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Abstract

Carry chains are an important consideration for most
computations, including FPGAs. Current FPGAs dedicate
a portion of their logic to support these demands via a
simple ripple carry scheme. In this paper we demonstrate
how more advanced carry constructs can be embedded into
FPGAs, providing significantly higher performance carry
computations. We redesign the standard ripple carry chain
to reduce the number of logic levels in each cell. We also
develop entirely new carry structures based on high
performance adders such as Carry Select, Carry
Lookahead, and Brent-Kung. Overall, these optimizations
achieve a speedup in carry performance of 3.8 times over
current architectures.

Introduction

Although originally intended as a way to efficiently handle

random logic tasks in standard hardware systems, FPGAs
have become the driving force behind a new computing
paradigm. By mapping algorithms to these FPGAs

significant performance benefits can be achieved.

However, in order to achieve these gains the FPGA
resources must be able to efficiently support the

computations required in the target application.

The key to achieving high performance hardware is to
optimize the circuit’'s critical path. For most datapath
circuits this critical path goes through the carry chain used
in arithmetic and logic operations. In an arithmetic circuit
such as an adder or subtractor, this chain represents the
carries from bit position to bit position. For logical
operations such as parity or comparison, the chain
communicates the cumulative information needed to
perform these computations. Optimizing such carry chains
is a significant area of VLSI design, and is a major focus of
high-performance arithmetic circuit design.

In order to support datapath computations most FPGAs
include special resources specifically optimized for
implementing carry computations. These resources
significantly improve circuit performance with a relatively
insignificant increase in chip area. However, because these
resources use a relatively simple ripple carry scheme, carry
computations can still be a major performance bottleneck.
In this paper we will discuss methods for significantly
improving the performance of carry computations in
FPGAs.

Basic Ripple Carry Cell

A basic ripple carry cell, similar to that found in the Altera
8000 series FPGAs [1], is shown in Figure la. Mux 1,
combined with the two 2-LUTSs feeding into it, creates a 3-
LUT. This element can produce any Boolean function of
its three inputs. Two of its inputs (X and Y) form the
primary inputs to the carry chain. The operands to the
arithmetic or logic function being computed are sent in on
these inputs, witreach cell computing one bit position’s
result. The third input can be either another primary input
(2), or the carry from the neighboring cell, depending on
the programming of mux 2’s control bit. The potential to
have Z replace the carrgput is provided so that an initial
carry input can be provided to the overall carry chain
(useful for incrementers, combined adder/subtractors, and
other functions). Alternatively the logic can be used as a
standard 3-LUT for functions that do not need a carry
chain. An additional 3-LUT (not shown in the figure) is
contained in each cell, which can be used to compute the
sum for addition, or other functions.

Before we discuss modifications to this adder to improve
performance, it is important to understand the role of the
“Coutl” and “Cout0” signals in the carry chain. During
carry computations the Cin input controls mux 1, which
chooses which of these two signals will be the Cin for the
next stage in the carry chain. If Cin is true, Cout = Coutl,
while if Cin is false Cout = Cout0. Thus, Coutl is the
output whenever Cin = 1, while Cout0 is the output
whenever Cin = 0. If we consider the possible
combinations of values Coutl and CoutO can assume, there
are four possibilities, three of which correspond to
concepts from standard adders (Table 1). If both CoutO
and Coutl are true, Cout is true no matter what Cin is,
which is the same as the “generate” state in a standard
adder. Likewise, when both Cout0 and Coutl are false,
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Figure 1. Carry computation element for FPGAs (a), a simple 2:1 mux implementation (b), and a slightly more complex

version (c).

Cout is false regardless of the state of Cin, and this
combination of Coutl and CoutO signals is the “kill” state
for this carry chain. If CoutO and Coutl are different, the
Cout output will depend on the Cin input. When Cout0 =
0 and Coutl =1, the Cout output will be identical to the Cin
input, which is the normal “propagate” state for this carry
chain. The last state, with Cout0 = 1 and Coutl = 0, is not
found in normal adders. In this state, the output still
depends on the input, but in this case the Cout output is the
inverse of the Cin input. We will call this state “inverse
propagate”.

