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Abstract

We investigate the computational power of periodically iterated mor-
phisms, also known as D0L systems with periodic control, PD0L systems
for short. These systems give rise to a class of one-sided infinite sequences,
called PD0L words.

We construct a PD0L word with exponential subword complexity,
thereby answering a question raised by Lepistö [22] on the existence of
such words. We solve another open problem concerning the decidability
of the first-order theories of PD0L words [23]; we show it is already un-
decidable whether a certain letter occurs in a PD0L word. This stands
in sharp contrast to the situation for D0L words (purely morphic words),
which are known to have at most quadratic subword complexity, and for
which the monadic theory is decidable.

The main result of our paper, leading to these answers, is that every
computable word w ∈ Σω can be embedded in a PD0L word u ∈ Γω with
Γ ⊃ Σ in the following two ways: (i) such that every finite prefix of w is a
subword of u, and (ii) such that w is obtained from u by erasing all letters
from Γ \ Σ. The PD0L system generating such a word u is constructed
by encoding a Fractran program that computes the word w; Fractran is
a programming language as powerful as Turing Machines.

As a consequence of (ii), if we allow the application of finite state
transducers to PD0L words, we obtain the set of all computable words.
Thus the set of PD0L words is not closed under finite state transduction,
whereas the set of D0L words is. It moreover follows that equality of PD0L
words (given by their PD0L system) is undecidable. Finally, we show
that if erasing morphisms are admitted, then the question of productivity
becomes undecidable, that is, the question whether a given PD0L system
defines an infinite word.

∗This research has been funded by the Netherlands Organization for Scientific Research
(NWO) under grant numbers 639.021.020 and 612.000.934.
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0 Introduction

Morphisms for transforming and generating infinite words provide a fundamen-
tal tool for formal languages, and have been studied extensively; we refer to [2]
and the bibliography therein.

In this paper we investigate the class of infinite words generated by period-
ically alternating morphisms [10, 11, 22, 6]. Instead of repeatedly applying a
single morphism, one alternates several morphisms from a given (finite) set in a
periodic fashion. Let us look at an example right away, and consider the most
famous word generated by such a procedure, namely the Kolakoski word [21]

K = 1 22 11 2 1 22 1 22 11 2 11 22 1 2 11 2 1 22 11 2 · · ·

which is defined such that K(0) = 1 and K(n) equals the length of the n-th
run of K; here by a ‘run’ we mean a block of consecutive identical symbols.
The Kolakoski word can be generated by alternating two morphisms on the
starting word 12, h0 for the even positions and h1 for the odd positions, defined
as follows:

h0 :
1 → 1
2 → 11

h1 :
1 → 2
2 → 22

The first few iterations then are

12

h0(1)h1(2) = 122

h0(1)h1(2)h0(2) = 12211

h0(1)h1(2)h0(2)h1(1)h0(1) = 1221121

It is known that the Kolakoski word is not purely morphic [11], i.e, cannot
be generated by iterating a single morphism. However it is an open problem
whether it is a morphic word, i.e., the image of a purely morphic word under
a coding (= letter-to-letter morphism). We shall use the ‘D0L’ terminology:
D0L for purely morphic, CD0L for morphic, and PD0L for words generated by
periodically alternating morphisms, like the Kolakoski word above.

A natural characteristic of sequences is their subword complexity [18, 1, 2].
The subword complexity of a sequence u is a function N → N mapping n to the
number of n-length words that occur in u. It is well-known that morphic words
have at most quadratic subword complexity [12]. Lepistö [22] proves that for all
r ∈ R there is a PD0L word whose subword complexity is in Ω(nr); hence there
are PD0L words that are not CD0L. It remained an open problem whether PD0L
words can exhibit exponential subword complexity. This intriguing question
formed the initial motivation for our investigations. We actually establish a
stronger result from which the existence of such words can be derived, as we
will describe next.

The main results of our paper can be stated as follows: For every computable
word w ∈ Σω there exists a PD0L word u such that

I. all prefixes of w occur in u as subwords between special marker symbols
(Theorem 4.9),
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II. w is the subsequence of u obtained from selecting all letters from Σ (The-
orem 4.12).

The construction of the PD0L systems generating such words u makes use of
Fractran [7, 8], a Turing complete programming language invented by Conway,
in the following way. First, in Section 2, we show how to employ Fractran to
generate any computable infinite word. Then we encode Fractran programs as
PD0L systems, and prove that the PD0L system correctly simulates the Fractran
program and records its output, see Sections 3 and 4.

Consequences of I and II are as follows:

(1) There exist PD0L words with exponential subword complexity (Theorem
4.14).

(2) It is undecidable to determine, given a PD0L system H and a letter b,
whether the letter b occurs (infinitely often) in the word generated by H
(Theorem 4.15).

(3) The first-order theory of PD0L words is undecidable (Corollary 4.16).

(4) Equality of PD0L words is undecidable (Corollary 4.17).

(5) The set of PD0L words is not closed under finite state transductions (Corol-
lary 4.13).

All the above results concern PD0L systems whose morphisms are non-erasing.
But we also study erasing PD0L systems, and find

(6) It is undecidable to determine, on the input of an erasing PD0L system,
whether it generates an infinite word (Theorem 3.6).

The outline of the paper is as follows. In Sections 1 and 2 we introduce
the dramatis personae of our story: PD0L systems and Fractran programs. We
explain the workings of the Fractran algorithm, and how to program in this
language.

Then, as a steppingstone to our main result, we start with a proof of (6) in
Section 3. This proof illustrates our key construction: encoding Fractran pro-
grams as PD0L systems. We then modify and extend this encoding in Section 4
to prove Theorems 4.9 and 4.12: PD0L words can embed every computable
word, in the sense of I and II above. We give a detailed example of the trans-
lation, and prove (1)–(5) listed above.

PD0L systems resulting from encoding Fractran programs can be quite large.
For example, the system obtained from a simple binary counter (computing an
infinite word with exponential subword complexity) consists of

536393214598471230

morphisms. We present a direct solution in Section 5, namely a PD0L system
with 16 morphisms simulating such a counter.
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1 D0L Systems with Periodic Control

We use standard terminology and notations, see, e.g., [2]. Let Σ be a finite
alphabet. We denote by Σ∗ the set of all finite words over Σ, by ε the empty
word, and by Σ+ = Σ∗ \ {ε} the set of finite non-empty words.

The set of infinite words over Σ is Σω = {x | x : N → Σ}. On the set of all
words Σ∞ = Σ∗∪Σω we define the metric d for all u,v ∈ Σ∞ by d(u,v) = 2−n,
where n is the length of the longest common prefix of u and v.

We let Σp = {0, . . . , p− 1}. We write |x| for the length of x ∈ Σ∞, with
|x| = ∞ if x is infinite. We call a word v ∈ Σ∗ a factor of x ∈ Σ∞ if x = uvy

for some u ∈ Σ∗ and y ∈ Σ∞, and say that v occurs at position |u|. For words
u, v ∈ Σ∗, we write u ≺ v if u is a strict prefix of v, i.e., if v = uu′ for some
u′ ∈ Σ+, and use � for its reflexive closure.

A morphism is a map h : Σ∗ → Γ∗ such that h(uv) = h(u)h(v) for all
u, v ∈ Σ∗, and can thus be defined by giving its values on the symbols of Σ. A
morphism h is called erasing if h(a) = ε for some a ∈ Σ, and k-uniform, with
k ∈ N, if |h(a)| = k for all a ∈ Σ; h is a coding if it is 1-uniform.

Infinite sequences generated by periodically alternating morphisms, also
called ‘D0L words with periodic control’ or just ‘PD0L words’ for short, were
introduced in [10]. These form a generalization of D0L words, also known as
purely morphic words, which are obtained by iterating a single morphism.

Definition 1.1. Let H = 〈h0, . . . , hp−1〉 be a tuple of morphisms hi : Σ
∗ → Σ∗.

We define the map H : Σ∗ → Σ∗ as follows:

H(a0a1 · · · an) = u0u1 · · ·un

where ui = hk(ai), with k ≡ i (mod p) and k ∈ Σp.

If s ∈ Σ∗ is such that s � H(s), then the triple H = 〈Σ, H, s〉 is called a PD0L
system. Then in the metric space 〈Σ∞, d〉 the limit

Hω(s) = lim
i→∞

Hi(s)

exists, and we call Hω(s) the PD0L word generated by H. We say that H is
productive if Hω(s) is infinite, and H is erasing if some of its morphisms hi are
erasing.

If x is a PD0L word generated by p morphisms, and x = uvy for some
u, v ∈ Σ∗ and y ∈ Σ∞, we say that the factor v of x occurs at morphism index i
when i ∈ Σp and i ≡ |u| (mod p).

D0L words are generated by D0L systems 〈Σ, h, s〉, i.e., PD0L systems
〈Σ, 〈h〉, s〉 consisting of one single morphism h. Following [6], we call the im-
age of a D0L word under a coding (a letter-to-letter morphism), a CD0L word,
better known as morphic words.

