2q
∗
min, where cmin is the smallest

non-zero constant or coefficient of any monomial in P (x).
Then for all 0 < ε < 1, if we use g ≥ h − 1 iterations of R-NM with parameter

h ≥ d2 + n log 1
α + log 1

ε e applied to the MPS, x = P (x), starting at x[0] := 0, then the
iterations are all defined, and ‖q∗ − x[g]‖∞ ≤ ε.

PROOF OF COROLLARY 3.2. This follows by a trivial application of part 2 of Theo-
rem 3.1, where we define y to be a dummy variable of dimension m = 1, and we define
y1 = y2 = ymin = 1, and where we define the n-vector of monotone polynomials P (x, y),
by replacing all constant terms c > 0 in every polynomial in P (x) by cy. In this case,
note that P1(x) = P2(x) = P (x), and that since ymin = 1, the α defined in the statement
of this corollary is the same α as in the statement of Theorem 3.1.

Before giving the proof of Theorem 3.1, we will first state some useful known facts
about MPSs and nonnegative matrices. We first recall some lemmas from [Etessami
et al. 2012]:5

LEMMA 3.3. (Lemma 3.3 of [Etessami et al. 2012]) Let x = P (x) be a quadratic
MPS, with n variables, and let a, b ∈ Rn. Then:

P (a)− P (b) = B(
a+ b

2
)(a− b) =

B(a) +B(b)
2

(a− b)

LEMMA 3.4. Let x = P (x) be a quadratic MPS. Let z ∈ Rn be any vector such that
(I −B(z)) is non-singular, and thus NP (z) is defined. Then:

q∗ −NP (z) = (I −B(z))−1B(q∗)−B(z)
2

(q∗ − z)

We will also need the following lemma from [Esparza et al. 2010]:

LEMMA 3.5. (Lemma 5.4 from [Esparza et al. 2010], Lemma 3.7 from [Etessami
et al. 2012]) Let x = P (x) be a MPS, with polynomials of degree bounded by 2, with LFP,
q∗ ≥ 0. Let B(x) denote the Jacobian matrix of P (x). For any positive vector d ∈ Rn>0

5In [Etessami et al. 2012], the statements of Lemmas 3.3 and 3.4 assume that the MPS is in SNF form, but
as noted in [Etessami et al. 2012], the proofs of Lemmas 3.3 and 3.4 do not require that x = P (x) is in SNF
form, nor that it is an MPS, only that it is quadratic.
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that satisfies B(q∗)d ≤ d, any positive real value λ > 0, and any nonnegative vector
z ∈ Rn≥0, if q∗ − z ≤ λd, and (I −B(z))−1 exists and is nonnegative, then

q∗ −NP (z) ≤ λ

2
d

We next recall a number of basic facts from matrix analysis and Perron-Frobenius
theory. For a square matrix A, let ρ(A) denote the spectral radius of A. Recall that
a nonnegative square matrix A is called irreducible if its underlying directed graph
is strongly connected, where the adjacency matrix of its underlying directed graph is
obtained by setting the positive entries of the matrix A to 1.

LEMMA 3.6. (see, e.g., [Horn and Johnson 1985], Theorem 8.4.4) If A is an irre-
ducible nonnegative square matrix, then there is a positive eigenvector v > 0, such that
Av = ρ(A)v. Such a vector v is called the Perron vector of A. It is unique up to rescaling
by a positive factor.

LEMMA 3.7. (see, e.g., [Lancaster and Tismenetsky 1985], Theorem 15.4.1 and Exer-
cise 1, page 540) If A is an irreducible nonnegative square matrix and 0 ≤ B ≤ A, but
B 6= A, then ρ(B) < ρ(A).

LEMMA 3.8. (see, e.g., [Lancaster and Tismenetsky 1985], Theorem 15.2.2, page 531)
If A is a square matrix with ρ(A) < 1, then I − A is non-singular and (I − A)−1 =∑∞
i=0A

i.

LEMMA 3.9. (see, e.g., [Lancaster and Tismenetsky 1985], Section 15.3 and Exercise
11) If A is an irreducible nonnegative square matrix, and v > 0 is a positive eigenvector
associated with some eigenvalue r, i.e., such that Av = rv, then r = ρ(A). Thus v > 0 is
the Perron vector (which is unique up to scaling).

We proceed now to the proof of Theorem 3.1. We prove each of the two parts in turn.

PROOF OF PART 1 OF THEOREM 3.1. First note that if q∗1 = q∗2 then the result is
trivial. So we assume henceforth that q∗1 6= q∗2 . The proof is rather long and involved.
We outline first the structure of the proof. There are four main steps. In step (i) we show
that q∗1−q∗2 = [I−B1( 1

2 (q∗1 +q∗2))]−1(P1(q∗2)−P2(q∗2)), and in particular we show that the
matrix [I−B1( 1

2 (q∗1 +q∗2))] is non-singular, where B1(x) is the Jacobian matrix of P1(x).
In step (ii) we bound ‖[I−B1( 1

2 (q∗1 +q∗2))]−1‖∞. In step (iii) we bound ‖P1(q∗2)−P2(q∗2)‖∞.
In step (iv) we combine the bounds from steps (ii) and (iii) to obtain the desired bound
on ‖q∗1 − q∗2‖∞.

Step (i). We observe first that 0 ≤ q∗2 ≤ q∗1 . To see this, consider P k1 (0) =
P1(P1(...P1(0)...)), i.e., the k’th iterate of P1 applied to the vector 0, and P k2 (0). We know
that for any MPS, x = P (x) with LFP q∗ ∈ Rn≥0, we have limk→∞ P k(0) = q∗ ([Etes-
sami and Yannakakis 2009]). Thanks to the monotonicity of P , for any x ≥ 0, we have
P1(x) ≥ P2(x). By the monotonicity of P1 and an easy induction, P k1 (0) ≥ P k2 (0). So
q∗1 = limk→∞ P k1 (0) ≥ limk→∞ P k2 (0) = q∗2 .

Because x = P1(x) is at most quadratic, we can apply Lemma 3.3 to get:

B1(
1
2

(q∗1 + q∗2))(q∗1 − q∗2) = P1(q∗1)− P1(q∗2) = q∗1 − P1(q∗2) (4)

Multiplying both sides of equation (4) by −1, and then adding (q∗1 − q∗2) to both sides,
we get:
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(I −B1(
1
2

(q∗1 + q∗2)))(q∗1 − q∗2) = (q∗1 − q∗2)− (q∗1 − P1(q∗2))

= P1(q∗2)− q∗2
= P1(q∗2)− P2(q∗2) (5)

Provided that I −B1( 1
2 (q∗1 + q∗2)) is non-singular, we can multiply both sides of equa-

tion (5) by [I −B1( 1
2 (q∗1 + q∗2))]−1, to get

q∗1 − q∗2 = [I −B1(
1
2

(q∗1 + q∗2))]−1(P1(q∗2)− P2(q∗2)) (6)

It remains to show that the matrix I−B1( 1
2 (q∗1 + q∗2)) is non-singular. By Lemma 3.8,

it suffices to show that the spectral radius ρ(B1( 1
2 (q∗1 + q∗2))) < 1. For this purpose, we

will use the following lemma.

LEMMA 3.10. (This is a variant of Lemma 6.5 from [Etessami and Yannakakis
2009]) For any strongly-connected MPS, x = P (x), with LFP q∗ > 0, and Jacobian
B(x), we have ρ(B(q∗)) ≤ 1, and for all vectors y with 0 ≤ y < q∗, ρ(B(y)) < 1.

PROOF. We will only show here that ρ(B(q∗)) ≤ 1 if x = P (x) is strongly connected,
but in fact this holds for any MPS, x = P (x), with LFP q∗ > 0. We do so because we
will only use the strongly-connected case.

If we have 0 ≤ z ≤ y and z ≤ P (z), then Lemma 6.4 of [Etessami and Yannakakis
2009] shows that for any d ≥ 1, Bd(z)(y − z) ≤ P d(y) − P d(z). Let xi = P i(0), for
all i ≥ 1. Recall that limi→∞ xi = q∗. Also note that, because x = P (x) is strongly
connected, xi < q∗ for all i.

Then for all i, d ≥ 1, Bd(xi)(q∗ − xi) ≤ P d(q∗) − P d(xi) = q∗ − xi+d. But since
limd→∞ xi+d = q∗, we see that the right hand side goes to 0. But since (q∗ − xi) > 0
for all i, it must be the case that Bd(xi) → 0, as d goes to infinity. But this is a nec-
essary and sufficient condition for ρ(B(xi)) < 1. Now notice that for any vector y such
that 0 ≤ y < q∗, there is some i such that y ≤ xi. Thus, by monotonicity of ρ(B(x)) in
x ≥ 0, we must have ρ(B(y)) < 1.

Thus, also, since limi→∞ xi = q∗, and by continuity of the spectral radius function,
we get that ρ(B(q∗)) ≤ 1.

We will apply this lemma to the system x = P1(x), which has LFP q∗1 , and y =
1
2 (q∗1 + q∗2). To apply the lemma, we need to show that 1

2 (q∗1 + q∗2) < q∗1 , i.e., that q∗2 < q∗1 .
We will show in fact something stronger, which will be needed later on: we will bound
from below the ratio of the minimum to the maximum entry of the vector q∗1 − q∗2 . For
this we will use the following lemma.

LEMMA 3.11. If A is an irreducible, non-negative n×n matrix with minimum non-
zero entry amin, and u ≥ 0 is a non-zero vector in Rn with Au ≤ u, then amin ≤ 1 and if
the minimum and maximum coordinates of u are denoted umin and umax, respectively,
then we have umin

umax
≥ anmin. In particular u > 0.

PROOF. Let i,j be some coordinates with ui = umin and uj = umax. Because A is
irreducible and non-negative, there is a power 0 ≤ k ≤ n with (Ak)ij > 0. By matrix
multiplication, for any k ≥ 1, (Ak)ij =

∑∏
lAil,il+1 , where the sum is taken over

all length k + 1 sequences of indices i1, . . . , ik+1, with i1 = i and ik+1 = j, and with
il ∈ {1, . . . , n} for all l ranging from 1 to k. At least one of these products is non-zero
and thus it is at least akmin. That is (Ak)ij ≥ akmin. Since Au ≤ u, and A is non-negative,
a simple induction gives that Aku ≤ u. And since u is non-zero, umax = uj > 0, so 0 <
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Akijuj ≤ ui. Since ui = umin, this means u > 0. Also, 1 ≥ umin
umax

= ui
uj
≥ Akij ≥ akmin. Note

that since 1 ≥ akmin, this implies amin ≤ 1. We know that 1 ≤ k ≤ n, so akmin ≥ anmin.

We will apply this lemma to the matrix A = B1( 1
2 (q∗1 + q∗2)) and the vector u =

(q∗1−q∗2). We verify that the hypotheses of the lemma hold. Note that since x = P1(x) is a
strongly connected system of equations, for any x > 0, the matrix B1(x) is nonnegative
and irreducible. In particular, B1( 1

2 (q∗1 + q∗2)) (as well as B1(q∗1)) is non-negative and
irreducible. Regarding u, recall that q∗1 6= q∗2 , thus u is non-zero. We verify next that
Au ≤ u. By (4) we have B1( 1

2 (q∗1 + q∗2))(q∗1 − q∗2) = q∗1 −P1(q∗2). Now P1(q∗2) ≥ P2(q∗2) = q∗2 .
Thus q∗1 − P1(q∗2) ≤ q∗1 − q∗2 . So B1( 1

2 (q∗1 + q∗2))(q∗1 − q∗2) ≤ (q∗1 − q∗2).
We verify finally that the minimum non-zero entry of A = B1( 1

2 (q∗1 + q∗2)) is at least
α. Since each polynomial in P (x, y) has degree no more than 2, each entry of B1(x) is
a polynomial of degree no more than 1 in both x and in the entries of y1 when these
are treated as variables. In other words, each entry of B1(x) can be expressed in the
form (

∑
i cixi) + (

∑
j c
′
jyj) + c′′, where ci, c

′
j , and c′′ are all non-negative coefficients

and constants of P (x, y) (possibly multiplied by 2 in the case where the term of P (x, y)
they originate from is of the form cx2

r) for all indices i and j. The non-zero entries of
B1( 1

2 (q∗1 + q∗2)) are ≥ α, because the coefficients ci, c′j , and c′′ are all ≥ cmin, and the
entries of 1

2 (q∗1 + q∗2) are ≥ 1
2q
∗
min.