For a normal adder, the inverse propagate state is never
encountered. Thus, it might be tempting to disallow this
state. However, for other computations this state is
essential. For example, consider implementing a parity
circuit with this carry chain, where each cell takes the XOR
of the two inputs, X and Y, and the parity of the
neighboring cell. If X and Y are both zero, the Cout of the
cell will be identical to the parity of the neighboring cell,
which is brought in on the Cin signal. Thus, the cell is in
normal propagate mode. However, if X is true and Y is
false, then the Cout will be the opposite of Cin, since

(lD on cm):ﬁ. Thus, the inverse propagate state is

important for implementing circuits like parity, and thus
supporting this state in the carry chain we increase the
types of circuits that can be efficiently implemented. In
fact, by allowing an Inverse Propagate mode in the carry
chain, the chain can be viewed as simply a series of 3-
LUTs connected together, allowing any critical path to be
implemented efficiently.

Cout0 Coutl Cout Name
0 0 0 Kill
0 1 Cin Propagate
1 0 a] Inverse Propagate
1 1 1 Generate
Table 1. Combinations of Cout0 and Coutl

values, and the resulting carry output. The final
column lists the name for that combination.

One last issue must be considered in this carry chain
structure. In an FPGA, the cells represent resources that
can be used to compute arbitrary functions. However, the
location of functions within this structure is completely up
to the user. Thus, a user may decide to start or end a carry
computation at any place in the array. In order to start a
carry chain we must program the first cell in the carry
chain to ignore the Cin signal. One easy way to do this is
to program mux 2 in the cell to route input Z to mux 1
instead of Cin. For situations where one wishes to have a
carry input to the first stage of an adder (which is useful for
implementing combined adder/subtractors as well as other
circuits) this is the right solution. However, in other cases
this may not be possible. The first stage in many carry
computations is only a 2-input function, and forcing the
carry chain to wait for the arrival of an additional,
unnecessary input will only needlessly slow down the
circuit's computation. This is not necessary. In these
circuits, the first stage is only a 2-input function. Thus,
either 2-LUT in the cell could compute this value. If we
program both 2-LUTs with the same function, the output
will be forced to the proper value regardless of the input,
and thus either the Cin or the Z signal can be routed to mux
1 without changing the computation. However, this is only
true if mux 1 is implemented such that if the two inputs to
the mux are the same, the output of the mux is identical to
the inputs regardless of the state of the select line. Figure
1b shows an implementation of a mux that does not obey
this requirement. If the select signal to this mux is stuck
midway between true and false (2.5V for 5V CMOS) it will
not be able to pass a true value from the input to the output,
and thus will not function properly for this application.
However, a mux built like that in Figure 1c, with both n-
transistor and p-transistor pass gates, will operate properly
for this case. Thus, we will assume throughout this paper
that all muxes in the carry chain are built with the circuit
shown in Figure 1c, though any other mux implementation
with the same property could be used (including tristate
driver based muxes which can restore signal drive and cut
series R-C chains).



Delay Model

To initially quantify the performance of the carry chains
developed in this paper, a unit gate delay model will be
used: all simple gates of two or three inputs that are
directly implementable in one logic level in CMOS are
considered to have a delay of one. All other gates must be
implemented in such gates, and have the delay of the
underlying circuit. Thus, inverters and 2 to 3 input NAND
and NOR gates have a delay of one. A 2:1 mux has a delay
of one from the 10 or I1 inputs to the output, but has a
delay of two from the select input to the output due to the
inverter delay (see Figure 1c). The delay of the 2-LUTs,
and any routing leading to them, is ignored since this will
be a constant delay for all the carry chains developed in
this paper. This delay model will be used to initially
discuss different carry chain alternatives and their
advantages and disadvantages. Precise circuit timings are
also generated using Spice on the VLSI layouts of the carry
chains, as discussed later in this paper.