In the literature, one typically requires the morphisms hi to be non-erasing
to ensure that the limit is infinite. We have taken a more general definition
of PD0L-words, since also erasing morphisms may yield an infinite word in the
limit. See Remark 1.3 below.
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In the sequel it will be helpful to have a recursive definition of the map H .

Lemma 1.2. Let H = 〈h0, h1, . . . , hp−1〉 be a tuple of morphisms. For i ∈ Σp
define Hi = 〈hi, . . . , hp−1, h0, . . . , hi−1〉 and the corresponding map Hi : Σ

∗ →
Σ∗ by

Hi(ε) = ε

Hi(au) = hi(a)Hi+1(u) (a ∈ Σ, u ∈ Σ∗)

where addition in the subscript of H is taken modulo p.
Then H0 = H with H the map defined in Definition 1.1, and Hi(uv) =

Hi(u)Hi+|u|(v) for all u, v ∈ Σ∗ and i ∈ Σp.

Using this notation we now formulate the PD0L analogue of the usual con-
dition for productivity of D0L systems. In Section 3 we show that productivity
of PD0L systems in general is undecidable. Productivity has been studied in
the wider perspective of term rewriting systems in [25, 13, 15, 16].

Remark 1.3. Let 〈Σ, h, s〉 be a D0L system. We say that h is prolongable on s
if h(s) = sx for some x ∈ Σ∗ and hi(x) 6= ε for all i ≥ 0. Then hi(s) ≺ hi+1(s)
for all i ≥ 0, and hence the limit hω(s) = s xh(x)h2(x) · · · is infinite. The
generalization of this condition to PD0L systems H = 〈Σ, H, v0〉 is: (*) H(v0) =
v0v1 for some v1 ∈ Σ∗ such that vn 6= ε for all n ∈ N, where vn ∈ Σ∗ and zn ∈ Σp
are defined by z0 = 0 and

vn = Hzn−1(vn−1) (n ≥ 2)

zn ≡ zn−1 + |vn−1| (mod p) (n ≥ 1)

Then Hn(v0) = Hn−1(v0)vn for all n ≥ 1, and so (*) forms a necessary and suf-
ficient condition for productivity of H, that is, for the limit Hω(v0) = v0v1v2 · · ·
to be infinite.

Definition 1.4. The subword complexity of an infinite word x ∈ Σω is the
function px : N → N such that px(n) is the number of factors (subwords) of x
of length n.

Proposition 1.5 ([12]). The subword complexity of D0L words, and hence of
CD0L words, is at most quadratic.

We first consider an example of an erasing PD0L system.

Example 1.6. Let H = 〈Σ3, H, 0〉 with H = 〈h0, h1, h2〉 defined for all b ∈ Σ3

as follows, where addition runs modulo 3:

h0(b) = b(b+ 1)(b+ 2) h1(b) = ε h2(b) = b+ 2

Then H is productive (by Proposition 1.8) and generates the word

Hω(0) = 0121120101221201120212010120201001210 · · ·
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Definition 1.7. Let H = 〈Σ, 〈h0, . . . , hp−1〉, s〉 be a PD0L system. We say H
is locally uniform if every morphism hi is uniform, i.e, if for all i ∈ Σp there is
ki ∈ N such that ki = |hi(b)| for all b ∈ Σ. We say H is (globally) uniform if,
for some k ∈ N, each hi is k-uniform (i ∈ Σp).

Obviously, a globally k-uniform PD0L system is productive if and only if
k ≥ 2. For locally uniform systems the condition is formulated as follows, and
is easy to check.

Proposition 1.8. Let H = 〈Σ, 〈h0, . . . , hp−1〉, w〉 be a locally uniform PD0L
system, where hi is ki-uniform. Let s(n) be defined by s(0) = 0 and s(n+ 1) =
s(n) + ki with i ≡ n (mod p). Then H is productive if and only if s(n) > n for
all n ≥ |w|.

Proof. The word Hω(w) can be defined as the limit of the sequence

w|w|, w|w|+1, w|w|+2, . . .

of finite words defined for n ≥ |w| by

w|w| = H(w)

wn+1 =

{

wn if n ≥ |wn|

wn hi(wn(n)) if n < |wn| and n ≡ i (mod p)

We have |w|w|| = s(|w|) and by induction we get |wn| = s(n) for every n ≥ |w|.
The limit limn→∞ wn is infinite if and only if we never get to the clause n ≥ |wn|,
which holds in turn if and only if s(n) > n for all n ≥ |w|.

Example 1.9. Let Σ = {0, 1, 2}, H = 〈h0, h1〉 with morphisms h0, h1 : Σ∗ →
Σ∗ for all a ∈ Σ defined by

h0(a) = a(a+ 1)(a+ 2) h1(a) = (a+ 2)(a+ 1)a

(with addition modulo 3). Then the PD0L system 〈Σ, H, 0〉 generates the word

Hω(0) = 012021201210201021201210120102120 · · ·

This is the square-free Arshon word [3] (of rank 3), which Berstel proved to be
an example of a CD0L word that is not a D0L word [4]; see Séébold [24] for a
generalization. That Hω(L) can indeed be defined as a CD0L word follows from
Proposition 1.10.

It is not hard to see that, when a word u is generated by a (globally)
k-uniform PD0L system, it is k-automatic [2], i.e., u is the image of a cod-
ing of the fixed point of a k-uniform morphism.

Proposition 1.10. Let k ≥ 2, and H = 〈Σ, H, s〉 a k-uniform PD0L system.
Then Hω(s) is k-automatic.
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Proof. Let H = 〈h0, . . . , hp−1〉, where every hi is k-uniform. We define the
(k-uniform) morphism g : Σp × Σ → Σp × Σ by

g(〈i, a〉) = 〈ki, b0〉〈ki+ 1, b1〉 · · · 〈ki+ k − 1, bk−1〉

where addition in the first entries runs modulo p, and for j ∈ Σk, bj ∈ Σ is such
that hi(a) = b0b1 · · · bk−1. Let s = s0s1 · · · sq−1, t = 〈0, s0〉〈1, s1〉 · · · 〈q−1, sq−1〉,
and u = Hω(s). Then

gn(t) = 〈0,u(0)〉〈1,u(1)〉 · · · 〈qkn − 1,u(qkn − 1)〉

follows by induction on n. Hence τ(gω(t)) = u with τ the coding defined by
τ(〈i, a〉) = a.

One might wonder whether also locally uniform, productive PD0L systems
always generate morphic words. Examples 1.11 and 1.12 show that this is not
the case.

Example 1.11 ([22]). Define the word Fp ∈ {0, 1}ω for every p ≥ 2 by Fp =
Hω(0) where 〈{0, 1}, H, 0〉 with H = 〈h0, . . . , hp−1〉 is a PD0L system, and hi
are morphisms defined by

h0 :

{

0 → 01

1 → 00
hi :

{

0 → 1

1 → 0
for i ∈ {1, . . . , p− 1}

For example, the word F3 starts like this:

010100110001011001000110011100010100001101010011 · · ·

Lepistö [22] proves that Fp has more than quadratic subword complexity, for
every p ≥ 2. Hence, with Proposition 1.5, these PD0L words Fp cannot be
CD0L words. We note that, conversely, the existence of CD0L words that are
not PD0L words was shown in [10].

Example 1.12 ([6]). A Toeplitz word [20] over an alphabet Σ is generated by
a seed word u ∈ Σ(Σ ∪ {?})∗ with ? 6∈ Σ, as follows. Start with the periodic
uω and then replace its subsequence of ?’s by the sequence itself. For example
u = 12??? generates the infinite word T (u) = 121211221112221 · · · . Cassaigne
and Karhumäki [6] show that all Toeplitz words are PD0L words; e.g., T (u) =
Hω(1) where H = 〈h0, h1, h2〉 and h0(a) = 12a and h1(a) = h2(a) = a for all
a ∈ {1, 2}. Moreover, from [6, Theorem 5] it follows that pT (u)(n) ∈ Θ(nr)

with r = log 5
log 5−log 3 ≃ 3.15066, thus forming an alternative proof of what was

established in [22]: there are PD0L words that are not CD0L.

2 Fractran for Computing Streams

Fractran [7, 8] is a universal programming language invented by John Hor-
ton Conway. The simplicity of its execution algorithm, based on the unique
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prime factorization of integers, makes Fractran ideal for coding it into other
formalisms.

A Fractran program F is a finite list of fractions

F =
n1

d1
, . . . ,

nk

dk
(1)

with ni, di positive integers. Let fi =
ni
di
. The action of F on an input inte-

ger N ≥ 1 is to multiply N by the first ‘applicable’ fraction fi, that is, the
fraction fi with i the least index such that the product N ′ = N ·fi is an integer
again, and then to continue with N ′. The program halts if there is no applicable
fraction for the current integer N .