Thus, we can apply Lemma 3.11, to matrixA = B1( 1
2 (q∗1+q∗2)) and vector u = (q∗1−q∗2),

which yields that
(q∗1 − q∗2)min

(q∗1 − q∗2)max
≥ αn (7)

In particular, we have:
q∗2 < q∗1 (8)

Consequently, 1
2 (q∗1 + q∗2) < q∗1 . Therefore, by Lemma 3.10, ρ(B1( 1

2 (q∗1 + q∗2))) < 1,
which by Lemma 3.8 implies that I − B1( 1

2 (q∗1 + q∗2)) is non-singular. This concludes
Step (i).

Step (ii). We distinguish two cases, depending on whether x = P1(x) is a linear or
nonlinear system. We shall separately obtain upper bounds on the matrix norm ‖(I −
B1( 1

2 (q∗1 + q∗2)))−1‖∞ in both these cases.

Case 1: x = P1(x) is a nonlinear system. Then the matrix B1(x) is dependent on x, i.e.,
a variable in x appears in some entry of B1(x) with non-zero coefficient.

As we showed earlier,B1( 1
2 (q∗1+q∗2)) is a nonnegative irreducible matrix with spectral

radius ρ(B1( 1
2 (q∗1 + q∗2))) < 1, and thus by Lemma 3.8, (I −B1( 1

2 (q∗1 + q∗2)))−1 exists and
(I − B1( 1

2 (q∗1 + q∗2)))−1 =
∑∞
i=0B1( 1

2 (q∗1 + q∗2)))i ≥ 0. To bound the norm of the matrix,
we will use the following result from [Etessami et al. 2010]:

LEMMA 3.12. (Lemma 18 from [Etessami et al. 2010]) Let A ∈ Rn×n≥0 and b ∈ Rn≥0

such that: (I − A)−1 =
∑∞
k=0A

k , (I − A)−1b ≤ 1, and A is an irreducible nonnegative
matrix whose smallest nonzero entry is c > 0, and b 6= 0 and p > 0 is the largest entry of
b. Then ‖(I −A)−1‖∞ ≤ n

pcn .

We will take A = B1( 1
2 (q∗1 + q∗2)) and b = (I − B1( 1

2 (q∗1 + q∗2)))v in this Lemma, where
v is the Perron vector of B1(q∗1), (i.e. B1(q∗1) · v = ρ(B1(q∗1)) · v), normalized so that its
maximum entry vmax = 1. By definition, (I − A)−1b = v ≤ 1. Thus, all the conditions
of the lemma are satisfied. As we showed earlier, the smallest nonzero entry of the
matrix B1( 1

2 (q∗1 + q∗2)) is at least α. We need to bound the largest entry of b.
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Note that, since x = P1(x) is strongly connected and q∗1 > 0, the matrix B1(q∗1) is non-
negative and irreducible, and by Lemma 3.10, ρ(B1(q∗1)) ≤ 1. Thus, (I − B1(q∗1))v ≥ 0.
So

b ≥ (B1(q∗1)−B1(
1
2

(q∗1 + q∗2)))v ≥ 0 (9)

To bound (from below) the maximum entry of b, it suffices to bound from below some
entry of the matrix B1(q∗1)−B1( 1

2 (q∗1 +q∗2), and the minimum entry vmin of v. Since q∗2 <
q∗1 andB1(x) is dependent on x, there is some entry ofB1( 1

2 (q∗1+q∗2)), sayB1( 1
2 (q∗1+q∗2))ij ,

which is strictly smaller than that of B1(q∗1)ij . The entry B1(x)ij must be of the form
(
∑
i cixi)+(

∑
j c
′
jyj)+c′′, where for some k, ck > 0 so that the term ckxk depends on xk.

We must therefore have B1(q∗1)ij − (B( 1
2 (q∗1 + q∗2))ij ≥ cmin

1
2 (q∗1 − q∗2)k, for some indices

i, j, k. From inequality (7) we know that (q∗1−q
∗
2 )k

(q∗1−q∗2 )max
≥ αn, for all indices k. Thus, since

(q∗1 − q∗2)max = ‖q∗1 − q∗2‖∞, we have

B1(q∗1)ij −B1(
1
2

(q∗1 + q∗2))ij ≥ cmin
1
2

(q∗1 − q∗2)k

≥ cmin
1
2
αn‖q∗1 − q∗2‖∞

≥ αn+1 1
2
‖q∗1 − q∗2‖∞ (10)

Inequality (10) gives us a lower bound for a single entry of the non-negative matrix
(B1(q∗1) − B1( 1

2 (q∗1 + q∗2))), namely the (i, j)’th entry. In (B1(q∗1) − B1( 1
2 (q∗1 + q∗2)))v this

(i, j)’th entry is multiplied by a coordinate of v, which is at least vmin. Thus, combining
inequalities (10) and (9), we have ‖b‖∞ ≥ αn+1 1

2‖q
∗
1 − q∗2‖∞vmin. We can use Lemma

3.11 to bound vmin.

LEMMA 3.13. If v is the Perron vector of B1(q∗1), normalized so that vmax = 1, then
vmin
vmax

= vmin ≥ αn.

PROOF. The vector v is the Perron vector of the (irreducible, nonnegative) matrix
B1(q∗1), it satisfies B1(q∗1)v ≤ v (since ρ(B1(q∗1)) ≤ 1), and the smallest non-zero entry of
B1(q∗1) is at least α. Therefore, by Lemma 3.11, vmin ≥ αnvmax = αn.

So ‖b‖∞ ≥ α2n+1 1
2‖q
∗
1−q∗2‖∞. Since the smallest non-zero entry of A = B1( 1

2 (q∗1 +q∗2))
is at least α, and since ‖b‖∞ ≥ α2n+1 1

2‖q
∗
1 − q∗2‖∞, Lemma 3.12 now gives that

‖(I −B1(
1
2

(q∗1 + q∗2)))−1‖∞ ≤
2n

α3n+1‖q∗1 − q∗2‖∞
(11)

Case 2: x = P1(x) is a linear system. Then the matrix B1(x) is a constant matrix B1,
independent on x. The matrix B1 is nonnegative and irreducible, and ρ(B1) < 1, be-
cause we already know from Lemma 3.10 that for all z such that 0 ≤ z < q∗1 , we have
ρ(B1(z)) < 1, but B1(z) is independent of z, because B1 is a constant matrix.

Let us apply Lemma 3.3 with a = q∗1 , b = 0, and P1(x) in place of P (x). We get B1 ·
(q∗1 − 0) = P1(q∗1)−P (0). Multiplying both sides of this equation by −1 and then adding
q∗1 to both sides, we get (I −B1)q∗1 = P1(0), and thus q∗1 = (I −B1)−1P1(0). Since q∗1 > 0,
we must have that P1(0) 6= 0. But P1(0) ≥ 0. Indeed, ‖P1(0)‖∞ ≥ cmin min{1, y2

min} ≥ α2.
The smallest non-zero entry of B1 is at least cmin · min{1, ymin} ≥ α. We now apply
Lemma 3.12 to A := B1 and b := P1(0), where we note that (I − B1)−1P1(0) = q∗1 ≤ 1.
Lemma 3.12 thus gives:
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‖(I −B1(
1
2

(q∗1 + q∗2)))−1‖∞ ≤ nα−(n+2) (12)

Since ‖q∗1 − q∗2‖∞ ≤ 1 (q∗1 ≤ 1 and q∗2 ≥ 0), and 0 < α ≤ 1, and since n ≥ 1, the upper
bound (11) for the non-linear case is worse than the upper bound (12) for the linear
case, so the upper bound (11) holds in all cases.

This concludes Step (ii).

Step (iii). To bound ‖P1(q∗2) − P2(q∗2)‖∞, we use the following lemma, which holds for
all points in [0, 1]n, including q∗2 .

LEMMA 3.14. If 0 ≤ x ≤ 1, then ‖P1(x)− P2(x)‖∞ ≤ 2‖P (1, 1)‖∞‖y1 − y2‖∞.

PROOF. Since each entry of P (x, y) is a quadratic polynomial, for each b ∈ {1, 2} and
each d ∈ {1, . . . , n}, the d’th coordinate, (Pb(x))d, of Pb(x) = P (x, yb) has the form∑

i,j

ad,i,jxixj +
∑
i,j

cd,i,jyb,iyb,j +
∑
i,j

c′d,i,jxiyb,j +
∑
k

a′d,kxk +
∑
k

c′′d,kyb,k + c′′′d

where yb,j refers to the j’th coordinate of the m-vector yb, and where all the coefficients
ad,i,j , cd,i,j , c′d,i,j , c

′′
d,k and c′′′d , are non-negative. Also, recall 0 < y1 ≤ 1 and 0 ≤ y2 ≤ y1.

Thus, we have the following series of inequalities. (For the first inequality, note that
y1,iy1,j −y2,iy2,j = y1,j(y1,i− y2,i) + y2,i(y1,j − y2,j) ≤ (y1,i− y2,i) + (y1,j − y2,j) and xi ≤ 1;
the other inequalities are straightforward.)

‖P1(x)− P2(x)‖∞

= max
d

∑
i,j

cd,i,j(y1,iy1,j − y2,iy2,j) +
∑
i,j

c′d,i,jxi(y1,j − y2,j) +
∑
k

c′′d,k(y1,k − y2,k)

≤ max
d

∑
i,j

cd,i,j((y1,i − y2,i) + (y1,j − y2,j)) +
∑
i,j

c′d,i,j(y1,j − y2,j) +
∑
k

c′′d,k(y1,k − y2,k)

≤ max
d

∑
i,j

2 · cd,i,j · ‖y1 − y2‖∞ +
∑
i,j

c′d,i,j · ‖y1 − y2‖∞ +
∑
k

c′′d,k‖y1 − y2‖∞

= (max
d

∑
i,j

2cd,i,j + c′d,i,j + c′′d,k) · ‖y1 − y2‖∞

≤ 2‖P (1, 1)‖∞‖y1 − y2‖∞

Step (iv). We combine the results of the previous steps to conclude the proof. From
equation (6) established in Step (i), taking norms on both sides, yields:

‖q∗1 − q∗2‖∞ ≤ ‖(I −B1(
1
2

(q∗1 + q∗2)))−1‖∞‖P1(q∗2)− P2(q∗2)‖∞ (13)

Inserting our upper bound (11) for ‖(I − B1( 1
2 (q∗1 + q∗2)))−1‖∞, which holds in all cases

(whether x = P1(x) is linear or nonlinear), gives:

‖q∗1 − q∗2‖∞ ≤
2n

α3n+1‖q∗1 − q∗2‖∞
‖P1(q∗2)− P2(q∗2)‖∞

We now move the ‖q∗1 − q∗2‖∞ terms to the left and take square roots to obtain:

‖q∗1 − q∗2‖∞ ≤
√

2nα−(3n+1)‖P1(q∗2)− P2(q∗2)‖∞ (14)
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Using Lemma 3.14, we have,

‖q∗1 − q∗2‖∞ ≤
√

4nα−(3n+1)‖P (1, 1)‖∞‖y2 − y1‖∞

which completes the proof of the first inequality of part 1 of Theorem 3.1.
If x = P1(x) is a linear system, then we can substitute the bound (12) into the in-

equality (13). This gives

‖q∗1 − q∗2‖∞ ≤ nα−(n+2)‖P1(q∗2)− P2(q∗2)‖∞
Again, applying Lemma 3.14 we get:

‖q∗1 − q∗2‖∞ ≤ nα−(n+2)2‖P (1, 1)‖∞‖y1 − y2‖∞
This completes the proof of part 1 of Theorem 3.1.