Optimized Ripple Carry Cell

As we discussed in an earlier section, the ripple carry
design of Figure la is capable of implementing most
interesting carry computations. However, it turns out that
this structure is significantly slower than it needs to be
since there are two muxes on the carry chain in each cell
(mux 1 and mux 2). Specifically, the delay of this circuit is
1 for the first cell plus 3 for each additional cell in the carry
chain (1 delay for mux 2 and 2 delays for mux 1), yielding
an overall delay of 3n-2 for an n-cell carry chain. Note that
we assume the longest path through the carry chain comes
from the 2-LUTs and not input Z since the delay through
the 2-LUTs will be larger than the delay through mux 2 in
the first cell.

We can reduce the delay of the ripple carry chain by
removing mux 2 from the carry path. As shown in Figure
2a, instead of choosing between Cin or Z for the select line
to the output mux, we instead have two separate muxes, 1
and 2, controlled by Cin and Z respectively. Then, the
circuit chooses between these outputs with mux 3. In this
design there is a delay of 1 in the first cell of a carry chain,
a delay of 3 in the last cell (2 for mux 1 and 1 for mux 3),
and a delay of only 2 for all intermediate cells. Thus, the
delay of this design is only 2n for an n-bit ripple carry
chain, yielding up to a 50% faster circuit than the original
design.

Unfortunately, the circuit in Figure 2a is not logically
equivalent to the original design. The problem is that the
design can no longer use the Z input in the first cell of a
carry chain as an initial carry input, since Z is only attached
to mux 2, and mux 2 does not lead to the carry path. The
solution to this problem is the circuit shown in Figure 2b.
For cells in the middle of a carry chain mux 2 is configured
to pass Coutl, and mux 3 passes Cout0. Thus, mux 4
receives Coutl and CoutO, and provides a standard ripple

carry path. However, when we start a carry chain with a
carry input (provided by input Z), we configure mux 2 and
mux 3 to both pass the value from mux 1. Since this
means that the two main inputs to mux 4 are identical, the
output of mux 4 (Cout) will automatically be the same as
the output of mux 1, ignoring Cin. Mux 1's main inputs
are driven by two 2-LUTs controlled by X and Y, and thus
mux 1 forms a 3-LUT with the other 2-LUTs. When mux
2 and mux 3 pass the value from mux 1 the circuit is
configured as a 3-LUT starting a carry chain, while when
mux 2 and mux 3 choose their other input (Coutl and
Cout2 respectively) the circuit is configured to continue the
carry chain.  This design is therefore functionally
equivalent to the design in Figure 1a. However, carry
chains built from this design have a delay of 3 in the first
cell (1 in mux 1, 1 in mux 2 or mux 3, and 1 in mux 4) and
2 in all other cells in the carry chain, yielding an overall
delay of 2*n+1 for an n-bit carry chain. Thus, although
this design is 1 gate delay slower than that of Figure 2a, it
provides the ability to have a carry input to the first cell in
a carry chain, something that is important in many
computations. Also, for carry computations that do not
need this feature, the first cell in a carry chain built from
Figure 2b can be configured to bypass mux 1, reducing the
overall delay to 2*n, which is identical to that of Figure 2a.
On the other hand, in order to implement a n-bit carry
chain with a carry input, the design of Figure 2a requires
an additional cell at the beginning of the chain to bring in
this input, resulting in a delay of 2*(n+1) = 2*n+2, which
is slower than that of the design in Figure 2b. Thus, the
design of Figure 2b is the preferred ripple carry design
among those presented so far.

Fast Carry Logic for FPGAs

In the previous section we discussed how to optimize a
ripple carry chain structure for use in FPGAs. While this

provides some performance gain over the basic ripple carry
scheme found in many current FPGAs, it is still much

slower than what is done in custom logic. There has been
tremendous amounts of work done on developing

alternative carry chain schemes which overcome the linear
delay growth of ripple-carry adders. Although these

techniques have not yet been applied to FPGAs, in this
paper we will demonstrate how these advanced adder
techniques can be integrated into reconfigurable logic.

The basis for all of the high-performance carry chains
developed in this paper will be the carry cell of Figure 2c.
This cell is very similar to that of Figure 2b, except that the
actual carry chain (mux 4) has been abstracted into a
generic “Fast Carry Logic” unit and mux 5 has been added.
This extra mux is present becauséhaligh some of our
faster carry chains will have much quicker carry
propagation for long carry chains, they do add significant
delay to non-carry computations. Thus, when the cell is
used as just a normal 3-LUT, using inputs X, Y, and Z,
mux 5 allows us to bypass the carry chain by selecting the
output of mux 1.
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Figure 2. Carry computation elements with faster carry propagation.