For example, consider the program

F =
5

2 · 3
,
1

2
,
1

3

and the run of F on input N = 2335 :

2335 → 223451 → 213352 → 203253 → 203153 → 203053 .

Note that each multiplication by 5
6 decrements the exponents of 2 and 3 while

incrementing the exponent of 5. Once 5
6 is no longer applicable, i.e., when one

of the exponents of 2 and 3 in the prime factorization of the current integer N
equals 0, the other is set to 0 as well. Hence, executing F on N = 2a 3b halts
after max(a, b) steps with 5min(a,b).

Thus the prime numbers that occur as factors in the numerators and denom-
inators of a Fractran program can be regarded as registers, and if the current
working integer is N = 2a 3b 5c . . . we can say that register 2 holds a, register 3
holds b, and so on.

The real power of Fractran, however, comes from the use of prime exponents
as states. To explain this, we temporarily let programs consist of multiple lines
of the form

α :
n1

d1
→ α1,

n2

d2
→ α2, . . . ,

nm

dm
→ αm (2)

forming the instructions for the program in state α: multiply N with the first
applicable fraction ni

di
and proceed in state αi, or terminate if no fraction is

applicable. We call the states α1, . . . , αm in (2) the successors of α, and we say
a state is looping if it is its own successor.

For example, the program Padd given by the lines

α :
2 · 5

3
→ α,

1

1
→ β and β :

3

5
→ β

realizes addition; running Padd in state α on N = 2a3b terminates in state β
with 2a+b3b.

A program with n lines is called a Fractran-n program. A flat list of fractions
f1, . . . , fk now is a shorthand for the Fractran-1 program α : f1 → α, f2 →
α, . . . , fk → α. Conway [8] explains how every Fractran-n program (n ≥ 2) can
be compiled into a Fractran-1 program, using the following steps:
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(i) For every looping state α, introduce a ‘mirror’ state α, substitute αfor all
occurrences of α in the right-hand sides of its program line, and add the
line

α:
1

1
→ α

(ii) Replace state identifiers α by ‘fresh’ prime numbers.

(iii) For every line of the form (2) append the following fractions:

n1 · α1

d1 · α
,
n2 · α2

d2 · α
, . . . ,

nk · αm
dm · α

(preserving the order) to the list of fractions constructed so far.

Let us illustrate these steps on the adder Padd given above. Step (i) of splitting
loops, results in

α :
2 · 5

3
→ α,

1

1
→ β β :

3

5
→ β

α:
1

1
→ α β:

1

1
→ β .

In step (ii), we introduce ‘fresh’ primes to serve as state indicators, for example,
〈α, α, β, β〉 = 〈7, 11, 13, 17〉. Finally, step (iii), we replace lines by fractions, to
obtain the Fractran-1 program

Fadd =
2 · 5 · α

3 · α
,
α

α
,
β

α
,
3 · β

5 · β
,
β

β
.

Then indeed the run of Fadd on 2a3bα ends in 2a+b3bβ.
For ‘sensible’ programs any state indicator has value 0 (‘off’) or 1 (‘on’), and

the program is always in exactly one state at a time. Hence, if a program F

uses primes r1, . . . , rp for storage, and primes α1, . . . , αq for control, at any
instant the entire configuration of F (= register contents + state) is uniquely
represented by the current working integer N

N = re11 re22 · · · repp αj

for some integers e1, . . . , ep ≥ 0 and 1 ≤ j ≤ q.
The reason to employ two state indicators α and αto break self-loops in

step (i), is that each state indicator is consumed whenever it is tested, and so
we need a secondary indicator αto say “continue in the current state”. This
secondary indicator αis swapped back to the primary indicator α in the next
instruction, and the loop continues.

We now introduce some further notation. For partial functions g : A ⇀ B

we write g(x)↓ to indicate that g is defined on x ∈ A, and g(x)↑ otherwise.

9



Definition 2.1. Let F = f1, . . . , fk be a Fractran program with fi =
ni
di

∈ Q>0.
We define the partial function ψF : N ⇀ N which, given an integer N ≥ 1,
selects the index of the first fraction applicable to N , and is undefined if no
such fraction exists, i.e.,

ψF (N) = min {i | 1 ≤ i ≤ k, N · fi ∈ N} ,

where we stipulate (min∅)↑. We write ψ(n) for short when F is clear from the
context.

We overload notation and use F : N⇀ N to denote the one-step computation
of the program F , defined for all N ≥ 1 by

F (N) = N · fψ(N)

where it is to be understood that F (N)↑ whenever ψ(N)↑. The run of F on N
is the finite or infinite sequence N,F (N), F 2(N), . . .. We say that F halts or
terminates on N if the run of F on N is finite.

The halting problem for Fractran programs is undecidable.

Proposition 2.2 ([14, Theorem 2.2]). The uniform halting problem for Fractran
programs, that is, deciding whether a program halts for every starting integer
N ≥ 0, is Π0

2-complete.

Proposition 2.3 ([19, Theorem 68]). The input-2 halting problem for Fractran
programs, that is, deciding whether a program halts for the starting integer N =
2, is Σ0

1-complete.

Remark 2.4. In some sense it does not matter which prime numbers are used
in a Fractran program. Let us make this precise. Let p be a prime number,
and n a positive integer. Then let vp(n) denote the p-adic valuation of n i.e.,
vp(n) = a with a ∈ Nmaximal such that pa divides n. For ~p = 〈p1, p2, . . . , pt〉 we
write v~p(n) to denote 〈vp1(n), vp2(n), . . . , vpt(n)〉. Let F be a Fractran program
with t distinct primes ~p = p1, p2, . . . , pt, let ~q = q1, q2, . . . , qt be any vector
of t distinct primes, and let G be the program obtained from F by uniformly
substituting the qi’s for the pi’s. Then clearly, for all integers M,N ≥ 0 such
that v~p(M) = v~q(N), we have v~p(F

i(M)) = v~q(G
i(N)) for all i ≥ 0.

We employ Fractran programs to define finite or infinite words over the
alphabet {0, 1} by giving the primes 3 and 5 a special meaning, namely for
indicating output 0 and 1, respectively. The construction easily generalizes to
arbitrary finite alphabets.

Definition 2.5. Let F be a Fractran program. The finite or infinite word WF
computed by F isWF =W (2) whereW (N) = ε if the sequence F (N), F 2(N), . . .
does not contain values divisible by 3 or 5, (note that this includes W (N) = ε

if F (N)↑), and otherwise

W (N) =











0W (F (N)) if 3 | F (N),

1W (F (N)) if 5 | F (N) and 3 ∤ F (N),

W (F (N)) otherwise.
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So the word WF is infinite if and only if F does not terminate on input 2
and the run of F on N contains infinitely many numbers that are divisible by
3 or 5. The infinite word can be read off from the infinite run by dropping all
entries neither divisible by 3 nor 5, and then mapping the remaining entries to
0 or 1, if they are divisible by 3 or 5 (and not 3), respectively.

Example 2.6. The Fractran program 3
2 ,

5
3 ,

3
5 gives rise to the computation

3, 5, 3, 5, 3, 5, . . ., and hence computes the infinite word 010101 . . . of alternating
bits.

Proposition 2.7. Every (finite or infinite) computable, binary word can be
computed by a Fractran program.

Proof. In [14] it is shown that Fractran programs can simulate any Turing ma-
chine computation. By Remark 2.4 we may assume that this translation does
not employ the primes {2, 3, 5}. Then a straightforward adaptation of the proof
in [14] yields the claim: we multiply the fractions corresponding to the Turing
machine generating an output 0 or 1 by the primes 3 or 5, respectively, and
make sure the thus introduced factor 3 or 5 is removed in the next step by
putting fractions 1

3 and 1
5 in front of the program.

We define a Fractran-n program and compile it to a Fractran-1 program FBIN

which computes an infinite word that has every finite binary word as one of its
factors. For this we use the bijective ‘z-representation’ defined as follows.