We will next establish part 2 of Theorem 3.1.

PROOF OF PART 2 OF THEOREM 3.1. The proof consists of two steps: In step (i) we
will show that, starting from x[0] := 0, all the iterations of R-NM, applied to x = P2(x)
are defined. In step (ii) we will prove the upper bound on the convergence rate of R-NM.

Step (i). We will show, by induction on k, that x[k] is defined, 0 ≤ x[k] ≤ q∗2 and
ρ(B2(x[k])) < 1.

For the base case, it is clear that x[0] = 0 ≤ q∗2 . Furthermore, B2(0) ≤ B1(0), hence
ρ(B2(0)) ≤ ρ(B1(0)). Since 0 < q∗1 , Lemma 3.10 implies that ρ(B1(0)) < 1. Therefore,
ρ(B2(0)) < 1.

For the induction step, assume that 0 ≤ x[k] ≤ q∗2 and ρ(B2(x[k])) < 1. We will show
first that NP2(x[k]) is well-defined and 0 ≤ x[k+1] ≤ q∗2 . Since ρ(B2(x[k])) < 1, by Lemma
3.8, (I−B2(x[k])) is non-singular and soNP2(x[k]) is well-defined. Lemma 3.8 also gives
that (I −B2(x[k]))−1 =

∑∞
i=0B2(x[k])i ≥ 0. Lemma 3.4 yields that:

q∗2 −NP2(x[k]) = (I −B2(x[k]))−1B2(q∗2)−B2(x[k])
2

(q∗2 − x[k])

Note that (q∗2 − x[k]) ≥ 0, thus B2(q∗2) − B2(x[k]) ≥ 0, and we have just shown that
(I − B2(x[k]))−1 ≥ 0. So all the terms on the right of the above equation are non-
negative, and thus q∗2 −NP2(x[k]) ≥ 0. That is q∗2 ≥ NP2(x[k]). The point x[k+1] is defined
by rounding down NP2(x[k]) and maintaining non-negativity, thus for all coordinates i,
either x[k+1]

i = 0, in which case trivially we have x[k+1]
i = 0 ≤ (q∗2)i, or else 0 ≤ x

[k+1]
i ≤

NP2(x[k])i ≤ (q∗2)i. Thus x[k+1] ≤ q∗2 .
It remains to show that ρ(B2(x[k+1])) < 1. We will prove ρ(B2(x[k+1])) < 1 by consid-

ering separately the cases where P1(x) contains non-linear or only linear polynomials.
We examine first the nonlinear case. We need the following lemma.

LEMMA 3.15. If x = P (x) is a strongly-connected quadratic MPS with n variables,
with LFP q∗ > 0, and there is some non-linear quadratic term in some polynomial Pi(x),
then if 0 ≤ z < q∗, then NP (z) is defined and NP (z) < q∗.

PROOF. Lemma 3.10 tells us that ρ(B(q∗)) ≤ 1. Non-linearity of P (x) means that
B(x) does depend on x. That is, some entry of B(x) contains a term of the form cxi for
some xi with c > 0. So B(z) 6= B(q∗), and B(z) ≤ B(q∗) since B is monotone. Since
x = P (x) is strongly-connected and q∗ > 0, Lemma 3.10 yields that ρ(B(z)) < 1. By
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Lemma 3.8, (I−B(z)) is non-singular and so the Newton iterate NP (z) is well-defined.
Consider the equation given by Lemma 3.4:

q∗ −NP (z) = (I −B(z))−1B(q∗)−B(z)
2

(q∗ − z)

We know that q∗ − z > 0, and thus B(q∗)−B(z) ≥ 0. Since ρ(B(z)) < 1, by Lemma 3.8,
(I − B(z))−1 =

∑∞
k=0B(z)k ≥ 0. This and Lemma 3.4 is already enough to yield that

q∗ −NP (z) ≥ 0, and we just need to show that this is a strict inequality.
We first show that if Pi(x) contains a term of degree 2, then (B(q∗)−B(z)

2 (q∗− z))i > 0.
This term of degree 2 must be of the form cxjxk for some j, k. Then B(x)i,j has a term
cxk with c > 0 and so (B(q∗) − B(z))i,j ≥ c(q∗ − z)k. But then (B(q∗)−B(z)

2 (q∗ − z))i ≥
c(q∗ − z)k(q∗ − z)j > 0.

Now we will show that for all i ∈ {1, . . . , n}, (q − NP (z))i > 0. If Pi(x) contains a
term of degree 2, then we have just shown that (B(q∗)−B(z)

2 (q∗ − z))i > 0. But (I −
B(z))−1 =

∑∞
k=0B(z)k ≥ I. So (q − NP (z))i ≥ (B(q∗)−B(z)

2 (q∗ − z))i > 0. If Pi(x) does
not contain a term of degree 2, there must be some other xj with Pj(x) containing a
term of degree 2 and, since x = P (x) is strongly-connected, xi depends on xj , possibly
indirectly. That is, there is a sequence of variables i0,i1, ..., il with l < n, i0 = i,il = j,
and for each 0 < m ≤ l, the variable xim appears in a term of P (x)im−1 . Let k be the
the least integer such that P (x)ik contains a term of degree 2. Then if 0 < m ≤ k, xim
appears in a degree 1 term in P (x)im−1 , that is one of the form cmxm with cm > 0. So
B(x)im−1,im contains the constant term cm > 0. So B(z)im−1,im ≥ cm > 0. So Bk(z)i,ik ≥∏k−1
m=0B(z)im,im+1 ≥

∏k−1
m=0 cm > 0. Since P (x)ik contains a term of degree 2, from above

(B(q∗)−B(z)
2 (q∗ − z))ik > 0. So (Bk(z)B(q∗)−B(z)

2 (q∗ − z))i > 0. But q∗ − NP (z) = (I −
B(z))−1B(q∗)−B(z)

2 (q∗− z) = (
∑∞
m=0B

m(z))B(q∗)−B(z)
2 (q∗− z) ≥ Bk(z)B(q∗)−B(z)

2 (q∗− z).
So (q∗ −NP (z))i > 0 for all i, as required.

We will only actually need to apply Lemma 3.15 in the case when q∗2 = q∗1 and x = P1(x)
is non-linear. Suppose that q∗1 = q∗2 and some polynomial in P1(x) is non-linear in x.
We claim that then P1(x) ≡ P2(x). That is, for all those variables in y, say (y)j , that
actually appear in some polynomials in P (x, y), it must be the case that (y1)j = (y2)j .
Otherwise, if there is some variable (y)j with (y2)j < (y1)j such that (y)j appears in
Pi(x, y), then (P2(q∗1))i = (P (q∗1 , y2))i < P (q∗1 , y1))i = (q∗1)i, so q∗1 is not a fixed point of
P2(x), contradicting that q∗1 = q∗2 . Thus if x = P1(x) is non-linear and q∗1 = q∗2 then
x = P2(x) is also non-linear and q∗2 = q∗1 > 0, so we can use Lemma 3.15, which shows
that if 0 ≤ x[k] < q∗2 , then NP2(x[k]) < q∗2 and so 0 ≤ x[k+1] < q∗2 ≤ q∗1 . Since x[k+1] < q∗1 ,
we have ρ(B1(x[k+1])) < 1. Since B2(x[k+1]) ≤ B1(x[k+1]), we also have ρ(B2(x[k+1])) < 1.

This leaves us with two cases remaining to show that ρ(B2(x[k+1])) < 1: first, the
case where x = P1(x) is non-linear and q∗2 6= q∗1 , and second the case where x = P1(x)
is linear or constant. We have shown already that 0 ≤ x[k+1] ≤ q∗2 . It thus suffices to
show that in these cases, for any 0 ≤ z ≤ q∗2 , ρ(B2(z)) < 1.

For the first case, suppose that q∗2 6= q∗1 and that x = P1(x) is non-linear, and thus
B1(x) depends on x. Then we have previously argued that q∗2 < q∗1 (see inequality (8)).
But then B1(q∗2) 6= B1(q∗1). For any 0 ≤ z ≤ q∗2 , B2(z) ≤ B2(q∗2) ≤ B1(q∗2) ≤ B1(q∗1)
and because B1(q∗2) 6= B1(q∗1), we have B2(z) 6= B1(q∗1). But B1(q∗1) is irreducible, and
Lemma 3.7 then tells us that ρ(B2(z)) < ρ(B1(q∗1)). We know, by Lemma 3.10, that
ρ(B1(q∗1)) ≤ 1. So ρ(B2(z)) < 1.

For the second case, suppose that x = P1(x) is linear. Then B1(x) is a constant
matrix. Thus B1(z) = B1(0) for all 0 ≤ z. But Lemma 3.10 tells us that, since 0 < q∗1 ,
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ρ(B1(0)) < 1. Thus ρ(B1(z)) < 1 for all 0 ≤ z ≤ q∗2 . Since 0 ≤ B2(z) ≤ B1(z), we have
ρ(B2(z)) < 1 for all 0 ≤ z ≤ q∗2 . This concludes the proof of the inductive step.

Thus the R-NM iterations applied to x = P2(x) are defined in all cases, and yield
iterates 0 ≤ x[k] ≤ q∗, for all k ≥ 0.

Step (ii). We now prove the upper bound on the rate of convergence for R-NM applied
to x = P2(x).

LEMMA 3.16. Suppose an MPS, x = P (x), with n variables has LFP 0 ≤ q∗ ≤ 1,
and for some n-vector v > 0 we have B(q∗)v ≤ v. Suppose we perform g ≥ h−1 iterations
of R-NM with parameter h ≥ 2 + dlog vmax

vmin·εe on the MPS x = P (x), and suppose that for
all k ≥ 0, every iteration x[k] is defined and 0 ≤ x[k] ≤ q∗. Then ‖q∗ − x[g]‖∞ ≤ ε.

PROOF. By induction on k, we claim that ∀k ≥ 0, q∗−x[k] ≤ (2−k+2−h+1) 1
vmin

v. Note
that this would indeed yield the Lemma: for all k, 0 ≤ x[k] ≤ q∗, and the claim would
yield q∗ − x[g] ≤ (2−h+1 + 2−h+1) 1

vmin
v ≤ 2− log vmax

vmin·ε 1
vmin

v = ε 1
vmax

v ≤ ε1.
It remains to prove by induction on k ≥ 0 that q∗ − x[k] ≤ (2−k + 2−h+1) 1

vmin
v. This is

true for k = 0, because q∗ ≥ 0 = x[0], and q∗ − x[0] = q∗ ≤ 1 ≤ 1
vmin

v.
Lemma 3.5 then gives that q∗ − NP (x[k]) ≤ (2−(k+1) + 2−h) 1

vmin
v. Now, by definition

of x[k+1], NP (x[k])−x[k+1] ≤ 2−h1 ≤ 2−h 1
vmin

v. So q∗−x[k+1] ≤ (2−(k+1) + 2−h+1) 1
vmin

v as
required.