The important thing to realize about the logic of Figure 2c
is that any logic that can compute the value
Cout = (Cout_, * C1;) + (Couti—y * CQ;), wherei is

the position of the cell within the carry chain, can provide
the functionality necessary tagport the needs of FPGA
computations. Thus, the fast carry logic unit can contain
any logic structure implementing this computation. In this
paper we will look at four different types of carry logic:
Carry Select, Carry Lookahead (including Brent-Kung),
Variable Bit, and Ripple Carry (discussed previously).
Note that because of the needs and requirements of carry
chains for FPGAs, we will have to develop new circuits,
inspired by the standard adder structures, but which are
more appropriate for FPGAs. The main difference is that
we no longer have just the Generate, Propagate, and Kill
states for an adder, we must also support Inverse
Propagate. These four states are encoded on signals C1
and CO as shown in Table 1. Also, while standard adders
are concerned only with the maximum delay through an
entire N-bit adder structure, the delay concerns for FPGAs
are more complicated. Specifically, when an N-bit carry
chain is built into the architecture of an FPGA it does not
represent an actual computation, but only the potential for
a computation. A carry chain resource may span the entire
height of a column in the FPGA, but a mapping to the logic
may use only a small portion of this chain, with the carry
logic in the mapping starting and ending at arbitrary points
in the column. Thus, we are concerned with not just the
carry delay from the first to the last position in a carry
chain, but must consider the delay for a carry computation
beginning and ending at any point within this column. For
example, even though the FPGA architecture may provide
support for carry chains of up to 32 bits, it must also
efficiently support 8 bit carry computationsapéd at any
point within this carry chain resource.

Carry Select

The problem with a ripple carry structure is that the
computation of the Cout for bit positioncannot begin
until after the computation has been completed in bit
positions 0..i-1. A Carry Select structure overcomes this
limitation. The main observation is that for any bit
position, the only information it receives from the previous
bit positions is its Cin signal, which can be either true or
false. In a Carry Select adder the carry chain is broken at a
specific column, and two separate additions occur: One
assuming the Cin signal is true, the other assuming it is
false. These computations can take place before the
previous columns complete their operation, since they do
not depend on the actual value of the Cin signal. This Cin
signal is instead used to determine which adder’s outputs
should be used. If the Cin signal is true, the output of the
following stages comes from the adder that assumed that
the Cin would be true. Likewise, a false Cin chooses the
other adder’s output. This splitting of the carry chain can
be done multiple times, breaking the computation into
several pairs of short adders with output muxes choosing
which adder’s output to select. The length of the adders
and the breakpoints are carefully chosen such that the small
adders finish computation just as their Cin signals become
available. Short adders handle the low-order bits, and the
adder length is increased further along the carry chain,
since later computations have more time until their Cin
signal is available.

A Carry Select carry chain structure for use in FPGAs is
shown in Figure3. The carry computation for the first two
cells is performed with the simple ripple-carry structure
implemented by mux 1. For cells 2 and 3 we use two
ripple carry adders, with one adder (implemented by mux
2) assuming the Cin is true, and the other (mux 3)
assuming the Cin is false. Then, muxes 4 and 5 pick
between these two adders’ outputs based on the actual Cin
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Figure 3. Carry Select structure.

coming from mux 1. Similarly, cells 4-6 have two ripple
carry adders (mux 6 & 7 for a Cin of 1, mux 8 & 9 for a
Cin of 0), with output muxes (muxes 10-12) deciding
between the two based upon the actual Cin (from mux 5).
Subsequent stages will continue to grow in length by one,
with cells 7-10 in one block, cells 11-15 in another, and so
on. Timing values showing the delay of the Carry Select
carry chain relative to other carry chains will be presented
later in this paper.