Definition 2.8. Let Σ = {0, 1}. For all n ∈ N and w ∈ Σ∗, we define (n)z ∈ Σ∗

and [w]z ∈ N by

(0)z = ε [ε]z = 0

(2n+ 1)z = 0(n)z [0w]z = 2[w]z + 1

(2n+ 2)z = 1(n)z [1w]z = 2[w]z + 2

and we let BIN denote the infinite word

BIN = (0)z(1)z(2)z · · · = 0 1 00 10 01 11 000 100 010 · · ·

We will now define a Fractran program that computes BIN; it will be the
compilation of the following Fractran-7 program:

α1 :
r2

r3
→ α5 ,

r1

1
→ α2 β0 :

1

1
→ α1

α2 :
r2r3

r1
→ α2 ,

1

1
→ α3 β1 :

1

1
→ α1

α3 :
r1

r3
→ α3 ,

1

1
→ α4

α4 :
r3

r22
→ α4 ,

1

r2
→ β0 ,

1

r3
→ β1

α5 :
r2

r3
→ α5 ,

1

1
→ α4

11



We first explain its workings, and then compile it into a Fractran-1 program.
Let e1, e2, e3 be the register contents of the current integer N , i.e., such that
N = re11 r

e2
2 r

e3
3 . In the run (= sequence of states) of the above program starting

in α1 with e1 = e2 = e3 = 0, the subsequence of ‘output’ states β0 and β1
corresponds to the infinite word BIN. The idea is that r1 holds the current
value n for producing the factor (n)z of BIN. State α1 with e3 = 0 increments e1,
and the program proceeds in state α2. States α2 and α3 copy e1 to e2 and we
continue in state α4. State α4 subtracts 2 from e2 while incrementing e3 as long
as possible (corresponding to division of r2 by 2 and storing the quotient in e3),
and then goes to output state β0 if the remainder e2 6= 0, and to output state β1
after decrementing e3, otherwise (corresponding to the definition of (·)z above).
After any of the two output states, the program returns to state α1. State α1

with a non-zero quotient r3 copies e3 to e2 using state α5, and then continues
with state α4.

We compile the above program into a flat list of fractions using the steps
(i)–(iii) given above. For the looping states α2, α3, α4, and α5, we introduce
mirror states α2, α3, α4, and α5. Second, we assign the following prime numbers
to the identifiers:

α1 α2 α2 α3 α3 α4 α4 α5 α5 β0 β1 r1 r2 r3
2 7 11 13 17 19 23 29 31 3 5 37 41 43

Finally, with (iii), we obtain the following Fractran-1 program:

FBIN =
r2α5

r3α1
,
r1α2

α1
,
r2r3 α2

r1α2
,
α3

α2
,
α2

α2
,
r1 α3

r3α3
,
α4

α3
,
α3

α3
,

r3 α4

r22α4
,
β0

r2α4
,
β1

r3α4
,
α4

α4
,
r2 α5

r3α5
,
α4

α5
,
α5

α5
,
α1

β0
,
α1

β1

which is run on input N = α1 = 2 to force the program to start in the initial
state. We note that the huge number mentioned at the end of the introduction
is the least common denominator of FBIN.

Proposition 2.9. The word computed by FBIN is BIN.

3 Productivity for Erasing PD0L Systems

We show that the problem of deciding productivity of erasing PD0L systems
is undecidable. The idea is to encode a given Fractran program F as a PD0L
system HF = 〈Σ, H, s〉 such that Hω(s) is infinite if and only if F does not
terminate on input 2.

We consider Fractran programs of the form n1

d
, . . . , nk

d
; every program can

be brought into this form by taking d the least common denominator of the
fractions.

Definition 3.1. Let F = n1

d
, . . . , nk

d
be a Fractran program. We define the

PD0L system HF = 〈Γ, H, s 〉 where

Γ =
{

s , , a , A , b , B
}

12



and H = 〈h0, . . . , hd−1〉 consisting of morphisms hi : Γ
∗ → Γ∗ defined for all

i ∈ Σd as follows:

hi( s ) = s d−1 a a b d−1 (3)

hi( ) = ε (4)

hi(a ) =

{

A d−1 if i = d− 1

ε otherwise
(5)

hi(b ) = B d−1−i (6)

hi(A ) =

{

anψ(i) if ψ(i) is defined

ε otherwise
(7)

hi(B ) =

{

ai·
nψ(i)
d b d−1 if ψ(i) is defined

ε otherwise
(8)

Before we show that productivity of the PD0L system HF coincides with F
running forever on input 2, we give some intuition and an example to illustrate
the working of HF .

The following trivial fact is useful to state separately.

Lemma 3.2. Let N, d, q, r ∈ N such that N = qd+r, and F a Fractran program.
Then ψF (N) = ψF (r). If moreover b ∈ N divides d, then b | N if and only if
b | r.

Let F be a Fractran program with common denominator d, and (finite or
infinite) run N0, N1, N2, . . .. Let qi ∈ N and ri ∈ Σd such that Ni = qid + ri,
for all i ≥ 0. We let xn be the ‘contribution’ of the iteration Hn+1, i.e., xn is
such that Hn+1( s ) = Hn( s )xn. Then Hω( s ) = sx0x1x2 · · · . We will display
Hω( s ) in separate lines each corresponding to an xn. The computation of the
word Hω( s ) proceeds in two alternating phases: the transition from even to
odd lines corresponds to division by d, and the transition from odd to even
lines corresponds to multiplication by the currently applicable fraction

nψ(Ni)

d
.

These phases are indicated by the use of lower- and uppercase letters, that is,
x2n ∈ { , a , b } and x2n+1 ∈ { , A , B }, as can be seen from the definition
of the morphisms. Now the intuition behind the alphabet symbols (in view of
the defining rules of the morphisms) can be described as follows. We use s as
the starting symbol, and the symbol is used to shift the morphism index of
subsequent letters.

In every even line x2i

(i) there is precisely one block of a ’s; this block is positioned at morphism
index 0 and is of length Ni, representing the current value Ni in the run
of F ;

(ii) b is a special marker for the end of a block of a ’s, so positioned at
morphism index ri, the remainder of dividing Ni by d.

13



In every odd line x2i+1

(iii) the number of A ’s corresponds to the quotient qi, and every occurrence
of A is positioned at morphism index ri ;

(iv) B (also at morphism index ri) takes care of the multiplication of the
remainder ri with

nψ(Ni)

d
. Then ψ(Ni) = ψ(ri) ensures, via Lemma 3.2,

that the morphism can select the right fraction to multiply with.

We illustrate the encoding by means of an example.

Example 3.3. Consider the Fractran program 9
2 ,

5
3 , or equivalently

F =
27

6
,
10

6

and its finite run 2, 9, 15, 25. Following Definition 3.1 we construct the PD0L
system HF = 〈Γ, H, s 〉 with H = 〈h0, . . . , h5〉 and

hi( s ) = s 5 a a b 5

h0(a ) = . . . = h4(a ) = ε

h5(a ) = A 5

hi(b ) = B 5−k

h0(A ) = h2(A ) = h4(A ) = a27

h3(A ) = a10

h1(A ) = h5(A ) = ε

h0(B ) = b 5

h2(B ) = a9 b 5

h4(B ) = a18 b 5

h3(B ) = a5 b 5

h1(B ) = h5(B ) = ε

for i ∈ Σ6. Then Hω( s ) is finite and the stepwise computation of this fixed
point can be displayed as follows. To ease reading, we write below each letter
its morphism index. Let zn denote the morphism index of xn. Moreover, the
word Hω( s ) = sx0x1 · · · is broken into lines in such a way that every line xn+1

is the image of the previous line xn under Hzn (except for the line x0, which is
the tail of the image of s under H = H0).

s
0

x0 = 5

1

a
0

a
1

b
2

5

3

x1 = B
2

3

3
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x2 = a
0

a
1

a
2

a
3

a
4

a
5

a
0

a
1

a
2

b
3

5

4

x3 = A
3

5

4

B
3

2

4

x4 = a
0

a
1

a
2

a
3

a
4

a
5

a
0

a
1

a
2

a
3

a
4

a
5

a
0

a
1

a
2

b
3

5

4

x5 = A
3

5

4

A
3

5

4

B
3

2

4

x6 = a
0

a
1

a
2

a
3

a
4

a
5

a
0

a
1

a
2

a
3

a
4

a
5

a
0

a
1

a
2

a
3

a
4

a
5

a
0

a
1

a
2

a
3

a
4

a
5

a
0

b
1

5

2

x7 = A
1

5

2

A
1

5

2

A
1

5

2

A
1

5

2

B
1

x8 = ε

Now we characterize the contribution of every iteration of H in the construc-
tion of the word Hω(2). We employ the notations given in Lemma 1.2.

Lemma 3.4. Let F = n1

d
, . . . , nk

d
, and N ≥ 1. Let q ∈ N and r ∈ Σd be such

that N = qd+ r. Let X = d−1 . Then we have

H(aN b X ) = (A X )q B d−1−r (9)

of length d(q + 1)− r. If, moreover, F (N) is defined, then

Hr((A X )q B d−1−r ) = aF (N) b X (10)

of length F (N) + d.

Proof. Equation (9) follows immediately by induction on q. To see that (10)
holds for F (N)↓, we note that ψ(N) is defined, and so is ψ(r) = ψ(N), by
Lemma 3.2. Hence we obtain

Hr((A X )q B d−1−r ) = (anψ(r) )qHr(B
d−1−r )

= (anψ(r) )q ar·
nψ(r)
d b X

and we conclude by F (N) = N ·
nψ(N)

d
= q · nψ(N) + r ·

nψ(N)

d
.

Lemma 3.5. For all Fractran programs F , the PD0L system HF is productive
if and only if F does not terminate on input 2.