To use Lemma 3.16 to get a bound on using R-NM on x = P2(x) to compute q∗2 , note
that because 0 ≤ B2(q∗2) ≤ B1(q∗1), the Perron vector v > 0 of B1(q∗1), which satisfies
B1(q∗1)v ≤ v, must also satisfy B2(q∗2)v ≤ v.

Thus, if we perform g ≥ h − 1 iterations of R-NM on x = P2(x), with parameter
h ≥ d2 + log(α−nε−1)e ≥ d2 + log vmax

vmin·εe, we obtain that ‖q∗2 − x[h−1]‖∞ ≤ ε. (Here we
have used the fact, from Lemma 3.13, that for the Perron vector v, with vmax = 1,
vmax
vmin

= 1
vmin
≤ α−n.) This completes the proof of Theorem 3.1.

4. GENERAL MONOTONE POLYNOMIAL SYSTEMS
In this section, we use the rounded-down decomposed Newton’s method (R-DNM), to
compute the LFP q∗ of general MPSs. First we consider the case where 0 < q∗ ≤ 1:

THEOREM 4.1. For all ε, where 0 < ε < 1, if x = P (x) is an MPS with LFP solution
0 < q∗ ≤ 1, with q∗min = mini q∗i , and the minimum non-zero coefficient or constant in
P (x) is cmin, then rounded down decomposed Newton’s method (R-DNM) with parame-
ter

h ≥
⌈

3 + 2f · ( log(
1
ε

) + d · (log(α−(4n+1)) + log(16n) + log(‖P (1)‖∞)) )
⌉

using g ≥ h − 1 iterations for every nonlinear SCC (and 1 iteration for linear SCC),
gives an approximation q̃ to q∗ with q̃ ≤ q∗ and such that ‖q∗ − q̃‖∞ ≤ ε.

Here d denotes the maximum depth of SCCs in the DAG HP of SCCs of the MPS
x = P (x), f is the nonlinear depth, and α = min{1, cmin} · 1

2q
∗
min.

Before proving the theorem, let us note that we can obtain worst-case expressions
for the needed number of iterations g = h − 1, and the needed rounding parameter
h, in terms of only f ≤ d ≤ n ≤ |P |, and ε, by noting that log(‖P (1)‖∞) ≤ |P |, and
by appealing to Theorem 2.4 to remove references to q∗min in the bounds. Noting that
cmin ≥ 2−|P |, these tell us that α = min{1, cmin} 1

2q
∗
min ≥ 2−|P |2

n−1. Substituting, we
obtain that any
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g ≥
⌈

2 + 2f · ( log(
1
ε

) + d · (|P |2n(4n+ 1) + (4n+ 1) + log(16n) + |P |) )
⌉

(15)

iterations suffice in the worst case, with rounding parameter h = g + 1. Thus, for
i = log(1/ε) bits of precision, g = kP + cP · i iterations suffice, where cP = 2f and
kP = O(2f2nnd|P |), with tame constants in the big-O.

PROOF OF THEOREM 4.1. For every SCC S, its height hS (resp. nonlinear height
fS) is the maximum over all paths of the DAG HP of SCCs starting at S, of the number
of SCCs (resp. nonlinear SCCs) on the path. We show by induction on the height hS of
each SCC S that ‖q∗S−q̃S‖∞ ≤ βhSδ2

−fS where β = 16nα−(3n+1)‖P (1)‖∞ and δ = ( ε
βd

)2
f

.
Note that since n ≥ 1, ε < 1, and α ≤ cmin, we have β ≥ 1 and δ ≤ 1, and thus also
δ ≤
√
δ.

Let us first check that this would imply the theorem. For all SCCs, S, we have 1 ≤
hS ≤ d and 0 ≤ fS ≤ f , and thus ‖q∗S − q̃S‖∞ ≤ βhSδ2

−fS ≤ βdδ2−f = βd( ε
βd

) = ε.
We note that h is related to δ by the following:

h ≥ 2 + n log
1
α

+ log
2
δ

(16)

This is because log 2
δ = 1 + log 1

δ = 1 + 2f (log 1
ε + d log β) = 1 + 2f (log( 1

ε ) +
d log(16nα−(3n+1)‖P (1)‖∞)). Note that (16) implies that this inequality holds also for
any subsystem of x = P (x) induced by a SCC S and its successors D(S) because the
parameters n and 1/α for a subsystem are no larger than those for the whole system.

We now prove by induction on hS that ‖q∗S − q̃S‖∞ ≤ βhSδ2
−fS .

In the base case, hS = 1, we have a strongly connected MPS xS = PS(x). If S is
linear, we solve the linear system exactly and then round down to a multiple of 2−h.
Then fS = 0, and we have to show ‖q∗S − q̃S‖∞ ≤ βhSδ2

−fS = βδ. But ‖q∗S − q̃S‖∞ ≤
2−h ≤ δ

2 ≤ βδ.
For the base case where S in non-linear, equation (16) and Corollary 3.2 imply that

‖q∗S − q̃S‖∞ ≤ δ
2 , which implies the claim since δ ≤ 1 and β ≥ 1, hence δ

2 ≤ βhSδ2
−fS =

β1δ2
−1

.
Inductively, consider an SCC S with hS > 1. Then S depends only on SCCs with

height at most hS − 1. If S is linear, it depends on SCCs of nonlinear depth at most
fD(S) = fS , whereas if S is non-linear, it depends on SCCs of nonlinear depth at
most fD(S) = fS − 1. We can assume by inductive hypothesis that ‖q∗D(S) − q̃D(S)‖∞ ≤

βhS−1δ2
−fD(S) . Take q′S to be the LFP of xS = PS(xS , q̃D(S)).

Suppose xS = PS(xS , q∗D(S)) is linear in xS . Then Theorem 3.1 with y1 := q∗D(S) and
y2 := q̃D(S), yields

‖q∗S − q′S‖∞ ≤ 2nSα−(nS+2)‖P (1, 1)‖∞‖q∗D(S) − q̃D(S)‖∞

But 2nSα−(nS+2)‖P (1, 1)‖∞ ≤ β
2 , so ‖q∗S − q′S‖∞ ≤

β
2 ‖q
∗
D(S) − q̃D(S)‖∞ ≤ β

2β
hS−1δ2

−fS =
1
2β

hSδ2
−fS . Since ‖q′S − q̃S‖∞ ≤ 2−h ≤ δ

2 ≤
1
2β

hSδ2
−fS , it follows that ‖q∗S − q̃S‖∞ ≤

βhSδ2
−fS .

Suppose that xS = PS(xS , q∗D(S)) is non-linear in xS . Theorem 3.1, with y1 := q∗D(S)

and y2 := q̃D(S), yields that

‖q∗S − q′S‖∞ ≤
√

4nα−(3n+1)‖P (1)‖∞‖q∗D(S) − (q̃)D(S)‖∞ (17)
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Note that the α from Theorem 3.1 is indeed the same or better (i.e., bigger) than the α
in this Theorem, because ymin = (q∗D(S))min ≥ q∗min and (q∗S)min ≥ q∗min. Rewriting (17) in

terms of β, we have ‖q∗S − q′S‖∞ ≤
√

1
4β‖q

∗
D(S) − (q̃)D(S)‖∞. By inductive assumption,

‖q∗D(S) − q̃D(S)‖∞ ≤ βhS−1δ2
−fS+1

, and thus ‖q∗S − q′S‖∞ ≤
√

1
4β

hSδ2
1−fS ≤ 1

2β
hSδ2

−fS .
Thus to show that the inductive hypothesis holds also for SCC S, it suffices to show
that for the approximation q̃S we have ‖q′S − q̃S‖∞ ≤ 1

2β
hSδ2

−fS . But β ≥ 1, hS ≥ 1,
2−fS ≤ 1 and δ ≤ 1, so 1

2δ ≤
1
2β

hSδ2
−fS , so it suffices to show that ‖q′S − q̃S‖∞ ≤ 1

2δ.
Part 2 of Theorem 3.1 tells us that we will have ‖q′S − q̃S‖∞ ≤ 1

2δ if g ≥ h − 1 and
h ≥ d2 + n log 1

α + log 2
δ e. But (since h is an integer) we have already established this in

equation (16), hence the claim follows.

Next, we want to generalize Theorem 4.1 to arbitrary MPSs that have an LFP, q∗ > 0,
without the restriction that 0 < q∗ ≤ 1. The next lemma allows us to establish this by
a suitable “rescaling” of any MPS which has an LFP q∗ > 0. If x = P (x) is a MPS and
c > 0, we can consider the MPS x = 1

cP (cx).

LEMMA 4.2. Let x = P (x) be a MPS with LFP solution q∗, and with Jacobian B(x),
and recall that for z ≥ 0,NP (z) := z+(I−B(z))−1(P (z)−z) denotes the Newton operator
applied at z on x = P (x). Then:

(i) The LFP solution of x = 1
cP (cx) is 1

c q
∗.

(ii) The Jacobian of 1
cP (cx) is B(cx).

(iii) A Newton iteration of the “rescaled” MPS, x = 1
cP (cx), applied to the vector z is given

by 1
cNP (cz).

PROOF. From [Etessami and Yannakakis 2009], we know that the value iteration
sequence P (0), P (P (0)), P (P (P (0))) . . . P k(0) converges to q∗. Now note that for the
MPS x = 1

cP (cx), the value iteration sequence is 1
cP (0), 1

cP (c 1
cP (0)) = 1

cP (P (0)),
1
cP (P (P (0)))... which thus converges to 1

c q
∗. This establishes (i).

For (ii), note that, by the chain rule in multivariate calculus (see, e.g., [Apostol 1974]
Section 12.10), the Jacobian of P (cx) is cB(cx). Now (iii) follows because:

z + (I −B(cz))−1(
1
c
P (cz)− z) =

1
c

(cz + (I −B(cz))−1(P (cz)− cz)) =
1
c
NP (cz).

We use Lemma 4.2 to generalize Theorem 4.1 to MPSs with LFP q∗, where q∗ does
not satisfy q∗ ≤ 1.

THEOREM 4.3. If x = Q(x) is an MPS with n variables, with LFP solution q∗ > 0, if
c′min is the least positive coefficient of any monomial inQ(x), then R-DNM with rounding
parameter h′, and using g′ iterations per nonlinear SCC (and one for linear), gives an
approximation q̃ such that ‖q∗ − q̃‖∞ ≤ ε′, where

g′ = 2 + d 2f · (log(
1
ε′

) + d · (2u+ log(α′−(4n+1)) + log(16n) + log(‖Q(1)‖∞)) ) e

and h′ = g′ + 1 − u, where u = max{0, dlog q∗maxe}, d is the maximum depth of
SCCs in the DAG HQ of SCCs of x = Q(x), f is the nonlinear depth, and α′ =
2−2u min{1, c′min}min{1, 1

2q
∗
min}.

We can again obtain worst-case expressions for the needed number of iterations g′,
and the needed rounding parameter h′, in terms of only f ≤ d ≤ n ≤ |Q|, and ε′, by
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noting that log(‖Q(1)‖∞) ≤ |Q| and by appealing to Theorem 2.4 to remove references
to q∗min and q∗max in the bounds. Substituting and simplifying we get that to guarantee
additive error at most ε′, i.e. for i = log(1/ε′) bits of precision, it suffices in the worst-
case to apply g′ = kQ + cQ · i iterations of R-DNM with rounding parameter h′ = g′ + 1
(which is more accurate rounding than h′ = g′ + 1 − u), where cQ = 2f , and kQ =
O(2f5nn2d(|Q| + n log n)) (and we can calculate precise, tame, constants for the big-O
expression).

