skip to main content
10.1145/2632856.2632938acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicimcsConference Proceedingsconference-collections
research-article

Depth Information Fused Salient Object Detection

Published: 10 July 2014 Publication History

Abstract

Saliency Detection has emerged as a hot topic due to its potential application in image and video understanding. Most existing saliency detection algorithms focus on two-dimensional information while the depth information is often ignored. In this paper, we first create the salient object ground truth of a specific image dataset which contains 600 RGB-D (color and depth information) images taken from different surroundings with different angle and intensity of illumination. The depth image describes the depth information of each object in the image from the perspective of a viewer, and the intensity value of every pixel in the depth image denotes the depth information. With the help of depth information, a more precise object description can be acquired. Furthermore, several state-of-the-art saliency detection models can be utilized to generate 2D salient maps, which can be fused with the depth map to detect the salient object in a given image. Experimental results demonstrate the effectiveness of the proposed method.

References

[1]
Borji, A., Sihite, D. N., Itti, L. 2012. Salient object detection: A benchmark. In Computer Vision--ECCV 2012. Springer Berlin Heidelberg, 414--429.
[2]
Kanan, C., Cottrell, G. 2010. Robust classification of objects, faces, and flowers using natural image statistics. In CVPR, 2010 IEEE Conference on. IEEE, 2472--2479.
[3]
Walther, D., Koch, C. 2006. Modeling attention to salient proto-objects. Neural Networks, 2006, 19(9): 1395--1407.
[4]
Itti, L. 2004. Automatic foveation for video compression using a neurobiological model of visual attention. Image Processing, IEEE Transactions on, 2004, 13(10): 1304--1318.
[5]
Marchesotti, L., Cifarelli, C., Csurka, G. 2009. A framework for visual saliency detection with applications to image thumbnailing. Computer Vision, 2009 IEEE 12th International Conference on. IEEE, 2009: 2232--2239.
[6]
Goferman, S., Ayellet, T., and Lihi, Z. Puzzle-like Collage. Computer Graphics Forum. Blackwell Publishing Ltd, 2010. 29(2).
[7]
Wang, J., Quan, L., Sun, J., et al. 2006. Picture collage. In CVPR, 2006 IEEE Computer Society Conference on. Vol. 1. IEEE, 2006, 347--354.
[8]
Jiang, H., Wang, J., Yuan, Z., et al. Salient object detection: A discriminative regional feature integration approach. In CVPR, 2013 IEEE Conference on. IEEE, 2013: 2083--2090.
[9]
Achanta, R., Hemami, S., Estrada, F., et al. 2009. Frequency-tuned salient region detection. In CVPR 2009. IEEE Conference on. IEEE, 2009: 1597--1604.
[10]
Peng, H., Li, B., Ji, R., et al. 2013. Salient object fetection via low-rank and structured sparse matrix decomposition. In Twenty-Seventh AAAI Conference on Artificial Intelligence. 2013.
[11]
Itti, L., Koch, C., Niebur, E. 1998. A model of saliency-based visual attention for rapid scene analysis. In IEEE Transactions on pattern analysis and machine intelligence, 1998, 20(11): 1254--1259.
[12]
Cheng, M. M., Zhang, G. X., Mitra, N. J., et al. 2011. Global contrast based salient region detection. In CVPR, 2011 IEEE Conference on. IEEE, 2011: 409--416.
[13]
Candès, E. J., Li, X., Ma, Y., et al. 2011. Robust principal component analysis?. In Journal of the ACM, 2011, 58(3): 11.
[14]
Hou, X., Zhang, L. 2007. Saliency detection: A spectral residual approach. In CVPR 2007. IEEE Conference on. IEEE, 2007: 1--8.
[15]
Judd, T., Ehinger, K., Durand, F., et al. 2009. Learning to predict where humans look. In Computer Vision, 2009 IEEE 12th international conference on. IEEE, 2106--2113.
[16]
Chang, K. Y., Liu, T. L., Chen, H. T., et al. 2011. Fusing generic objectness and visual saliency for salient object detection. In Computer Vision (ICCV), 2011 IEEE International Conference on. IEEE, 914--921.
[17]
Goferman, S., Zelnik-Manor, L., Tal, A. 2012. Context-aware saliency detection. In Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2012, 34(10): 1915--1926.
[18]
Shen, X., Wu, Y. 2012. A unified approach to salient object detection via low rank matrix recovery. In CVPR, 2012 IEEE Conference on. IEEE, 853--860.
[19]
Liu, T., Yuan, Z., Sun, J., et al. 2011. Learning to detect a salient object. In Pattern Analysis and Machine Intelligence, IEEE Transactions on, 33(2): 353--367.
[20]
Yang, C., Zhang, L., Lu, H., et al. 2013. Saliency detection via graph-based manifold ranking. In CVPR, 2013 IEEE Conference on. IEEE, 3166--3173.
[21]
Jiang, B., Zhang, L., Lu, H., et al. 2013. Saliency Detection via Absorbing Markov Chain. In ICCV 2013, 1665--1672.
[22]
Cheng, Y. 1995. Mean shift, mode seeking, and clustering. In Pattern Analysis and Machine Intelligence, IEEE Transactions on, 17(8): 790--799.
[23]
Kadir, T., Brady, M. 2001. Saliency, scale and image description. In International Journal of Computer Vision, 45(2): 83--105.
[24]
Bruce, N., Tsotsos, J. 2006. Saliency based on information maximization. In Advances in neural information processing systems, 2006, 18: 155.
[25]
Wang, W., Wang, Y., Huang, Q., et al. 2010. Measuring visual saliency by site entropy rate. In CVPR, 2010 IEEE Conference on. IEEE, 2010: 2368--2375.
[26]
Lang, C., Liu, G., Yu, J., et al. 2012. Saliency detection by multitask sparsity pursuit. In Image Processing, IEEE Transactions on, 2012, 21(3): 1327--1338.
[27]
Lang, C., Nguyen, T. V., Katti, H., et al. 2012. Depth matters: Influence of depth cues on visual saliency. In Computer Vision--ECCV 2012. Springer Berlin Heidelberg, 2012, 101--115.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
ICIMCS '14: Proceedings of International Conference on Internet Multimedia Computing and Service
July 2014
430 pages
ISBN:9781450328104
DOI:10.1145/2632856
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

In-Cooperation

  • NSF of China: National Natural Science Foundation of China
  • Beijing ACM SIGMM Chapter

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 10 July 2014

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. RGB-D image
  2. depth information
  3. salient object detection
  4. visual attention

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

ICIMCS '14

Acceptance Rates

Overall Acceptance Rate 163 of 456 submissions, 36%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)2
  • Downloads (Last 6 weeks)0
Reflects downloads up to 21 Dec 2024

Other Metrics

Citations

Cited By

View all

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media