Proof. Let F and HF be as in Definition 3.1. Let N0, N1, N2, . . . be the finite or
infinite run of F on 2, i.e., Ni = F i(2), and let t ∈ N ∪ {∞} denote its length.
For all i with 0 ≤ i < t, let qi ∈ N and ri ∈ Σd be such that Ni = qid+ ri.

We define xn ∈ Σ∗ and zn ∈ Σd for all n ≥ 0, as follows. Let X = d−1 ,
x0 = a a b X , z0 = 0, and, for n ≥ 1, let xn and zn be such that Hn+1( s ) =
Hn( s )xn and zn ≡ |Hn( s )| (mod d). Then Hω( s ) = s Xx0x1x2 · · · , and the
factor xn is at morphism index zn. With Lemma 1.2 we then have

xn = Hzn−1(xn−1) zn ≡ zn−1 + |xn−1| (mod d) (11)
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for all n ≥ 1. Now we prove by induction on n ≥ 0 that

xn = aNi b X zn = 0 if n = 2i < 2t,

xn = (A X )qi B d−1−ri zn = ri if n = 2i+ 1 < 2t,

xn = ε zn = 0 if n ≥ 2t.

The base case is immediate. Let n > 0. If n = 2i < 2t for some i < t, then Ni =
F (Ni−1) is defined, and xn = Hzn−1(xn−1) = Hri−1((A X )qi−1 B d−1−ri−1 ) =

aNi b X , and zn ≡ zn−1 + |xn−1| ≡ ri−1 + d(qi−1 + 1) − ri−1 ≡ 0 (mod p),
both by (11), the induction hypothesis and Lemma 3.4. If n = 2i + 1 < 2t for

some i < t, then xn = Hzn−1(xn−1) = H0(a
Ni b X ) = (A X )qi B d−1−ri , and

zn ≡ zn−1 + |xn−1| ≡ 0 + Ni + d ≡ ri (mod p), again by (11), the induction
hypothesis and Lemma 3.4. Finally, if n = 2t, then xn = Hzn−1(xn−1) =

Hrt−1((A X )qt−1 B d−1−rt−1 ) = ε, since F terminates on Nt−1 (and so ψ(Nt−1)
and ψ(rt−1) are undefined), and zn ≡ zn−1+|xn−1| ≡ rt−1+d(qt−1+1)−rt−1 ≡
0. Clearly, then also xn = ε and zn = 0 for all n > 2t.

Hence, by Lemma 3.5 and Proposition 2.3, deciding productivity of PD0L
systems is undecidable.

Theorem 3.6. The problem of deciding on the input of a PD0L system H
whether H is productive, is Π0

1-complete.

4 Turing Completeness

of Non-Erasing PD0L Systems

In this section we extend the encoding of Fractran from the previous section to
show that every computable infinite word can be embedded in the following two
ways.

Definition 4.1. Let Σ and Γ ⊃ Σ be alphabets with letters l , r ∈ Γ \ Σ, and
let w ∈ Σω and u ∈ Γω be infinite words. We say w is prefix embedded in u if
the following three conditions are satisfied:

(i) for every finite prefix v of w there is an occurrence l v r in u,

(ii) for every occurrence of a word l v r in u with v ∈ (Γ \ { r })∗ we have that
v is a prefix of w, and

(iii) letters from Σ occur in u only in factors (subwords) of the form l v r with
v ∈ (Γ \ { r })∗.

Definition 4.2. Let Σ and Γ ⊃ Σ be alphabets, and let w ∈ Σω and u ∈ Γω

be infinite words. We say w is sparsely embedded in u if w is obtained from u

by erasing all letters in Γ \ Σ.
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The crucial difference with the encoding of Section 3 is that we now use
the knowledge about the remainder not only to select the correct fraction to
multiply with, but also to recognize when the current value is divisible by 3 or
5, and correspondingly produce an output bit 0 or 1 , cf. Definition 2.5. The
process again proceeds in two phases, for division and multiplication, and we
employ lower- and uppercase letters accordingly. We introduce letters l (and L )
and r (and R ) marking the beginning and the end of the prefix of the infinite
word computed by the Fractran program. Furthermore, the symbol R produces
the output bits depending on the current remainder ri. In order to prevent that
the output of R changes the morphism index of R , we introduce z (and Z )
which compensate the production of R with an inverse length. The letter e

(and E ) marks the end of the line, and additionally e takes care of realignment
after multiplication, such that the first a in each run stands on morphism index
0.

Definition 4.3. Let F = n1

d
, . . . , nk

d
be a Fractran program such that (without

loss of generality) the common denominator d is divisible by 3 and 5. Define
the PD0L system HF = 〈Γ, H, s 〉 with

Γ =
{

s , , ◦ , a , A , b , B , z , Z , l , L , 0 , 1 , r , R , e , E , Q
}

and H = 〈h0, . . . , hd−1〉 consisting of (non-erasing) morphisms hi : Γ∗ → Γ∗

defined for every i ∈ Σd as follows:

hi( s ) = s d−1 a a b d−1 z d−2 l r d−1 e

hi( ) =

hi(a ) =

{

A d−1 if i = d− 1 ,
d otherwise.

hi(b ) = B

hi( z ) = Z

hi( l ) = L

hi( r ) = R

hi( e ) = E ◦d−i

hi(◦ ) =
d

hi(A ) =

{

anψ(i) if ψ(i) is defined,

Q otherwise.

hi(B ) =

{

ai·
nψ(i)
d b if ψ(i) is defined,

Q otherwise.

hi(Z ) =

{

z d−1 if 3 | i or 5 | i ,

z otherwise.

hi(L ) = l

17



hi(0 ) = 0

hi(1 ) = 1

hi(R ) =











0 r if 3 | i ,

1 r if 5 | i ,

r otherwise.

hi(E ) = e

hi(Q ) = Q

Remark 4.4. In Definition 4.3 we require that 3 and 5 divide the common
denominator in order for Lemma 3.2 to apply. Informally speaking, via the
remainder we can only observe factors that also divide the common denominator.

Remark 4.5. Let F and H be as in Definition 4.3. It can be shown that the
symbol Q occurs in the word Hω( s ) if and only if the Fractran program F

halts on input 2. This fact can be used to show that it is undecidable whether
Q occurs in Hω( s ). However, we prove this differently, namely by applying
Theorem 4.9 and using the fact that for non-terminating Fractran programs it
is undecidable whether digit 1 occurs in the sequence computed by the program.
See Theorem 4.15.

Time for an example.

Example 4.6. Consider the following Fractran program:

F =
2

7
,
3 · 7

2 · 5
,
3

2
,
5

3
,
2

1

which has the infinite run 2, 3, 5, 10, 21, 6, 9, 15, 25, 50, 105, 30, 63, 18, 27, 45,
75, 125, 250, 525, 150, . . . and computes the word

011000011000000011000000000011000000000000011 · · · ,

that is, 0111 03+111 06+111 09+111 012+1 . . . =
∏∞
i=0 0

3·i+111. Writing the
program with the common denominator 210 yields:

F =
60

210
,
441

210
,
315

210
,
350

210
,
420

210

Let HF be the PD0L encoding of F , as given in Definition 4.3. We consider the
first steps of the iteration of the morphisms; for easier reading, we drop blocks
of consecutive symbols 210 (they do not change the morphism index of other

letters), and let X = 209 .

s

0

x0 = X

1

a2

0

b

2

X

3

z

2

208

3

l

1

r

2

X

3

e

2

x1 = X

3

B

2

X

3

Z

2

208

3

L

1

R

2

X

3

E

2

◦208

3
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x2 = X

1

a3

0

b

3

X

4

z

3

208

4

l

2

r

3

X

4

e

3

x3 = X

4

B

3

X

4

Z

3

208

4

L

2

R

3

X

4

E

3

◦207

4

x4 = X

1

a5

0

b

5

X

6

z

5

207

6

l

3

0

4

r

5

X

6

e

5

x5 = X

6

B

5

X

6

Z

5

207

6

L

3

0

4

R

5

X

6

E

5

◦205

6

x6 = X

1

a10

0

b

1
0

X

1
1

z

1
0

206

1
1

l

7

0

8

1

9

r

1
0

X

1
1

e

1
0

x7 = X
1
1

B

1
0

X

1
1

Z

1
0

206

1
1

L

7

0

8

1

9

R

1
0

X

1
1

E

1
0

◦200

1
1

x8 = X

1

a21
0

b

2
1

X

2
2

z

2
1

205

2
2

l

1
7

0

1
8

1

1
9

1

2
0

r

2
1

X

2
2

e

2
1

x9 = X

2
2

B

2
1

X

2
2

Z

2
1

205
2
2

L

1
7

0

1
8

1

1
9

1

2
0

R

2
1

X

2
2

E

2
1

◦189

2
2

Note that the number of a ’s in rows x2i precisely models the run of the Fractran
program 2, 3, 5, 10, 21, . . . . By construction, the morphism index of R equals
the remainder ri, and consequently R produces the prefix 011 of the word
computed by F .