COROLLARY 4.4. If x = P (x) is an MPS with LFP solution q∗ with 0 < q∗min ≤
q∗i ≤ q∗max for all i, with the least coefficient of any monomial in P (x), cmin, with f the
nonlinear depth of the DAG of SCCs of x = P (x) and with encoding size |P | bits, we can
compute an approximation q̃ to q∗ with ‖q∗ − q̃‖∞ ≤ ε, for any given 0 < ε ≤ 1, in time
polynomial in |P |,2f , log 1

ε ,log 1
q∗min

and log q∗max.

PROOF OF COROLLARY 4.4. After preprocessing to remove all variables xi with
q∗i = 0, which takes P-time in |P |, we use R-DNM as specified in Theorem 4.3. Cal-
culating a Newton iterate at z is just a matter of solving a matrix equation and if the
coordinates of z are multiples of 2−h this can be done in time polynomial in |P | and h.
Theorem 4.3 tells us that the number of iterations and h are polynomial in 2f , log 1

ε ,
log 1

q∗min
, log q∗max, n, log 1

cmin
and log ‖P (1)‖∞. The last three of these are bounded by |P |.

Together, these give the corollary.

PROOF OF THEOREM 4.3. If q∗max ≤ 1, then Theorem 4.1 gives this immediately. So
we assume that q∗max > 1. u is chosen so that 2u ≥ q∗max. We rescale and use Lemma 4.2
with scaling parameter c = 2u. This yields the “rescaled” MPS x = 2−uQ(2ux), which
has LFP p∗ = 2−uq∗ ≤ 1.

So we can apply Theorem 4.1 to this rescaled MPS x = P (x), where P (x) ≡
2−uQ(2ux), and letting ε := 2−uε′. Then Theorem 4.1 gives us the needed number of
iterations g and the rounding parameter h = g+ 1, needed to obtain an approximation
p̃ of the LFP p∗ = 2−uq∗, such that ‖p̃− p∗‖∞ ≤ ε.

In the bounds specified for Theorem 4.1 for g and h, in place of q∗min we get p∗min =
2−uq∗min, and in place of cmin we get 2−uc′min. Thus α becomes the α′ we have specified in
the statement of this theorem. Furthermore, the ‖P (1)‖∞ appearing in Theorem 4.1 is
now ‖2−uQ(2u1)‖∞, but it is easy to verify that for a quadratic MPS, ‖2−uQ(2u1)‖∞ ≤
2u‖Q(1)‖∞.

Theorem 4.1 tells us that if we use R-DNM on x = P (x) for g iterations per nonlinear
SCC and a precision of h = g + 1 bits, we will obtain an approximation p̃ to the LFP p∗

of x = P (x) with ‖p̃− p∗‖∞ ≤ ε provided that h ≥ d3 + 2f · (log( 1
ε ) + d · (log(α−(4n+1)) +

log(16n) + log(‖P (1)‖∞)))e. This condition is satisfied if we take g = g′ and h = g′ + 1
because:

d3 + 2f · (log(
1
ε

) + d · (log(α−(4n+1)) + log(16n) + log(‖P (1)‖∞)))e

≤ 3 + 2f (log(
1

2−uε′
) + d(log(α′−(4n+1)) + log(16n) + log(2u‖Q(1)‖∞)))e

= 3 + 2f (u+ log(
1
ε′

) + d(log(α′−(4n+1)) + log(16n) + u+ log(‖Q(1)‖∞)))e

≤ g′ + 1 = h

Thus, applying R-DNM on x = P (x) with parameters g = g′ and h = g′ + 1 yields
an approximation p̃ to the LFP p∗ of x = P (x) with ‖p̃ − p∗‖∞ ≤ ε or, in terms of the
original MPS, ‖p̃− 2−uq∗‖∞ ≤ 2−uε′.
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To obtain Theorem 4.3, we now show that if we apply R-DNM to x = Q(x) with LFP
q∗, using rounding parameter h′ and using g′ iterations per nonlinear SCC (where h′
and g′ were specified in the statement of the theorem), we will obtain an approximation
q̃ to q∗ that satisfies q̃ = 2up̃. This would then give us that ‖q∗− q̃‖∞ = ‖2up∗−2up̃‖∞ =
2u‖p∗ − p̃‖∞ ≤ 2uε = ε′, which is what we want to prove.

Since we are using the decomposed Newton’s method, we will show that q̃S = 2up̃S
for every SCC S by induction on the depth of the SCC S. Suppose that for the variables
D(S) that S depends on (if any), we have that q̃D(S) = 2up̃D(S). If we call the kth iterate
of R-NM applied to xS = PS(xS , p̃D(S)) with parameter h, x[k] and the kth iterate of
R-NM applied to xS = QS(xS , q̃D(S)) with parameter h′, x′[k], then we aim to show by
induction on k that x′[k] = 2ux[k].

The base case is x′[0] = 0 = 2ux[0]. By abuse of notation, we will call the Newton
iterate of xS = PS(xS , p̃D(S)), NP (xS) and that of xS = QS(xS , q̃D(S)), NQ(xS). Note
that because we assume that q̃D(S) = 2up̃D(S), xS = PS(xS , p̃D(S)) is the result of scaling
xS = QS(xS , q̃D(S)) using c = 2u. So Lemma 4.2 (iii) yields thatNP (xS) = 2−uNQ(2uxS).
If x′[k] = 2ux[k], then NQ(x′[k]) = 2uNP (x[k]).

If (NP (x[k]))i ≤ 0, we would set x[k+1]
i := 0. If so, NQ(x′[k])i = 2uNP (x[k])i ≤ 0, so we

would set x′[k+1]
i := 0.

If (NP (x[k]))i > 0, we set x[k+1]
i to be the result of rounding (NP (x[k]))i down to a

multiple of 2h. But then NQ(x′[k]) = 2uNP (x[k]) > 0 and we would set x′[k+1]
i to be the

result of rounding (NQ(x′[k]))i down to a multiple of 2−h
′
. Note that h′ = h − u. So the

result of rounding 2u(NP (x[k]))i down to a multiple of 2−h
′

is just 2u times the result of
rounding (NP (x[k]))i down to a multiple of 2−h. So x′[k+1] = 2ux[k+1].

This completes the induction showing that x′[k] = 2ux[k] for all k ≥ 0. Note that
g = g′. So q̃S = x′[g

′] = 2ux[g] = 2up̃S . This in turn completes the induction on the SCCs,
showing that q̃ = 2up̃, which completes the proof.

4.1. How good are our upper bounds for R-DNM on MPSs?
We have proved upper bounds on the number of iterations required by R-DNM to con-
verge to within additive error ε > 0 of the LFP q∗ for an arbitrary MPS x = P (x).

We now discuss some important parameters of the problem in which our upper
bounds are essentially optimal and can not be improved substantially.

To begin with, our upper bounds for the number of iterations required contain a
term of the form 2f log 1

ε . Here f denotes the nesting depth of nonlinear SCCs in the
dependency graph GP of the input MPS, x = P (x).

It was already pointed out in [Esparza et al. 2010] (Section 7) that such a term is
a lower bound on the number of iterations required, even for exact Newton’s method
(whether decomposed or not), even for rather simple MPSs. Namely, [Esparza et al.
2010] provided a family of simple examples entailing this lower bound. Indeed, con-
sider the following MPS, x = P (x), which is a simpler variant of the bad MPSs noted
in [Esparza et al. 2010]. The MPS has n+ 1 variables, x0, . . . , xn. The equations are

xi =
1
2
x2
i +

1
2
xi−1 , for all i ∈ {1, . . . , n} (18)

x0 =
1
2
x2

0 +
1
2

The LFP of this MPS is q∗ = 1, and it captures the termination probabilities of a
(rather simple) stochastic context-free grammar, pBPA, or 1-exit Recursive Markov
chain. Note that the encoding size of this MPS is |P | = O(n).
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As observed in [Etessami and Yannakakis 2009], exact Newton’s method, starting
from x(0) := 0, on the univariate equation x0 = 1

2x
2
0+ 1

2 gains exactly one bit of precision
per iteration. In other words, if x(k) denotes the k’th iterate, then 1 − x(k) = 2−k. It is
an easy exercise to show this.

Suppose we perform m iterations of exact NM on the bottom SCC, x0 = 1
2x

2
0 + 1

2 , and
suppose that by doing so we obtain an approximation q′0 = 1 − a0, where a0 = 2−m.
Plugging the approximation q′0 into the next higher SCC, the equation for x1 becomes
x1 = 1

2x
2
1 + 1

2q
′
0. For the rest of the argument we do not need to appeal to Newton

iterations: even exact computation of the LFPs for the remaining SCCs will yield bad
approximations overall unless 1 − q′0 ≤ 1

22n (showing that the system of equations is
terribly ill-conditioned).

Indeed, by induction on i ≥ 0, suppose that the value obtained for LFP of xi is q′i =
(1− ai). Then after plugging in q′i in place of xi in the SCC for xi+1, the adjusted LFP,
q′i+1, of the next higher SCC: xi+1 = (1/2)(x1)2 + (1/2)(1− ai), becomes q′i+1 = 1−√ai.
Thus, by induction on depth, the adjusted LFP of xn becomes q′n = 1 − (a0)2

−n
. But

a0 = 2−m. Thus q′n = 1− 2−m2−n .
We would like to have error 1 − q′n = 2−m2−n ≤ ε. Taking logs, we get that we must

perform at least m ≥ 2n log 1
ε NM iterations on the bottom SCC alone.

Note that n here is also the (nonlinear) depth f of SCCs in this example.
Other terms in our upper bounds on the number of iterations required to compute

the LFP of a general MPS are log 1
q∗min

, and log q∗max.
Simple “repeated squaring” MPSs, with xi = x2

i−1, x0 = { 1
2 or 2}, show that we can

have q∗min ≤ 1
22n , and q∗max ≥ 22n , where n is the number of variables. In Theorem 2.4

we give explicit lower bounds on q∗min and explicit upper bounds on q∗max, in terms of
|P | and n, showing that linear-double-exponential dependence on n is indeed the worst
case possible.

Consider first the dependence of our bounds on log q∗max. Assume q∗max ≥ 1. Let us
note that if we use the rounded version of Newton’s method then in order to compute
q∗max within additive error 0 < ε < 1, we can not do with fewer than ≈ log q∗max bits of
precision, i.e., we require space≈ log q∗max just to write down an additive approximation
to the LFP, and thus also we require time at least ≈ log q∗max in the standard Turing
model of computation, irrespective of what algorithm we use.

What about our dependence on q∗min? Do we really need a worst-case number of it-
erations that is polynomial in log 1

q∗min
, even assuming that q∗max ≤ 1? The answer is

yes: we require at least ≈ log 1
q∗min

iterations, starting from 0, already to converge to
within more than a single bit of precision. To see this, consider the MPS, parametrized
by n ∈ N, that is described in Figure 1:

Let (p, p′, q∗) denote the LFP of the MPS depicted in Figure 1, where p denotes the
LFP in the x coordinates, p′ denotes the LFP in the x′ coordinates, and q∗ denotes the
LFP in the y coordinates. The following claims about this MPS and its LFP are not
difficult to verify:

PROPOSITION 4.5.

