
Archiving the Relaxed Consistency Web

Zhiwu Xie1, 2, Herbert Van de Sompel3, Jinyang Liu4, Johann van Reenen2, Ramiro Jordan2
1Virginia Tech

Blacksburg, VA 24061
zhiwuxie@vt.edu

2University of New Mexico
Albuquerque, NM 87131

{zxie,jreenen,rjordan}
@unm.edu

 3Los Alamos National
Laboratory

Los Alamos, NM 87545
herbertv@lanl.gov

4Howard Hughes Medical
Institute

Ashburn, VA 20147
liuj@janelia.hhmi.org

ABSTRACT
The historical, cultural, and intellectual importance of archiving
the web has been widely recognized. Today, all countries with
high Internet penetration rate have established high-profile
archiving initiatives to crawl and archive the fast-disappearing
web content for long-term use. As web technologies evolve,
established web archiving techniques face challenges. This paper
focuses on the potential impact of the relaxed consistency web
design on crawler driven web archiving. Relaxed consistent
websites may disseminate, albeit ephemerally, inaccurate and
even contradictory information. If captured and preserved in the
web archives as historical records, such information will degrade
the overall archival quality. To assess the extent of such quality
degradation, we build a simplified feed-following application and
simulate its operation with synthetic workloads. The results
indicate that a non-trivial portion of a relaxed consistency web
archive may contain observable inconsistency, and the
inconsistency window may extend significantly longer than that
observed at the data store. We discuss the nature of such quality
degradation and propose a few possible remedies.

Categories and Subject Descriptors
H3.5 [Information Storage and Retrieval]: Online Information
Services – Web-based services. H3.7 [Information Storage and
Retrieval]: Digital Libraries – Collection. H2.4 [Database
Management]: Systems – Distributed databases.

General Terms
Design, Experimentation.

Keywords
Web Archiving, Digital Preservation, Social Network,
Consistency.

1. INTRODUCTION
The web as we see it today is fast disappearing [33]. Nostalgic
sentiment aside, also gone is huge amount of invaluable
knowledge. Since 1996 when Internet Archive started to collect
and archive web pages, the urgency to preserve the web has
received gradual but steady recognition. Today, all countries with
high Internet penetration rate have established high-profile

archiving initiatives, often involving the national libraries,
archives and other government agencies [17][34]. These activities
are also coordinated by international collaborations such as the
International Internet Preservation Consortium (IIPC). The legal
hurdles are being cleared. More than 15 countries have passed and
more are actively pursuing legal deposit legislations for web
content. With or without strong legal protection, these archives
have already accumulated close to 10 PB of web data, providing
rich opportunities for data mining and analysis [24]. The potential
is unlimited and surprisingly interesting use cases are frequently
demonstrated. For example, web archives are routinely being used
as evidence in legal battles [18].

Technically, most web archives adopt the crawler driven
archiving approach. They deploy archival crawlers such as
Heritrix or Nutch to crawl and collect web content. The archives
preserve such born digital information in archival formats such as
ARC or WARC, and then provide various access channels.
Technologies such as Memento [39] are also used to assist easy
“time travel” to the past and explore the “collective memory”.

Web archiving efforts may be comprehensive, where all the web
resources and their representations become the targets for
preservation. They also can be selective, where the best effort is
made to preserve only the more influential and representative
portion to its best possible completeness and accuracy. In either
case it is almost impossible to circumvent archiving those global-
scale and highly dynamic websites such as major information
portals, aggregators, and social networks. After all, they are the
focal point of the web, where billions of people spend hours per
day not only consuming content from, but also contributing
content to. However, technologies used to build these websites
can be substantially different from those behind the older, smaller
websites, and for this reason they may pose unique challenges for
archiving.

In this paper we discuss the potential quality degradation caused
by relaxed consistency, which has become a common practice in
building large-scale, highly dynamic web applications. More
specifically, such degradation refers to the archival deviation from
the consistent state of a web application. Exactly what consistency
means will be discussed in section 3. Intuitively, a consistent state
is the one that all web users should uniformly observe as well as
the one that web archives should preserve. If they differ from each
other, it would be problematic to claim the web archives as
“reliable and unbiased”, which are also the conditions set out to
admit archived web content as legally binding evidences in trials
[18]. This paper specifically addresses the archival quality instead
of the archival coverage issue. Due to limited resources, it’s not
always possible to preserve all the representations of a web
resource. But for the ones we manage to archive, we want to make
sure they reflect people’s collective memory.