Things become more interesting if the number of a ’s exceeds the denomina-
tor 210. We look at a few steps further down the sequence:

x36 = X

1

a250

0

b

4
0

X

4
1

z

4
0

191

4
1

l

2
2

0

2
3

1

2
4

1

2
5

0

2
6

0

2
7

0

2
8

0

2
9

1

3
0

1

3
1

0

3
2

0

3
3

0

3
4

0

3
5

0

3
6

0

3
7

0

3
8

1

3
9

r

4
0

X

4
1

e

4
0

x37 = X

4
1

A

4
0

X

4
1

B

4
0

X

4
1

Z

4
0

191

4
1

L

2
2

0

2
3

1

2
4

1

2
5

0

2
6

0

2
7

0

2
8

0

2
9

1

3
0

1

3
1

0

3
2

0

3
3

0

3
4

0

3
5

0

3
6

0

3
7

0

3
8

1

3
9

R

4
0

X

4
1

E

4
0

◦170

4
1

x38 = X

1

a525

0

b

1
0
5

X

1
0
6

z

1
0
5

190

1
0
6

l

8
6

0

8
7

1

8
8

1

8
9

0

9
0

0

9
1

0

9
2

0

9
3

1

9
4

1

9
5

0

9
6

0

9
7

0

9
8

0

9
9

0

1
0
0

0

1
0
1

0

1
0
2

1

1
0
3

1

1
0
4

r

1
0
5

X

1
0
6

e

1
0
5

x39 = X

1
0
6

(A

1
0
5

X

1
0
6

)2 B

1
0
5

X

1
0
6

Z

1
0
5

190

1
0
6

L

8
6

0

8
7

1

8
8

1

8
9

0

9
0

0

9
1

0

9
2

0

9
3

1

9
4

1

9
5

0

9
6

0

9
7

0

9
8

0

9
9

0

1
0
0

0

1
0
1

0

1
0
2

1

1
0
3

1

1
0
4

R

1
0
5

X

1
0
6

E

1
0
5

◦105

1
0
6

x40 = X

1

a150

0

b

1
5
0

X

1
5
1

z

1
5
0

189

1
5
1

l

1
3
0

0

1
3
1

1

1
3
2

1

1
3
3

0

1
3
4

0

1
3
5

0

1
3
6

0

1
3
7

1

1
3
8

1

1
3
9

0

1
4
0

0

1
4
1

0

1
4
2

0

1
4
3

0

1
4
4

0

1
4
5

0

1
4
6

1

1
4
7

1

1
4
8

0

1
4
9

r

1
5
0

X

1
5
1

e

1
5
0

In line x36 we have 250 a ’s giving rise to only one A in the subsequent line
x37. Again, A , B , Z and R stand on index 40 ≡ 250 (mod 210), and conse-
quently both deduce that the first applicable fraction is 441

210 = 3·7
2·5 . The letter

A represents the quotient from the division by 210, and hence produces 441
a ’s. The letter B is responsible for the multiplication of the remainder, and
thus produces 40 · 3·7

2·5 = 84 a ’s. Thus we get 441 + 84 = 525 a ’s in line x38.
Moreover, R produces a 1 since 250 is dividable by 5 but not 3, and Z produces
an X -block (X = 209 ) to keep R and the remaining symbols on the correct
index.

Now the division of 525 by 210 has quotient 2 and remainder 105, and so
we have two A ’s in line x39, and all A ’s, B , Z and R standing on index 105.
The first applicable fraction for 105 is 60

210 = 2
7 , and correspondingly the two
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A ’s produce 60 a ’s each, and B produces 30 = 105 · 2
7 a ’s, in total giving rise

to 150 a ’s in line x40. Now 525 is divisible by 3 and so R produces a 0 .

We now start working towards a proof of Theorem 4.9. Let F = n1

d
, . . . , nk

d

be a Fractran program. We again employ the notationHi as given in Lemma 1.2.
Furthermore, we define relations  ,∼ ⊆ Σ∗ × Σ∗ by

 = {〈u d v, uv〉 | u, v ∈ Σ∗} ∼ = (  ∪ )∗

Then clearly we have Hi(u) ∼ Hi(v) for all i ∈ Σd, u, v ∈ Σ∗ with u ∼ v. This
allows us to prove properties of Hω( s ) reasoning modulo ∼. Below, we write
n with n < 0 to denote the block m with m ∈ Σd and n ≡ m (mod d). For
N ≥ 1 we define

κ(N) = 0 if 3 | N

κ(N) = 1 if 3 ∤ N and 5 | N

κ(N) = ε otherwise

Lemma 4.7. Let F = n1

d
, . . . , nk

d
, and N ≥ 1. Let κ = κ(N) and X = d−1 .

Let q ∈ N and r ∈ Σd be such that N = qd+ r, and let v ∈
{

0 , 1
}∗

. Then we
have

H1(X aN b X z d−2−|v| l v r X e )

= X (A X )q B X Z d−2−|v| L vR X E ◦d−r
(12)

of length equivalent to −r modulo d.
Moreover, if in addition F (N) is defined, then we have

Hr+1(X (A X )q B X Z d−2−|v| L vR X E ◦d−r )

∼ X aF (N) b X z d−2−|vκ | l v κ r X e
(13)

of length equivalent to F (N) modulo d.

Proof. (12) follows immediately: Let x, y ∈ Γ∗ be arbitrary. Then H1(Xx) =

XH0(x), and H0(a
N y) = X (A X )qH0(a

r y) = X (A X )qHr(y). Furthermore,

Hr(b X z d−2−|v| l v r X e ) = B X Z d−2−|v| L vRHr( e ) and Hr( e ) = ◦d−r .
To show (13), let F (N) be defined. Then ψ(N) = ψ(r) is also defined

(Lemma 3.2). Hence we get, for w ∈ Γ∗ arbitrary:

Hr+1(X (A X )q B Xw)

= XHr((A X )q B Xw)

= X (anψ(r) X )qHr(B Xw)

= X (anψ(r) X )q ar·
nψ(r)
d b XHr(w)

∼ X aF (N) b XHr(w)
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Finally, to compute Hr(w) for w = Z d−2−|v| L vR X E ◦d−r , distinguish the
following cases: If 3 or 5 divides r, then 3 or 5 divides also N , respectively, by
Lemma 3.2. Hence we have κ = κ(N) = κ(r) and |κ | = 1, and

Hr(w) = z X d−2−|v| l vHr(R X E ◦d−r )

= z X d−2−|v| l v κ r X e d(d−r)

∼ z d−3−|v| l v κ r X e

as required. And , if 3 ∤ r and 5 ∤ r, then κ = κ(N) = κ(r) = ε, and

Hr(w) ∼ z d−2−|v| l v r X e , as required.

Lemma 4.8. Let F be a Fractran program computing an infinite word w. Then
the PD0L system HF from Definition 4.3 generates a word that prefix embeds
w (see Definition 4.1).

Proof. Let F = n1

d
, . . . , nk

d
be a Fractran program, computingw ∈ { 0 , 1 }ω, i.e.,

w =WF withWF as defined in Definition 2.5. Let N0, N1, N2, . . . be the infinite
run of F starting on N0 = 2 (so with infinitely many Ni divisible by 3 or 5).
Let qi ∈ N and ri ∈ Σd be such that Ni = qid + ri. Let HF = 〈Γ, H, s 〉 be the
PD0L system defined in Definition 4.3.

We show that u = Hω( s ) satisfies the conditions (i), (ii), and (iii) of Def-
inition 4.1, by characterizing the contribution of every iteration of H . For
every i ∈ N we let vi ∈ Σ∗ be defined by v0 = ε and vi+1 = viκ(Ni) so
that w = limi→∞ vi. For all n ≥ 0 let xn ∈ Γ∗ and zn ∈ Σd be such that
Hn+1( s ) = Hn( s )xn and zn ≡ |Hn( s )| (mod d). Then Hω( s ) = sx0x1 · · · ,
and

xn = Hzn−1(xn−1) zn ≡ zn−1 + |xn−1| (mod d) (14)

Let us abbreviate Yi =
d−2−|vi| . We prove that xn and zn satisfy

x2i ∼ X aNi b X zYi l vi r X e

x2i+1 ∼ X (A X )qi B X ZYi L vi R X E ◦d−ri

z2i ≡ 1 (mod d)

z2i+1 ≡ ri + 1 (mod d)

by induction on n.
For the base case, we see z0 = | s | = 1 and x0 = X a a b X z d−2 l r X e , as

required. So let n ≥ 1. If n = 2i for some i ≥ 1, it follows from (14), Lemma 4.7
and the induction hypothesis that

xn = Hzn−1(xn−1)

∼ Hri−1+1(X (A X )qi−1 B X ZYi−1 L vi−1 R X E ◦d−ri−1 )

∼ X aNi b X zYi l vi r X e
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and zn ≡ zn−1 + |xn−1| ≡ ri−1 + 1− ri−1 ≡ 1 (mod d).
Similarly, if n = 2i+ 1 for some i ≥ 0, we obtain

xn = Hzn−1(xn−1)

∼ H1(X aNi b X zYi l vi r X e )

∼ X aNi+1 b X zYi+1 l vi+1 r X e

and zn ≡ zn−1 + |xn−1| ≡ 1 +Ni+1 ≡ ri + 1 (mod d).
Knowing the exact shape (modulo ∼) of u = Hω( s ), it is now easy to verify

that u it satisfies (i), (ii), and (iii), taking into account that does not occur in
any factor l v r of u with v ∈ (Γ\{ r })∗, by the definition of the morphisms.