(1) 0 < pj ≤ 2 · 2−2j , for j ∈ {1, . . . , 2n}.
(2) (1− 2−2j ) ≤ p′j ≤ 1, for j ∈ {1, . . . , 2n}.
(3) (1− 2−22n−i

) ≤ q∗i ≤ 1

Thus, the LFP is ≤ 1 in all coordinates, and furthermore p′2n is extremely close to
1. Now, notice that if we simply plug in x′2n := p′2n, and if we ignore the x and x′
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yi =
1
2
y2
i +

1
2
yi−1 , for all i ∈ {1, . . . , n}

y0 =
1
2
y2
0 +

1
2
· x′2n

xj = (xj−1)2 , for all j ∈ {1, . . . , 2n}
x′j = x′j−1 + x′j−1xj−1 , for all j ∈ {1, . . . , 2n}

x0 =
1
2

+
1

100
· x2n · x′2n · yn

x′0 =
1
2

+
1

100
· x2n · x′2n · yn

Fig. 1. Strongly-connected MPS on which Newton requires exponentially many iterations.

variables, then the remaining MPS on y variables looks very very “close” to MPS (18),
for which we previously argued that Newton iteration would require exponentially
many iterations to get within even a single bit of precision. Let y(k)

i denote the k’th
Newton iterate, in the coordinate corresponding to yi, starting at 0, on the strongly-
connected MPS in Figure 1. By careful analysis of Newton’s method we can in fact
show:

PROPOSITION 4.6. |q∗n − y
(2n−2)
n | > 1

2 −
1

22n .

We forgo a detailed proof of this bound, but let us explain in rough terms why it
holds. We first note that Newton’s method does not converge too fast at coordinate y0.
Indeed it converges “essentially linearly” for the initial 2n−2 iterations. Specifically,
for all k ≤ 2n−2, we can show that y(k)

0 ≤ 1 − 1
22k . Next, an analysis similar to the

“square rooting” analysis above, adapted from [Esparza et al. 2010], which was used to
show that the non-strongly connected MPS of (18) requires exponentially many New-
ton iterations to converge to within a single bit of precision, can be applied to ana-
lyze the errors in the variable yn obtained by the Newton iterates, and yields that
y
(k)
n ≤ 1− 2−(2k·2−n). So y(2n−2)

n ≤ 1
2 . We omit further details.

Thus, already for strongly-connected MPSs, the polynomial dependence on log 1
q∗min

,
for the number of iterations of Newton’s method required to get within just one bit of
precision, is unavoidable.

It should be noted however that the worst-case bounds on q∗min and q∗max are not
representative of many important families of MPSs. In particular, note that MPSs
whose LFP corresponds to (termination) probabilities must have q∗max ≤ 1. Further-
more, for a number of classes of probabilistic systems we can prove bounds of the
form log 1

q∗min
≤ poly(|P |). Indeed, for MPSs corresponding to QBDs and probabilistic

1-counter automata, which we consider in the next section, such bounds were estab-
lished in [Etessami et al. 2010].

If the family of MPSs happens to have log 1
q∗min

, log q∗max ≤ poly(|P |), then our upper
bounds show that the total number of iterations of R-DNM needed is only exponen-
tial in (f ≤) d, the (nonlinear) depth of SCCs, and thus if f ≤ log |P |, then for such
MPSs R-DNM runs in P-time in the encoding size of the input, |P | and log 1

ε , in the
standard Turing model of computation, to compute an approximation to the LFP q∗,
within additive error ε > 0.

It should be noted that for the case of strongly connected MPSs only, and only for
Exact Newton’s Method, without rounding, [Esparza et al. 2010] obtained comparable
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result to ours in terms of worst-case dependence on log 1
q∗min

and log q∗max.6 However, in
[Esparza et al. 2010] they did not obtain any constructive bounds in terms of |P |, q∗min
or q∗max for MPSs that are not strongly connected, nor did they obtain any results for
rounded versions of Newton’s method. Using exact Newton’s method of course entails
the assumption of a unit-cost arithmetic model of computation, rather than the Turing
model.

5. MPSs AND PROBABILISTIC 1-COUNTER AUTOMATA
A probabilistic 1-counter automaton (p1CA),M , is a 3-tupleM = (V, δ, δ0) where V
is a finite set of control states and δ ⊆ V×R>0×{−1, 0, 1}×V and δ0 ⊆ V×R>0×{0, 1}×V
are transition relations. The transition relation δ is enabled when the counter is
nonzero, and the transition relation δ0 is enabled when it is zero. For example, a tran-
sition of the form, (u, p,−1, v) ∈ δ, says that if the counter value is positive, and we
are currently in control state u, then with probability p we move in the next step to
control state v and we decrement the counter by 1. A p1CA defines in the obvious way
an underlying countably infinite-state (labeled) Markov chain, whose set of configura-
tions (states) are pairs (v, n) ∈ V × N. A run (or trajectory, or sample path), starting
at initial state (v0, n0) is defined in the usual way, as a sequence of configurations
(v0, n0), (v1, n1), (v2, n2), . . . that is consistent with the transition relations of M .

As explained in [Etessami et al. 2010], p1CAs are in a precise sense equivalent
to discrete-time quasi-birth-death processes (QBDs), and to 1-box recursive Markov
chains.

Quantities that play a central role for the analysis of QBDs and p1CAs (both for
transient analyses and steady-state analyses, as well as for model checking) are their
termination probabilities (also known as their G-matrix in the QBD literature, see,
e.g., [Latouche and Ramaswami 1999; Bini et al. 2005; Etessami et al. 2010]). These
are defined as the probabilities, q∗u,v, of hitting counter value 0 for the first time in
control state v ∈ V , when starting in configuration (u, 1).

Corresponding to the termination probabilities of every QBD or p1CA is a special
kind of MPS, x = P (x), whose LFP solution q∗ gives the termination probabilities of the
p1CA. The MPSs corresponding to p1CAs have the following special structure. For each
pair of control states u, v ∈ V of the p1CA, there is a variable xuv, which represents the
probability of termination at configuration (v, 0) starting at configuration (u, 1). The
equation for each variable xuv has the following form:

xuv = p(−1)
uv +

( ∑
w∈V

p(0)
uwxwv

)
+
∑
y∈V

p(1)
uy

∑
z∈V

xyzxzv (19)

where for all states u, v ∈ V , and j ∈ {−1, 0, 1}, the coefficients p
(j)
uv are non-

negative transition probabilities of the p1CA, and such that for all states u ∈ V ,∑
j∈{−1,0,1}

∑
v∈V p

(j)
uv ≤ 1. We can of course clean up this MPS in P-time (by Propo-

sition 2.2), to remove all variables xuv for which q∗u,v = 0. In what follows, we assume
this has been done, and thus that for the remaining variables 0 < q∗ ≤ 1.

In [Etessami et al. 2010], the decomposed Newton’s method (DNM) is used with
exact arithmetic in order to approximate the LFP for p1CAs using polynomially many
arithmetic operations, i.e., in polynomial time in the unit-cost arithmetic model of com-

6Technically, their bounds are with respect to relative error, and their bounds for strongly connected MPSs
do not depend at all on q∗max, but of course if q∗max is large, then in order to obtain absolute (additive)
error ε > 0, the relative error required is ε′ = ε

q∗max
, and since their bounds depend on log 1

ε′ they depend
(indirectly) on log q∗max, with the same magnitude as ours.
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putation. However [Etessami et al. 2010] did not establish any result in the standard
Turing model of computation. We establish instead results about R-DNM applied to
the MPSs arising from p1CAs, in order to turn this method into a P-time algorithm in
the standard model of computation.

It was shown in [Etessami et al. 2010] (Theorem 9) that in any path through the
DAG of SCCs of the dependency graph for the MPS associated with a p1CA, M , there
is at most one non-linear SCC, i.e., that the nonlinear depth f of these special MPSs is
at most 1. Also, [Etessami et al. 2010] obtained a lower bound on q∗min, the smallest pos-
itive termination probability. Namely, if cmin denotes the smallest positive transition
probability of a p1CA, M , and thus also the smallest positive constant or coefficient of
any monomial in the corresponding MPS, x = P (x), they showed:

LEMMA 5.1. (Corollary 6 from [Etessami et al. 2010]) q∗min ≥ cr
3

min, where r is the
number of control states of the p1CA.

They used these results to bound the condition number of the Jacobian matrix for
each of the linear SCCs, and to thereby show that one can approximate q∗ in polyno-
mially many arithmetic operations using decomposed Newton’s method. Here, we get
a stronger result, placing the problem of computing termination probabilities for p1CA
in P-time in the standard Turing model, using the results from this paper:

THEOREM 5.2. Let x = P (x) be the MPS associated with p1CA, M , let r denote the
number of control states of M , and let m denote the maximum number of bits required
to represent the numerator and denominator of any positive rational transition proba-
bility in M .

Apply R-DNM, including rounding down linear SCCs, to the MPS x = P (x), using
rounding parameter h := 8mr7 + 2mr5 + 9r2 + 3 + d2 log 1

ε e and such that for each
non-linear SCC we perform g = h − 1 iterations, whereas for each linear SCC we only
perform 1 R-NM iteration.

This algorithm computes an approximation q̃ to q∗, such that ‖q∗ − q̃‖∞ < ε. The
algorithm runs in time polynomial in |M | and log 1

ε , in the standard Turing model of
computation.

PROOF OF THEOREM 5.2. We apply Theorem 4.1, which tells us that R-DNM with
parameter

h ≥
⌈

3 + 2f · ( log(
1
ε

) + d · (log(α−(4n+1)) + log(16n) + log(‖P (1)‖∞)) )
⌉

(20)

using g = h−1 iterations for every SCC, gives an approximation q̃ to q∗ with q̃ ≤ q∗ and
such that ‖q∗− q̃‖∞ ≤ ε. Here f ≤ 1 since, by Theorem 9 of [Etessami et al. 2010], there
is at most 1 non-linear SCC in any path through the dependency graph. Furthermore,
n = r2 since the variables in x are indexed by two states xuv. Also, d ≤ n, and so
d ≤ r2. Also, cmin ≥ 2−m and so by Lemma 5.1, q∗min ≥ 2−mr

3
. So α ≥ 2−(mr3+1). To show

that ‖P (1)‖∞ ≤ r, by equation (19), P (1)uv = p
(−1)
uv + (

∑
w∈V p

(0)
uw) +

∑
y∈V p

(1)
uy r ≤ r.

Plugging all this into equation (20), we get: h ≥ d3 + 2 · (log( 1
ε ) + r2 · ((4r2 + 1)(mr3 +

1) + log(16r2) + log re. Noting that log(16r2) + log r = log(16r3), and noting that r ≥ 1
implies log(16r3) ≤ 4r, we have:

h ≥ 3 + 8mr7 + 2mr5 + 9r4 + d2 · log(
1
ε

)e

Note that the rounding parameter h and the number of iterations g = h − 1 are
both polynomials in the encoding size of the p1CA, and in log 1

ε . Thus each iteration
of R-DNM can be computed in polynomial time, and we only do polynomially many
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iterations. Thus the entire computation of q̃ can be carried out in P-time in the Turing
model of computation.

5.1. Application to ω-regular model checking for p1CAs
Since computing termination probabilities of p1CAs (equivalently, the G-matrix of
QBDs) plays such a central role in other analyses (see, e.g., [Latouche and Ramaswami
1999; Bini et al. 2005; Etessami et al. 2010; Brázdil et al. 2011]), the P-time algorithm
given in the previous section for computing termination probabilities of a p1CA (within
arbitrary desired precision) directly facilitates P-time algorithms for various other im-
portant problems.

Here we highlight just one of these applications: a P-time algorithm in the Turing
model of computation for model checking a p1CA with respect to any ω-regular prop-
erty. An analogous result was established by Brazdil, Kiefer, and Kucera [Brázdil et al.
2011] in the unit-cost RAM model of computation.7

THEOREM 5.3. Given a p1CA, M , with states labeled from an alphabet Σ, and
with a specified initial control state v, and given an ω-regular property L(B) ⊆ Σω,
which is specified by a non-deterministic Büchi automaton, B, let PrM (L(B)) denote the
probability that a run of M starting at configuration (v, 0) generates an ω-word in L(B).
There is an algorithm that, for any ε > 0, computes an additive ε-approximation, p̃ ≥ 0,
of PrM (L(B)), i.e., with |PrM (L(B))− p̃| ≤ ε. The algorithm runs in time polynomial in
|M |, log 1

ε , and 2|B|, in the standard Turing model of computation.