Variable Block

Like the Carry Select carry chain, a Variable Block
structure [4] consists of blocks of ripple carry elements
(Figure 4). However, instead of precomputing the Cout
value for each possible Cin value, it instead provides a way
for the carry signal to skip over intermediate cells where
appropriate. Contiguous blocks of the computation are
grouped together to form a unit with a standard ripple carry
chain. As part of this block, logic is included to determine
if all of the cells are in their propagate state. If so, the Cout
for this block is immediately set to the value of the block’s
Cin, allowing the carry chain to bypass this block’s normal
carry chain on its way to later blocks. The Cin still ripples
through the block itself, since the intermediate carry values
must also be computed. If any of the cells in the carry
chain are not in propagate mode, the Cout output is
generated normally by the ripple carry chain. While this
carry chain does start at the block’s Cin signal, and leads to

the block’s Cout, this long path is a false path. That is,
since there is some cell in the block that is not in propagate
mode, it must be in generate or kill mode, and thus the
block’s Cout output does not depend on the block’s Cin
input.

A major difficulty in developing a version of the Variable
Block carry chain for inclusion in an FPGA's architecture
is the need to support both the propagate and inverse
propagate state of the cells. To do this, we compute two
values.

First, we check to see if all the cells are in some form of
propagate mode (either normal propagate or inverse
propagate) by ANDing together the XOR of each stage’s
C1 and CO signals. If so, we_know that the Cout function
will be equal to eithe€Cin or Cin. To decide whether to
invert the signal or not, we must determine how many cells
are in inverse propagate mode. If the number is even
(including zero) the output is not inverted, while if the
number is odd the output is inverted. The inversion check
can be done by looking for inverse propagate mod=aamh

cell and XORing the results. To check for inverse
propagate, we only look at the CO signal freath cell. If

this signal is true, the cell is in either generate or inverse
propagate mode, and if it is in generate mode the inversion
signal will be ignored anyway (we only consider inverting
the Cin signal if all cells are in some form of propagate
mode). Note that for both of these tests we can use a tree
of gates to compute the result. Also, since we ignore the
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Figure 4. The Variable Block carry structure. Mux 1 performs an initial two stage ripple carry. Muxes 2 through 5 form a
2-bit Variable Block block. Mux 5 decides whether the Cin signal should be sent directly to Cout, while mux 4 decides

whether to invert the Cinamal or not.



inversion signal when we are not bypassing the carry chain
we can use Cl as the inverse of CO for the inversion
signal’'s computation, which avoids the added inverter in
the XOR gate.

The organization of the blocks in the Variable Block carry
structure bears some similarity to the Carry Select
structure. The early stages of the structure grow in length,
with short blocks for the low order bits, building in length
further in the chain in order to equalize the arrival time of
the carry from the block with that of the previous block.
However, unlike the Carry Select structure, the Variable
Block adder must also worry about the delay from the Cin
input through the block’s ripple chain. Thus, after the
carry chain passes the midpoint of the logic, the blocks
begin decreasing in length. This balances the path delays
in the system and improves performance. The division of
the overall structure into blocks depends on the details of
the logic structure and the length of the entire computation.
We use a block length (from low order to high order cells)
of2,2,4,5,7,5, 4, 2, 1 for a normal 32 bit structure. The
first and last block in each adder is a simple ripple carry
chain, while all other blocks use the Variable Block
structure. Delay values of the Variable Block carry chain
relative to other carry chains will be presented later in this
paper.

Carry Lookahead and Brent-Kung

There are two inputs to the fast carry logic in Figure 2c:
C1 and CQ The value of Clis programmed by the LUTs

so that it contains the value that Caliould have if Cinis

true. Similarly, the value of CQs programmed by the
LUTs so that it contains the value that Caeliould have if

Cin is false. We can combine the information from two
stages together to determine what the Cout of one stage
will be given the Cin of the previous stage. For example,

Cl,i—1=(CL-1*CL)+(@*COi) CO i =

and

(COi_l*CL)+(COi_1*COi), where C1, | is the value of
Cout assuming that Cjr= 1. This allows us to halve the

length of the carry chain, since once these new values are
computed a single mux can compute Cgisten Cin,. In

fact, similar rules can be used recursively, halving the
length of the carry chain with each application.