We are ready to collect our main results.

Theorem 4.9. Every computable infinite word can be prefix embedded in a
PD0L word (see Definition 4.1).

Proof. Let w ∈ { 0 , 1 }ω be an infinite computable word. Then, by Proposi-
tion 2.7, w is computed by some Fractran program. By Lemma 4.8 the claim
follows.

Definition 4.10. Let F be a Fractran program, and HF the PD0L system
given in Definition 4.3 We define the PD0L system H′

F as the result of replacing
in HF the rules hi(0 ) = 0 and hi(1 ) = 1 by hi(0 ) = and hi(1 ) = , for
all i ∈ Σd.

Lemma 4.11. Let F be a Fractran program computing an infinite word w, and
let u ∈ Γω be the PD0L word generated by the H′

F defined in Definition 4.10.
Then w is sparsely embedded in u.

Proof. By an easy adaptation of the proof of Lemma 4.8, noting that every
output 0 and 1 is produced precisely once and in the next iteration replaced
by .

Theorem 4.12. Every computable infinite word can be sparsely embedded in a
PD0L word (see Definition 4.2).

Proof. Analogous to the proof of Theorem 4.9, replacing Lemma 4.8 by Lemma
4.11.

It is known that the set of morphic words is closed under finite state trans-
ductions [2, Theorem 7.9.1]. In particular, if we erase all occurrences of a certain
letter from a morphic word, the result is a morphic (or finite) word. From The-
orem 4.12 it follows that this is not the case for PD0L words, establishing a
negative answer to Problem 29 (1) and (2) of [23].

Corollary 4.13. The set of PD0L words is not closed under finite state trans-
ductions.

22



Proof. There are computable streams that are not PD0L words [10]; hence the
class of PD0L words is not closed under finite state transductions, by Theo-
rem 4.12 (erasing letters is a finite state transduction).

Finite state transducers play a central role in computer science. The trans-
ducibility relation via finite state transducers (FST) gives rise to a hierarchy
of degrees of infinite words [17], analogous to the recursion theoretic hierarchy.
But, in contrast to the latter, the FST-hierarchy does not identify all computable
streams. An open problem in this area is the lack of methods for discriminating
infinite words u,v, that is, to show that there exists no finite state transducer
that transduces u to v. Discriminating morphic words seems to require heavier
machinery than arguments based on the pumping lemma.

We will now collect several immediate consequences of Theorem 4.9. First
of all, we have solved the open problem [22] on the existence of PD0L words
that have exponential subword complexity.

Theorem 4.14. There is a PD0L word u such that pu(n) ≥ 2n.

Proof. Let F = FBIN be the Fractran program defined in Section 2, computing
the word WF = BIN (Proposition 2.9). Furthermore, let HF = 〈Γ, H, s 〉 be the
PD0L system of Definition 4.3. Then, by Lemma 4.8, u = Hω( s ) is the word
we are looking for.

Lemma 4.8 also allows us to give a negative answer to [23, Problem 29 (3)].

Theorem 4.15. The following problems are undecidable:

Input: PD0L system H = 〈Γ, H, s 〉, letter b ∈ Γ

Question: (i) Does b occur in Hω( s )?

(ii) Does b occur infinitely many times in Hω( s )?

Proof. We show that the following problem is undecidable: given a Fractran
program F computing an infinite word w over the alphabet {0, 1}, does the
letter 1 occur in w? This suffices since by Lemma 4.8, if u is the infinite word
generated by HF , then the letter 1 occurs in u if and only if 1 occurs infinitely
often in u if and only if 1 occurs in w.

We use the input 2 halting problem for Fractran programs which is Σ0
1-

complete by Proposition 2.3. Let F be an arbitrary Fractran program. By
Remark 2.4 we can replace the primes in F to obtain a program F ′ that does
not contain the primes {2, 3, 5} such that F ′ halts on 7 if and only if F halts on
2. We now extend F ′ to F ′′ by adding in front the fraction 3·7

2 and at the end
the fractions 5

3 and 1
1 . Then the first fraction of F ′′ starts F ′ on input 7 and

ensures that the output is 0 for every step that F ′ is running, and only when F ′

terminates, the last two fractions of F ′′ switch the output to 1 and keep running
forever.
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From Theorem 4.15 it follows immediately that the first-order (and monadic
second-order) theory of PD0L words is undecidable, answering [23, Problem 28];
see [23] also for the definition of the first-order and monadic theory of a sequence.
This again stands in contrast to the case for morphic sequences, which are known
to have a decidable monadic second-order theory [5].

Corollary 4.16. The first-order theory of PD0L words is undecidable.

Also immediate from Theorem 4.15 is the undecidability of equivalence of
PD0L systems (equality of the limit words they generate). We note that equiv-
alence of D0L systems is decidable [9], whereas that of CD0L words is an open
problem.

Corollary 4.17. Equality of PD0L words (given by their PD0L systems) is
undecidable.

Proof. We reduce problem (i) stated in Theorem 4.15 to equivalence of PD0L
systems, as follows. Let H = 〈Σ, H, s〉 be a PD0L system and b ∈ Σ, and let
H′ = 〈Σ ∪ {b′}, H ′, s′〉 where b′ 6∈ Σ and H ′ and s′ are obtained from H and s
by replacing all occurrences of b by b′, and letting H ′(b) = b. Then b does not
occur in the word generated by H if and only if H and H′ generate the same
word. By Theorem 4.15 this is undecidable.

5 A Concrete PD0L Word

with Exponential Subword Complexity

In this section we give a concrete example of a PD0L system which generates
an infinite word with exponential subword complexity. The word embeds all
prefixes of the word BIN = (0)z(1)z(2)z · · · given in Definition 2.8. We refrain
from proving that it indeed does have this property; the existence of such a
PD0L word is already proved in the previous section, see Theorem 4.9.

We define a PD0L system H = 〈h0, h1, . . . , h15〉 consisting of 16 morphisms.
We express morphism indices i ∈ Σ16 by linear combinations

i = a(i) · 23 + r(i) · 22 + c(i) · 21 + o(i) · 20.

with a(i), r(i), c(i), o(i) ∈ {0, 1} which we call flags. We use these flags to
transmit information between symbols:

• a(i) = 1 stands for active,

• r(i) = 1 stands for running,

• c(i) = 1 stands for carry flag, and

• o(i) = 1 stands for output one.
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The idea is to simulate a binary counter, using the representation of Defini-
tion 2.8. The counter repeatedly increments (+1) the current value, and thereby
brings (n)z to (n+1)z. During an increment process we need to shift the activity
from bit to bit. To this end, the activity flag a(i) indicates whether a symbol
at morphism index i is active.

We explain the increment process using the following example word. Here
. . . is the already produced prefix of BIN, and we assume for the moment that
the symbols a , b and d each stand for a word of length 16, and c for a word
of length 8.

a
a

c
a

b c c
a

b c c
a

c c
a

a L . . . R (15)

Here a and b represent the bits 0 and 1 , respectively, and we shall con-
tinue to call them bits. Ignoring the c ’s in between, (15) represents the word
0110 (in turn representing the integer 21). Apart from incrementing this initial
word a b b a , it is at the same time ‘copied’ bit by bit to the word 0110 between
symbols L and R . The least significant bit is left, and consequently the process
of incrementing will proceed from left to right. The symbol c (being of length
8) swaps the value of a(i) for the morphism index i of all subsequent letters.
Note that between the n-th and (n + 1)-th occurrence of bits (a or b ), there
are 2n−1 c ’s. Hence, if the first bit is active, then this is the only active bit.

We now describe the transition from (15) to its PD0L image (16). Note that
starting from the first occurrence of c , every second occurrence in (15) has the
activity flag set. When the symbol c is active, it will be eliminated, that is
replaced by the symbol d (of assumed length 16), thus activating the next bit
for the next iteration (16).

B
a

d
a

b
a

c
a

d b c d
a

c
a

d a L . . . 0 R (16)

Note that a is replaced by B ; uppercase letters are used for indicating the
already processed bits during the increment loop. When the increment loop is
finished, uppercase will be turned to lowercase, and the process restarts. The
switch from a to B corresponds to incrementing. This is controlled by the
carry flag indicating whether a bit has to be flipped. The carry flag is always
set at the start of an increment loop. To keep this example simple we do not
display this flag. At the end of this section we give the first iterations of the
PD0L system displaying all flags.