PROOF SKETCH. By Theorem 5.2, we know we can compute termination probabili-
ties q∗ for a p1CA, M , with additive error ε > 0 in time polynomial in |M | and log 1

ε .
Let us first observe that if we do not insist on having the ω-regular property specified

by a non-deterministic Büchi automaton B, and instead assume it is specified by a
deterministic Rabin automaton R, then the analogous theorem follows immediately
as a corollary of Theorem 5.2 and results established by Brazdil, Kiefer, and Kucera
in [Brázdil et al. 2011]. Specifically, in [Brázdil et al. 2011] it was shown that, given
a p1CA, M , and a deterministic Rabin automaton, R, and given ε > 0, there is an
algorithm that, firstly, decides in P-time whether PrM (L(R)) > 0, and if so computes
a value p̃ which approximates PrM (L(R)) with relative error ε > 0, i.e., such that
|PrM (L(R)) − p̃|/PrM (L(R)) < ε, and the algorithm runs in time polynomial in |M |,
|R|, and log 1

ε , in the unit-cost RAM model of computation.
The first observation we make is that, the results in [Etessami et al. 2010] and

[Brázdil et al. 2011] together imply that for p1CAs there is no substantial difference
in complexity between relative and absolute approximation, because the probability
PrM (L(R)) can be bounded away from zero by 1/2poly(|M |,|R|) if it is not equal to zero
(which can be detected in P-time). Thus, computing PrM (L(R)) with given relative
error ε > 0 is P-time equivalent to computing PrM (L(R)) with ε absolute error.

Secondly, a close inspection of [Brázdil et al. 2011] shows that the only use made
in their entire paper of the unit-cost RAM model of computation is for the purpose
of computing termination probabilities for p1CAs, and specifically because they di-
rectly invoke the earlier result from [Etessami et al. 2010] which showed that termi-
nation probabilities q∗ for a p1CA can be ε-approximated in polynomial time in the
unit-cost RAM model. Thus, the only thing needed in order to obtain an absolute error
ε-approximation of PrM (L(R)) in P-time in the standard Turing model of computation
is to appeal instead to Theorem 5.2 of this paper for computation of termination proba-

7In the more recent journal version of their paper, [Brázdil et al. 2014] use the results of this paper (which
appeared in the conference version [Stewart et al. 2013]), in order to similarly conclude that model checking
can be carried out in P-time in the Turing model of computation.
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bilities in P-time in the standard Turing model, and apply the rest of the construction
in [Brázdil et al. 2011].

Next, let’s first note that we can of course use Safra’s construction to convert any
non-deterministic Büchi automaton B to a deterministic Rabin automaton of size
2O(|B| log |B|). So, obtaining a complexity bound that is polynomial in 2|B| log |B| is no
more difficult.

Let us now sketch why one can in fact obtain the (slightly) better complexity bound,
polynomial in 2|B|, by using the algorithm for model checking of RMCs of [Etessami
and Yannakakis 2012], combined with Theorem 5.2 and Lemma 5.1, and with the key
result of [Brázdil et al. 2011], which establishes that non-zero non-termination proba-
bilities for a p1CA are also bounded away from zero by 1/2poly(|M |).

As shown in [Courcoubetis and Yannakakis 1995; Etessami and Yannakakis 2012],
for probabilistic model checking a naive subset construction can be used (instead of
Safra’s construction) to obtain from a BA, B, a deterministic Büchi automaton, D,
such that |D| = 2|B|. (Although it need not be the case that L(D) = L(B), it is shown
in the above references via an intricate combinatorial analysis that D is nevertheless
sufficient to perform both qualitative and quantitative probabilistic model checking.)
One then constructs the “product”M⊗D, of the p1CA,M , with the deterministic Büchi
automaton D. A key observation is that this “product” remains a p1CA. In terms of
RMCs, p1CAs correspond to the subclass of 1-box RMCs, and the “product” of a 1-box
RMC with a deterministic BA, D, remains a 1-box RMC.

It was shown in [Etessami and Yannakakis 2012] that given a “product” (1-box) RMC
M⊗D, it is possible to construct a finite-state conditioned summary chain,M′, which is
a finite state Markov chain and whose transition probabilities are rational expressions
in positive termination and non-termination probabilities of the (1-box) RMC. It is then
possible to identify in P-time certain bottom strongly connected components T ofM′,
such that the probability PrM (L(B)) is equal to the probability that starting from a
specific initial state ofM′, a run eventually hits a state in T .

We describe here for concreteness the construction of the summary chain M′ in
terms of the p1CA, and specify the set T of “accepting" bottom SCCs. The product p1CA
M̂ = M ⊗ D is a p1CA that has one state (u, S) for every state u of the p1CA M and
every state S of D (i.e., every subset S of states of the automaton B), and has transition
relations δ̂ and δ̂0 corresponding to the transition relations δ and δ0 of the p1CA M ,
defined in a straightforward way: If the labeling function of the p1CA M is λ, andD has
state set QD and transition function σ, then δ̂ = {((u, S), p, b, (v, σ(S, λ(v)))|(u, p, b, v) ∈
δ, S ∈ QD} and δ̂0 = {((u, S), p, b, (v, σ(S, λ(v)))|(u, p, b, v) ∈ δ0, S ∈ QD}. Consider the
system of equations (19) for the product p1CA M̂ and let q∗ be its LFP. That is, for every
pair of states (u, S), (w, T ) of M̂ , the corresponding entry q∗(u,S),(w,T ) is the probability
that M̂ started at configuration ((u, S), 1) reaches the counter value 0 for the first
time (“terminates") at state (w, T ). Let ne(u, S) = 1 −

∑
(w,T ) q

∗
(u,S),(w,T ) be the non-

termination probability from (u, S), i.e. the probability that, starting from ((u, S), 1),
the counter never reaches 0. Let ne′(u, S) = ne(u, S) +

∑
(w,T ) q

∗
(u,S),(w,T ) · ne(w, T ); this

is the probability that M̂ starting from configuration ((u, S), 2) never reaches counter
value 0.

The set of states of the summary chain M′ is as follows: For every state (u, S) of
M̂ , the chain M′ has states (u0, S), (u′0, S), and in addition it has a state (u1, S) iff
ne(u, S) > 0, and a state (u′1, S) iff ne′(u, S) > 0. The initial state is s0 = (v0, {r0}),
where v is the initial state of the p1CA M and r0 is the initial state of B.
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The summary chainM′ has the following transitions. For every transition of δ̂0 from
a state (u, S) to a state (w, T ) with probability p and counter-increment 0 (resp. 1),M′
has a transition from (u0, S) to (w0, T ) (resp. (w′0, T )) with the same probability p. For
every transition of δ̂ from a state (u, S) to a state (w, T ) with probability p and counter-
increment 0 (resp. 1), if (u1, S) is a state of M′ (i.e., if ne(u, S) > 0), then M′ has a
transition from (u1, S) to (w1, T ) (resp. (w′1, T )), if the latter state exists in M′, with
probability p · ne(w, T )/ne(u, S) (resp. p · ne′(w, T )/ne(u, S)). (Note: M′ does not have
any direct transitions corresponding to transitions of M̂ that decrement the counter.)
Every state (u′0, S) ofM′ has a transition to (w0, T ) with probability q∗(u,S),(w,T ) for every
state (w, T ) of M̂ such that q∗(u,S),(w,T ) > 0; in addition (u′0, S) has a transition with
probability ne(u, S) to (u1, S) if ne(u, S) > 0. Every state (u′1, S) ofM′ has a transition
to (w1, T ) with probability q∗(u,S),(w,T ) · ne(w, T )/ne′(u, S) for every state (w, T ) of M̂
such that q∗(u,S),(w,T ) > 0 and ne(w, T ) > 0; in addition (u′1, S) has a transition with
probability ne(u, S)/ne′(u, S) to (u1, S) if ne(u, S) > 0. This concludes the description of
the summary chainM′.

Once the summary chainM′ is constructed, a set T of its bottom SCCs are charac-
terized as accepting. The characterization of accepting bottom SCCs depends only on
the underlying graph ofM′ (i.e., it does not depend on the precise values of the tran-
sition probabilities), and can be done in polynomial time in the size ofM′. Specifically,
a bottom SCC is accepting if it contains a state (z, S), where S contains a state s of
B, such that the pair (z, s) is a special pair of one of two types: A pair (z, s) is special
of type 1 if s is an accepting state of B and the subgraph ofM′ induced by the nodes
reachable from (z, {s}) contains a bottom SCC that has a state (z, T ) with s ∈ T . A pair
(z, s) is special of type 2 if z = u′0 or z = u′1 for some state u of M , and the following
graph M ′(z, s) has a bottom SCC that contains a state (z, T ) with s ∈ T . If z = u′0 (resp.
z = u′1), then M ′(z, s) is the subgraph of M′ induced by all the nodes that are reach-
able from the nodes (w0, {t}) (resp. (w1, {t})), such that the p1CA M has a path π from
the configuration (u, 1) that terminates (reaches for the first time counter value 0) at
(w, 0), and the automaton B has a run on π from s to t that goes through an accepting
state; this condition can be tested in polynomial time using the algorithms for (non-
probabilistic) Recursive State Machines of [Alur et al. 2005]. It is shown in [Etessami
and Yannakakis 2012] (more generally, for RMCs) that the probability PrM (L(B)) is
equal to the probability that a run of M′ starting from the initial state s0 eventually
hits a state in T .

In this way, the model checking problem is boiled down to the problem of computing
hitting probabilities in a finite-state Markov chain M′ whose transition probabilities
are simple rational expressions with numerators and denominators that are products
of coefficients in a p1CA together with positive termination and non-termination prob-
abilities of a p1CA.

It is well known that non-zero hitting probabilities for a finite-state Markov chain
are the unique solution (I − A)−1b, to a linear system of equations x = Ax + b, where
the coefficients in A and b come from the transition probabilities of the Markov chain.
The key remaining question is, how well-conditioned is this linear system of equations?
In other words, what happens to its unique solution if we only approximate the coef-
ficients in A and b to within a small error? Now, the key is that applying Lemma 5.1
(which is from [Etessami et al. 2010]), and applying the key result in [Brázdil et al.
2011], together shows that both positive termination and positive non-termination
probabilities of the product p1CA are bounded away from 0 by 1/2poly(|M |,|D|).

Under these conditions, exactly the same known condition number bounds from nu-
merical analysis that were used in [Etessami et al. 2010], namely Theorem 17 of [Etes-
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sami et al. 2010], which is a version of Theorem 2.1.2.3 of [Isaacson and Keller 1966],
also establish that the linear system of equations that one has to solve for hitting prob-
abilities in the conditioned summary chainM′ derived from a p1CA are “polynomially
well-conditioned”, meaning that approximating their non-zero coefficients within suit-
able 1/2poly additive error yields a linear system of equations whose unique solution
is ε-close to the unique solution of the original system, for the chosen ε > 0. Thus, we
can first approximate the coefficients of the conditioned summary chainM′ in P-time,
and we can then solve for the unique solution of the corresponding system of linear
equations, in order to obtain the desired approximation of the probability PrM (L(B))
in P-time. We omit further details.

Acknowledgment. We thank the anonymous referees for their helpful comments.