Specifically,  C = (C1 ;" C1  J+ CL * CO,

and €0, = (C0, 1 * C1, ;)+(CO, 0y ;).
i>j>k. The digital logic computing both of these
functions will be called a concatenation box. The Brent-
Kung carry chain [2] consists of a hierarchy of these
concatenation boxes, whemach level in the hierarchy

halves the length of the carry chain, untili we have
computedCl; , and CO; ; for each cell. A single level

of muxes at the bottom of the Brent-Kung carry chain can
then use these values to compute the Cout for each cell
given a Cin. The Brent-Kung carry chain is shown in
Figure 5.

assuming

The Brent-Kung adder is a specific case of the more
general Carry Lookahead adder. In a Carry Lookahead
adder a single level of concatenation combines together the
carry information from multiple sources. A typical Carry
Lookahead adder will combine 4 cells together in one level
(computing Cl, and CQ,), combine four of these new
values together in the next level, and so on.

However, while a combining factor of 4 is considered
optimal for a standard adder, in FPGAs combining more
than two values in a level is not advantageous. The
problem is that although the logic to concatenate N values
together grows linearly for a normal adder, it grows
exponentially for a reconfigurable carry chain. For
example, to concatenate three values together we have the
equation:

Cly,, = ((Cly—L 2" Cllx—L y)+ (Cly—L 2*C0xqy ))* Clyx
+ ((01y_1,Z * c1X_Ly)+ ey, cox_lyy))* COyyxc

An alternative way to see why combining 4 cells together
in one level is bad for FPGAs is to consider how this
combining would be implemented. Figure 6a shows a

b

Figure 5. The 16 bit Brent-Kung structure. At right is the details of the concatenation block. Note that once the Cin
has been computed for a given stage, a mux is used in place of a concatenation block.
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Figure 7. A 2-Level, 16 bit Carry Lookahead structure.

concatenation box that takes its input from 4 different cells.
Figure 6b then shows how a 4-cell concatenation box can
be built using only three 2-cell concatenation boxes. This
second method of creating a 4-cell concatenation box is
really the equivalent of a 2-Level Carry Lookahead adder
using 2-cell concatenation boxes. Using the simple delay
model discussed earlier, the delay for the 4-cell

concatenation box in Figure 6a is 6 units since the signal
must travel through 3 muxes. The delay for the 4-cell

concatenation box equivalent found in Figure 6b, however,
is only 4 units since the signal must travel through only 2

muxes. Thus, a 4-cell concatenation box is never used
since it can always be implemented with a smaller delay
using 2-cell concatenation boxes. Therefore, the Brent-
Kung structure is the best approach.

Another option in Carry Lookahead adders is the
possibility of using less levels of concatenation than a
Brent-Kung structure. Specifically, a Brent-Kung structure
for a 32 bit adder would require 4 levels of concatenation.
While this allows Cipto quickly reach Coy} there is a
significant amount of delay in the logic that computes the
individual C1, and CQ, values. We can instead use less
levels than the complete hierarchy of the Brent-Kung adder
and simply ripple together the top-level carry computations
of smaller carry-lookahead adders. Specifically, if we talk
about a N-level Carry Lookahead adder, that means that we
only apply N levels of 2-input concatenation units. A 2-
Level, 16 bit Carry Lookahead carry chain is shown in
Figure 7.

Carry Chain Performance

In order to compare the carry chains developed in this
paper, we computed the performance of the carry chains of
different lengths. The delay is computed from the output
of the 2-LUTs in one cell to the final output (F) in another.
One important issue to consider is what delay to measure.
While the carry chain structure is dependent on the length
of the carry computation supported by the FPGA (such as
the Variable Block segmentation), the user may decide to
use any contiguous subsequence of the carry chain’s length
for their mapping. To deal with this, we assume that the
FPGAs are built to support up to a 32 bit carry chain, and
record the maximum carry chain delay for any length L
carry computation within this structure. That is, since we
do not know where the user will begin their carry
computation within the FPGA architecture, we measure the
worst case delay for a length L carry computation starting
at any point in the FPGA. Note that this delay is the
critical path within the L-bit computation, which means
carries starting and ending anywhere within this
computation are considered.