Notice that in (16) the second bit b is the only active bit (ignoring B which
we have already dealt with). Again, eliminating the active c ’s will shift the
activity to the following bit:

B
a

d
a

B
a

d
a

d
a

b
a

c
a

d d d a L . . . 0 1 R (17)

After one more step we obtain:

B
a

d
a

B
a

d
a

d
a

B
a

d
a

d
a

d
a

d
a

a
a

L
a

. . . 0 1 1 R
a

(18)

25



and finally:

B
a

d
a

B
a

d
a

d
a

B
a

d
a

d
a

d
a

d
a

A
a

L
a

. . . 0 1 1 0 R
a

(19)

As soon as the most significant bit a is active, R becomes active as well. This
can be used to recognize when the addition is finished, and then R unsets the
bit r(i) to restart the addition procedure.

The active bit makes use of the flag o(i) to ‘communicate’ with the sym-
bol R whether to output a 0 or 1 . This actually means that R can produce
the 0 or 1 only two iterations later; for simplicity we have in this intuitive
explanation abstracted from this technicality and produce the 0 ’s and 1 ’s in
the immediately following iteration (after a bit has become active).

There are more symbols and technical subtleties to be explained, but we
leave this to the imagination of the reader. Enjoy!

The morphisms hi are defined for all i ∈ Σ16 as follows:

hi( s ) = s 13 • a 15 c 7 P 15 O 15 Z1
14 L R1

8

hi( ) =

hi(• ) =
2

hi(◦ ) =
16

hi(⋆ ) =
2 ◦

hi(0 ) = 0

hi(1 ) = 1

hi(a ) =











a if ¬a(i)
14 ⋆ A if a(i) ∧ ¬c(i)
14 ⋆ 12 •2 B if a(i) ∧ c(i)

hi(A ) =

{

a if ¬r(i)

A if r(i)

hi(b ) =











b if ¬a(i)

B if a(i) ∧ ¬c(i)

A if a(i) ∧ c(i)

hi(B ) =

{

b if ¬r(i)

B if r(i)

hi( c ) =

{

c if ¬a(i)

d 8 if a(i)

hi(d ) =

{

c 8 if ¬r(i)

d if r(i)
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hi(P ) =











P if ¬c(i)

P if c(i) ∧ ¬a(i)

a if c(i) ∧ a(i)

hi(o ) =











o if ¬c(i)

o if c(i) ∧ ¬a(i)

d if c(i) ∧ a(i)

hi(O ) =











O if ¬a(i)

o 15 O if a(i) ∧ ¬c(i)

d 15 P 15 O if a(i) ∧ c(i)

hi(Z ) =











Z if ¬r(i)

Z 15 if r(i) ∧ ¬a(i)

Z3
15 if r(i) ∧ a(i)

hi(Z1 ) = Z

hi(Z2 ) = Z1

hi(Z3 ) = Z2

hi(L ) = L

hi(R ) =















































R if ¬r(i)

0 R if r(i) ∧ ¬o(i) ∧ ¬a(i)

0 R3
8 ⋆ 4 ◦10 if r(i) ∧ ¬o(i) ∧ a(i) ∧ ¬c(i)

0 R3
8 ⋆ 4 ◦8 if r(i) ∧ ¬o(i) ∧ a(i) ∧ c(i)

1 R if r(i) ∧ o(i) ∧ ¬a(i)

1 R3
8 ⋆ 4 ◦10 if r(i) ∧ o(i) ∧ a(i) ∧ ¬c(i)

1 R3
8 ⋆ 4 ◦8 if r(i) ∧ o(i) ∧ a(i) ∧ c(i)

hi(R1 ) = R

hi(R2 ) = R1

hi(R3 ) = R2

The PD0L word Hω( s ) starts as follows:

s
0
a
r
c
o

13

1
a
r
c
o

•
14
a
r
c
o

a
15
a
r
c
o

15

0
a
r
c
o

c
15
a
r
c
o

7

0
a
r
c
o

P
7
a
r
c
o

15

8
a
r
c
o

O
7
a
r
c
o

15

8
a
r
c
o

Z1
7
a
r
c
o

14

8
a
r
c
o

L
6
a
r
c
o

R1
7
a
r
c
o

8

8
a
r
c
o

29

0
a
r
c
o

⋆
13
a
r
c
o

12

14
a
r
c
o

•2
10
a
r
c
o

B
12
a
r
c
o

15

13
a
r
c
o

d
12
a
r
c
o

15

13
a
r
c
o

P
12
a
r
c
o

15

13
a
r
c
o

O
12
a
r
c
o

15

13
a
r
c
o

Z
12
a
r
c
o

14

13
a
r
c
o

L
11
a
r
c
o

R
12
a
r
c
o

8

13
a
r
c
o

29

5
a
r
c
o

( 2 ◦ )
2
a
r
c
o

16

5
a
r
c
o

B
5
a
r
c
o

15

6
a
r
c
o

d
5
a
r
c
o

15

6
a
r
c
o

P
5
a
r
c
o

15

6
a
r
c
o

o
5
a
r
c
o

15

6
a
r
c
o

O
5
a
r
c
o

15

6
a
r
c
o

Z3
5
a
r
c
o

29

6
a
r
c
o

L
3
a
r
c
o

0
4
a
r
c
o

R2
5
a
r
c
o

8

6
a
r
c
o
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⋆4
14
a
r
c
o

◦10
2
a
r
c
o

71

12
a
r
c
o

B
3
a
r
c
o

15

4
a
r
c
o

d
3
a
r
c
o

15

4
a
r
c
o

P
3
a
r
c
o

15

4
a
r
c
o

o
3
a
r
c
o

15

4
a
r
c
o

O
3
a
r
c
o

15

4
a
r
c
o

Z2
3
a
r
c
o

29

4
a
r
c
o

L
1
a
r
c
o

0
2
a
r
c
o

R2
3
a
r
c
o

8

4
a
r
c
o

( 2 ◦ )4
12
a
r
c
o

231

8
a
r
c
o

b
15
a
r
c
o

15

0
a
r
c
o

c
15
a
r
c
o

23

0
a
r
c
o

P
7
a
r
c
o

15

8
a
r
c
o

o
7
a
r
c
o

15

8
a
r
c
o

O
7
a
r
c
o

15

8
a
r
c
o

Z1
7
a
r
c
o

29

8
a
r
c
o

L
5
a
r
c
o

0
6
a
r
c
o

R1
7
a
r
c
o

8

8
a
r
c
o

For compactness, we continue without displaying the symbols . The length n
of blocks n matters only modulo 16, and can be deduced from the morphism
indexes of the surrounding letters.

A
15
a
r
c
o

d
15
a
r
c
o

P
15
a
r
c
o

o
15
a
r
c
o

O
15
a
r
c
o

Z
15
a
r
c
o

L
13
a
r
c
o

0
14
a
r
c
o

R
15
a
r
c
o

A
7
a
r
c
o

d
7
a
r
c
o

a
7
a
r
c
o

d
7
a
r
c
o

d
7
a
r
c
o

P
7
a
r
c
o

O
7
a
r
c
o

Z3
7
a
r
c
o

L
4
a
r
c
o

0
5
a
r
c
o

1
6
a
r
c
o

R3
7
a
r
c
o

⋆4
0
a
r
c
o

◦8
4
a
r
c
o

A
3
a
r
c
o

d
3
a
r
c
o

a
3
a
r
c
o

d
3
a
r
c
o

d
3
a
r
c
o

P
3
a
r
c
o

O
3
a
r
c
o

Z2
3
a
r
c
o

L
0
a
r
c
o

0
1
a
r
c
o

1
2
a
r
c
o

R2
3
a
r
c
o

◦4
14
a
r
c
o

a
15
a
r
c
o

c
15
a
r
c
o

a
7
a
r
c
o

c
7
a
r
c
o

c
15
a
r
c
o

P
7
a
r
c
o

O
7
a
r
c
o

Z1
7
a
r
c
o

L
4
a
r
c
o

0
5
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6 Discussion

In Section 5 we have encoded the state of a binary counter using a binary en-
coding. In comparison with the binary counter obtained from the Fractran
encoding, this yields an enormous simplification concerning the number of re-
quired morphisms. Moreover, we have illustrated a construction which allows
for shifting the activity from one letter to the next in each iteration of the
morphism, and how the letters can ‘communicate’ computation results to the
following letter. It would be interesting to investigate whether Turing machines
can be encoded in a similar way. The crucial difference would be that for Turing
machines we need to shift the activity left or right depending on the outcome
of the current step; the binary counter always shifts the activity to the right.
It is unclear to us whether the encoding from Section 5 can be extended in this
direction. Compared to our Fractran encoding of Section 4, such an encoding of
Turing machines could lead to significantly less morphisms (but with a slightly
larger alphabet).
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