REFERENCES
E. Allender, P. Bürgisser, J. Kjeldgaard-Pedersen, and P. B. Miltersen. 2009. On the Complexity of Numerical

Analysis. SIAM J. Comput. 38, 5 (2009), 1987–2006.
R. Alur, M. Benedikt, K. Etessami, P. Godefroid, T. Reps, and M. Yannakakis. Analysis of recursive state

machines. ACM Trans. Program. Lang. Syst. 27, 4 (2005), 786–818.
T. Apostol. 1974. Mathematical Analysis (2nd ed.). Addison-Wesley.
D. Bini, G. Latouche, and B. Meini. 2005. Numerical methods for Structured Markov Chains. Oxford Univer-

sity Press.
T. Brázdil, S. Kiefer, and A. Kucera. 2011. Efficient Analysis of Probabilistic Programs with an Unbounded

Counter. In Proc. of 23rd Int. Conf. on Computer Aided Verification (CAV). 208–224.
T. Brázdil, S. Kiefer, and A. Kucera. 2014. Efficient Analysis of Probabilistic Programs with an Unbounded

Counter. J. ACM 61, 6 (2014).
C. Courcoubetis and M. Yannakakis. 1995. The complexity of probabilistic verification. J. ACM 42, 4 (1995),

857–907.
R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison. 1999. Biological Sequence Analysis: Probabilistic models

of Proteins and Nucleic Acids. Cambridge U. Press.
J. Esparza, S. Kiefer, and M. Luttenberger. 2010. Computing the least fixed point of positive polynomial

systems. SIAM J. Comput. 39(6) (2010), 2282–2355.
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A. APPENDIX
B. PROOF OF THEOREM 2.4
Theorem 2.4. If x = P (x) is a quadratic MPS in n variables, with LFP q∗ > 0, and
where P (x) has rational coefficients and total encoding size |P | bits, then

(1) q∗min ≥ 2−|P |(2
n−1), and

(2) q∗max ≤ 22(n+1)(|P |+2(n+1) log(2n+2))·5n .

PROOF. We first prove (1.), by lower bounding q∗min in terms of the smallest positive
constant cmin in P (x).

LEMMA B.1. If x = P (x) has LFP q∗ > 0, and least term cmin, then q∗min ≥
min{1, cmin}2

n−1.

PROOF. We first observe that, since q∗ > 0, and there are n variables, it must be
the case that Pn(0) > 0. To see this, for any y ≥ 0, let us use Z(y) to denote the set
of zero coordinates of y. For any k ≥ 0, P k+l(0) ≥ P k(0), for all l ≥ 0, so Z(P k+l(0)) ⊆
Z(P k(0)). Thus either |Z(P k+1(0))| = |Z(P k(0))| or |Z(P k+1(0))| ≤ |Z(P k(0))| − 1. Now
|Z(0)| = n and |Z(P k(0))| ≥ 0 for all k, so there must be some least 0 ≤ k ≤ n such that
|Z(P k(0))| = |Z(P k+1(0))| and such that Z(P k(0)) = Z(P k+1(0)).

Note that, for any y ≥ 0, Z(P (y)) depends only on Z(y) and on P (x), but not on the
specific values of non-zero coordinates of y.

So if for some n ≥ k ≥ 0, Z(P k+1(0)) = Z(P k(0)) then, by a simple induction
Z(P k+l(0)) = Z(P k(0)) for all l ≥ 0. So we must have Z(P k(0)) = Z(Pn(0)) =
Z(Pn+l(0)), for all l ≥ 0. Now limm→∞ Pm(0) = q∗. Now if Pn(0)i = 0, then Pn+l(0)i = 0
for all l ≥ 0, and so q∗i = 0. This contradicts our assumption that q∗ > 0. So Pn(0) > 0.

Let us use P k(0)@ to denote the minimum value of any non-zero coordinate of P k(0).
Firstly, P (0) 6= 0, i.e., there is some non-zero constant in some polynomial P (x)i. Thus
P (0)@ ≥ cmin. We show by induction that for k > 0, P k(0)@ ≥ min{1, cmin}2

k−1. This
is true for k = 1. We assume that P k(0)@ ≥ min{1, cmin}2

k−1. If for some coordinate i,
P k+1(0)i = P (P k(0))i > 0, there must be a term in P (x)i which is not zero in P (P k(0))i,
this is either a constant c, or a linear term cxj with P k(0)j > 0, or a quadratic
term cxjxl with P k(0)j > 0 and P k(0)l > 0. In any of these 3 cases, this term is
≥ cmin min{1, P k(0)@}2. Since P k(0)@ ≥ min{1, cmin}2

k−1, we now have that P k+1(0)@ ≥
cmin(min{1, cmin}2

k−1)2 ≥ min{1, cmin}2
k+1−1. So for all k, P k(0)@ ≥ min{1, cmin}2

k−1. In
particular Pn(0)@ ≥ min{1, cmin}2

n−1. But Pn(0) > 0 so Pn(0)min ≥ min{1, cmin}2
n−1.

We know q∗ ≥ Pn(0), so q∗min ≥ min{1, cmin}2
n−1.

To get our lower bound on q∗min in terms of |P | and n, we just note that clearly
cmin ≥ 2−|P |. This and Lemma B.1 give the bound q∗min ≥ 2−|P |(2

n−1) in part (1.) of
the Theorem.

We now prove part (2.). To prove the upper bound on q∗max, we need the following
isolated root separation bound for systems of polynomial equations by [Hansen et al.
2011]:

THEOREM B.2. (Theorem 23 from [Hansen et al. 2011]) Consider a polynomial sys-
tem of equations

(Σ) g1(x1, . . . , xn) = · · · = gm(x1, . . . , xn) = 0 , (21)

with polynomials of degree at most d and integer coefficients of magnitude at most 2τ .

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.



A:32

Then, the coordinates of any isolated (in Euclidean topology) real solutions of the
system are real algebraic numbers of degree at most (2d + 1)n, and their defining
polynomials have coefficients of magnitude at most 22n(τ+4n log(dm))(2d+1)n−1

. Also, if
γj = (γj,1, · · · , γj,n) is an isolated solution of (Σ), then for any i, either

2−2n(τ+2n log(dm))(2d+1)n−1
< |γj,i| or γj,i = 0 . (22)

To apply Theorem B.2, we now establish that q∗ is an isolated solution of an MPS
with LFP q∗ > 0.

LEMMA B.3. If x = P (x) is a quadratic MPS with LFP q∗ > 0, then q∗ is an isolated
solution of the system of equations x = P (x).

PROOF. Firstly, we consider strongly connected MPSs. These can be divided into
two cases, linear strongly-connected MPSs, where B(x) = B is a constant matrix and
P (x) is affine, and nonlinear strongly-connected MPSs, where B(x) is not a constant
matrix and P (x) is nonlinear.

For the linear case, the Jacobian is a constant B(x) = B, and x = P (x) = Bx+ P (0).
We know that ρ(B(q∗)) ≤ 1 from Lemma 3.10, and thus since B = B(0) = B(q∗), from
Lemma 3.10, we know that ρ(B) < 1, and thus (I − B) is non-singular, and there is a
unique solution to x = P (x) = Bx + P (0), namely q∗ = (I − B)−1P (0). Being unique,
this solution is isolated.

Now suppose, for contradiction, that x = P (x) is a non-linear strongly-connected
quadratic MPS but that q∗ > 0 is not an isolated solution to x = P (x). Because q∗ is
not isolated, there is another fixed-point q with ‖q∗−q‖∞ ≤ q∗min and q 6= q∗. Then q ≥ 0
and, since q∗ is the least non-negative fixed-point, q ≥ q∗. From Lemma 3.3 we have:

P (q)− P (q∗) = B(
1
2

(q∗ + q))(q − q∗)

Because q∗ and q are fixed points

q − q∗ = B(
1
2

(q∗ + q))(q − q∗)

Lemma 3.11 now yields that since q−q∗ ≥ 0 but q−q∗ 6= 0 andB( 1
2 (q∗+q)) is irreducible,

q > q∗. Thus q − q∗ > 0 is a positive eigenvector of the irreducible matrix B( 1
2 (q∗ + q))

associated with eigenvalue 1, thus ρ(B( 1
2 (q∗ + q))) = 1 by Lemma 3.9.

We now again invoke the assumption of non-isolation of q∗, which implies there is
a vector q′ 6= q∗ such that q′ = P (q′) and ‖q∗ − q′‖∞ ≤ min{q∗min,

1
2 (q − q∗)min}. By the

same reasoning as above, we have that q′ > q∗ and ρ(B( 1
2 (q∗ + q′))) = 1. But now the

condition ‖q∗ − q′‖∞ ≤ 1
2 (q − q∗)min yields that q′ ≤ q∗ + 1

2 (q − q∗) < q. We thus also
have that 1

2 (q∗ + q) > 1
2 (q∗ + q′), and because B(x) is non-constant and monotone in

x, we have B( 1
2 (q∗ + q)) ≥ B( 1

2 (q∗ + q′)) and B( 1
2 (q∗ + q)) 6= B( 1

2 (q∗ + q′)). However,
ρ(B( 1

2 (q∗+q))) = 1 = ρ(B( 1
2 (q∗+q′))). This contradicts Lemma 3.7. So q∗ is also isolated

in this case.
This establishes that for all strongly-connected MPSs, with LFP q∗ > 0, q∗ is isolated.
Now suppose that x = P (x) is not strongly-connected. For each SCC S of x = P (x),

the MPS xS = PS(xS , q∗D(S)) is strongly connected, so its LFP q∗S is an isolated solution
of xS = PS(xS , q∗D(S)). That is, there is an εS > 0 such that if qS has ‖qS − q∗S‖ ≤ εS and
qS = PS(qS , q∗D(S)), then qS = q∗S . Now take ε = minS{εS}. We claim that if ‖q−q∗‖∞ ≤ ε
and P (q) = q, then q = q∗. We can show this by induction on the depth of strongly-
connected components. If S is a bottom strongly-connected component, then qS has
‖qS − q∗S‖∞ ≤ ε ≤ εS and qS = PS(qS). So qS = q∗S . If S is a SCC and for all variables
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D(S) that variables in S depend on, directly or indirectly, qD(S) = q∗D(S), then qS has
qS = PS(qS , qD(S)) = PS(qS , q∗D(S)). But this and ‖qS − q∗S‖∞ ≤ ε ≤ εS are enough to
establish qS = q∗S . This completes the induction showing that q = q∗. So q∗ is isolated
solution for any MPS with LFP q∗ > 0.

For each xi, let di be the product of the denominators of all coefficients of P (x)i. Then
dix = diP (x)i clearly has integer coefficients which are no larger than 2|P |. Suppose
x = P (x) has LFP q∗ > 0, and suppose that coordinate k is the maximum coordinate of
q∗, i.e., that q∗k = q∗max. Now consider the system of n+ 1 polynomial equations, in n+ 1
variables (with an additional variable y), given by:

dixi = diP (x)i , for all i ∈ {1, . . . , n}; and xk y = 1 . (23)

Lemma B.3 tells us that q∗ > 0 is an isolated solution of x = P (x). If z ∈ Rn is any
solution vector for x = P (x), there is a unique w ∈ R such that x := z and y := w forms
a solution to the equations (23); namely let w = 1

zk
. So, letting x := q∗, and letting

y := 1
q∗k

, gives us an isolated solution of the equations (23). We can now apply Theorem
B.2 to the system (23). For y = 1

q∗k
, equation (22) in Theorem B.2 says that

2−2(n+1)(|P |+2(n+1) log(2n+2))5n <
1
q∗k

or
1
q∗k

= 0 .

Clearly 1
q∗k
6= 0, so 1

q∗max
= 1

q∗k
> 2−2(n+1)(|P |+2(n+1) log(2n+2))5n . So

q∗max < 22(n+1)(|P |+2(n+1) log(2n+2))5n . (24)
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