Figure 8 shows the maximum carry delays for each of the
carry structures discussed in this paper, as well as the basic
ripple carry chain found in current FPGAs. These delays
are based on the simple delay model that was discussed
earlier. More precise delay timings from VLSI layouts of
the carry chains will be discussed later. As can be seen, the
best carry chain structure for short distances is different



from the best chain for longer computations, with the basic
ripple carry structure providing the best delay for length 2
carry computations, while the Brent-Kung structure

provides the best delay for computations of four bits or
more. In fact, the ripple carry structure is more than twice
as fast as the Brent-Kung structure for 2-bit carry

computations, yet is approximately eight times slower for
32 bit computations. However, short carries are often not
that critical, since they can be supported by the FPGA’s
normal routing structure and will tend not to dominate the
performance of the overall system. Therefore, we believe
that the Brent-Kung structure is the preferred structure for
FPGA carry computations, and that it is capable of
providing significant performance improvement over

current FPGA carry chains.

In this paper we also considered other Carry Lookahead
adder designs which do not use as many levels of
concatenation boxes as a full Brent-Kung adder. However,
as can be see in Figure 9, the other carry structures provide
only modest improvements over the Brent-Kung structure
for short distances, and perform significantly worse than
the Brent-Kung structure for longer carry chains.

Another consideration when choosing a carry chain
structure is the size of the circuit. Figure 10 shows the
number of transistors that are used in the design of the
Basic Ripple, Optimized Ripple, Carry Select, Variable

Block, and Brent-Kung carry chains. The transistor counts
here are based on a CMOS implementation of the inverting
tri-state mux. One concern with the Brent-Kung structure

is that it requires four times more transistors to implement
than the basic ripple carry. However, in typical FPGAs the
carry structure occupies only a tiny fraction thie chip
area, since the programming bits, LUTs, and
programmable routing structures dominate the chip area.
Therefore, the increase in chip area required by the higher
performance carry chains developed in this paper is
relatively insignificant, yet the performance improvements
can greatly accelerate many types of applications. The area
and performance of the high performance carry chains with
respect to those of the basic ripple carry chains will be
discussed further in the next section of this paper.

Layout Results

The results of the simple delay model described earlier
suggest that the Brent-Kung carry chain has the best
performance of any of the carry chains. However, the
performance results used to make this decision are based
only on the simple delay model, which may not accurately
reflect the true delays. The simple delay model does not
take into account transistor sizes or routing delays.
Therefore, in order to get more accurate comparisons the
carry chains were sized using logical effort [5], layouts
were created, and timing numbers were obtained from
Spice for a 0.6 micron process. Only the most promising
carry chains were chosen for implementation. These
include the basic ripple carry, which can be found in
current FPGAs, as well as the new Optimized Ripple and
Brent-Kung carry chains.
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Figure 8. A comparison of the various carry chain structures. The delays represent the maximum delay for a N-bit
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carry chains.

Carry Chain Area % Increase for Chimaera % Increase for General-
FPGA Purpose FPGA
Basic Ripple Carry 171368 0 0
Optimized Ripple 394953 1.3 0.18
Brent-Kung 1622070 8.5 1.18

Table 2. Areas of different carry chain implementations.

avoid the carry chain (as shown by Mux 5 in Figure 2c).
The delay for the basic ripple carry chain in this case is
1.6ns, while the delay for the Brent-Kung carry chain is
2.1ns. Thus, the Brent-Kung implementation does slow
down non-carry operations, but only by a small amount.

Table 3 shows the delays of a 32-bit carry for the carry
chains that were implemented. Notice that the delay for
basic ripple carry chain is 23.4ns, and the delay for the
Brent-Kung carry chain is 6.1ns. Thus, the best carry chain
developed here has a delay 3.8 times faster than the basic
ripple carry chain used in industry. Table 3 also shows the  Taple 2 shows the area of these carry chains as measured
delays of the FPGA cell assuming that the cell is  from the layouts. One item to note is the size of the Brent-
programmed to compute a function of 3 variables and  kyng carry chain. Its size is shown as 9.47 times larger



than the basic ripple carry chain. This number should be
viewed purely as an upper bound, since the layout of the
Basic Ripple Carry was optimized much more than the
Brent-Kung layout. We believe that further optimization
of the Brent-Kung design could reduce its area by 600,000
square lambda, yielding only a factor of 5 size increase
over the Basic Ripple Carry scheme.

by programming the LUTs. Recall that one LUT produces
Coutl which is the value of Cout if Cin is equal to 1.
Similarly, the other LUT produces CoutO0 which is the
value of Cout if Cin is equal to 0. In order to break the
carry chain, we program the LUTs so that both Coutl and
CoutO have the same value. In this case, Cout has the same
value regardless of the value of Cin, and the original carry
chain has been segmented into smaller, independent carry

chains.

Carry Chain 32-bit delay (ns) 3-LUT delay (n§)
Basic Ripple 23.4 1.6
Optimized Ripple 18.7 25
Brent-Kung 6.1 21

Table 3. A comparison of the delays of different
structures for (a) a 32-bit carry, and (b) a non-carry
computation of a function, f(X,Y,Z).

A more accurate comparison of the size implications of the
improved carry chains is to consider the area impact of
including these carry chains in an actual FPGA. We have
conducted such experiments with the Chimaera FPGA [3],
a special-purpose FPGA which has been carefully
optimized to reduce the amount of chip area devoted to
routing. As shown in Table 3, replacing the basic ripple
carry structure in the Chimaera FPGA with the Brent-Kung
structure results in an area increase of 8.5%. Our estimates
of the area increase on a general-purpose FPGA such as the
Xilinx 4000 [7] or Altera 8000 FPGAs, where the more
complex routing structure consumes a much greater portion
of the chip area, is that the Brent-Kung structure would
only increase the total chip area by 1.2%. This is based
upon increasing the portion of Chimaera's chip area
devoted to routing up to the 90% of chip area typical in
general-purpose FPGAs.

Using the Carry Chain

Thus far, we have explained why high performance carry
chains should be used in FPGAs. Now we will explain

where the carry chain is located in the FPGA and how it is
programmed. In our design, the carry chain is row-based
and unidirectional as shown in Figure 11. There is exactly
one carry chain per row, and it spans the entire length of
that row. The carry chains in different rows are not

interconnected. However, these carry chains could be
connected by normal FPGA routing if a larger carry chain

is needed.

The Brent-Kung carry chain that we designed is a n-bit
carry chain where n is a power of 2. The carry chain is
placed in one row of the FPGA, and it interfaces with the
FPGA cells in that row. Each FPGA cell connects to a
different part of the carry chain. Since the Brent-Kung
carry chain is not uniform, the carry chain logic seen by
each FPGA cell will be different.

One additional feature of the carry chain is that it can
broken into smaller, independent carry chains at any point
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Figure 11. The location of the carry chains within the
FPGA.

Conclusions

One of the critical performance bottlenecks in most

systems is the carry chains contained in many arithmetic
and logical operations. Current FPGAs optimize for these
elements by providing some support specifically for carry

computations. However, these systems rely on relatively
simple ripple carry structures which provide much slower

performance than current high-performance carry chain
designs. With the advent of reconfigurable computing, and
the demands of implementing complex algorithms in

FPGAs, the slowdown of carry computations in FPGAs is
an even more crucial concern.

In order to speed up the carry structure found in current
FPGAs we developed several innovative techniques. A
novel cell design is used to reduce the delay through the
cell to a single mux by moving the decision of whether to
use the carry chain off of the critical path. This results in
approximately a factor of 1.25 speedup over current FPGA
carry delays.

High performance adders are not limited to simple ripple
carry schemes, and in fact rely on more advanced
formulations to speed up their computation. However, as

we demonstrated in this paper, the demands of FPGA-

based carry chains are different than standard adders,
especially because of the "inverse propagate" cell state.
Thus, we cannot directly take standard high performance



adder carry chains and embed them into current FPGA
architectures.

In this paper we developed novel high performance carry
chain structures appropriate to reconfigurable systems.
These include implementations of Carry Select, Variable
Block, and Carry Lookahead (including Brent-Kung)
adders. We have been able to produce a carry chain that is
up to a factor of 3.8 faster than current FPGA structures
while maintaining all the flexibility of current systems.
This provides a significant performance boost for the
implementation of future FPGA-based systems.
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