It is important to note that the problem we discuss here is different
from the archival differences resulting from content negotiation,
service localization, or personalization. Those archival differences
may only reflect multiple consistent states, each of which is
arrived at deterministically under its respective localization or
personalization scenario. Such differences will not disappear over
time, while the quality problem caused by relaxed consistency is
volatile by nature.

To illustrate the problem we conducted an experiment on Sina
Weibo, a China based Twitter-like micro-blogging web service.
By the end of 2012, Sina Weibo boasted half a billion total
registered users and 46 million daily active users. As a study
indicates [21], microblogging services like this carry distinctive
character of news media, therefore the value for archiving them
may be similarly justified as that for archiving CNN or New York
Times. All Weibo users, including the potential archival crawlers,
naturally expect to be treated equally and receive the same
information if they follow the same group of people. To test this
assumption, we registered two users, h**** and p******, and let
them both follow the top 340 most followed users in Sina Weibo.
The number of followers of these Weibo celebrities ranged from
about 4 to 46 million.

We opened two different browser windows, one in Google
Chrome and another in Firefox, both with empty cache, and then
invoked the timeline requests side-by-side for these two users.
Contrary to the web user’s expectation, the responses are not
always the same. Figure 1 shows the screenshots of two cases of
discrepancies.

In Figure 1 (a) and (b), the window on the left depicts the partial
timeline response for User h**** and the right window for User
p*****. We use red rectangles to highlight the messages that have
been received by one user but not the other. Except for the
missing message, both timelines look exactly the same. Still, from
a user’s point of view there is no good reason why a message
should be missing. According to the timestamps, in case (a), the
missing message was created about 16 minutes before the timeline
request was invoked, and in case (b) it was created about 5
minutes before. In both cases, both users have also received
messages sent by the same user whose message was missing in
the timeline requests, although these messages are not depicted in
Figure 1. Some of these messages were timestamped before the
missing message, and the others were after. This is important
because it clearly shows the deviation is not purely caused by the
time difference on which these two requests are processed at the
server or by the network latency. If it were, the users would not
have received messages newer than the missing one. About 10
minutes after the missing messages were detected, we refreshed
the timeline windows and in both cases the missing messages
appeared.

This example illustrates the archival challenges to be discussed in
more detail in the following sections. Namely, there exists a type
of web application that reduces consistency; therefore does not
always disseminate correct information to all relevant users. Note
that an archival crawler does not differentiate itself from any other
web user. If we adopt the crawler-driven archiving [26], as the
majority of the web archives do, it is now possible for the web
archive to take in erroneous information that can be easily refuted.

This phenomenon is relatively new to web archives. At least in
theory, the web does not produce such inconsistency during the
transmission if the transfer protocol is semantically transparent
[14]. When the scale of the application is relatively small and can

be easily handled by a single ACID (Atomicity, Consistency,
Isolation, Durability) compliant data store, the consistency is most
likely also guaranteed at the origin server. The problem only
surfaces when the scale of the web application grows beyond the
technology that guarantees consistency.

This paper is structured as follows. After providing the related
work, we formally define consistency, and then discuss how it is
relaxed and what it means to web archiving. In the remainder of
the paper we will mainly deal with two questions. First, how
much of the relaxed consistency web archive may contain
inaccurate information and how to characterize them? Second,
given the lack of consistency, what can we do? We approach these
questions through a controlled experiment, which is described in
section 4. We conclude the paper after giving the experimental
results and analysis.

(a)

 (b)

Figure 1. Inconsistency observed in Sina Weibo

2. RELATED WORK
This study is related to work done in web archiving, scalability
and consistency research in distributed systems and database, and
systems research on scaling social networks, particularly the feed
following.
Masanès [26] provides a thorough overview on web archiving and
describes three major types of web content acquisition methods:
the client-side archiving including those based on crawlers, the
transactional archiving, and the server-side archiving.
Proportional to the archiving practice, the vast majority of the web
archiving research deals with crawler-based archiving techniques.
A topic of particular interest is how to better detect web page
changes and increase crawling efficiency [4][8][28].
Improvements on this front help increasing the archive’s coverage
of the web. In terms of archiving quality, Denev et al focuses on
the sharpness, or the temporal coherence of the archive [12]. The
blurring originates from the crawling strategy, which causes the
incompatible versions of the interlinked resources being preserved
together. Transactional archiving approaches such as SiteStory
[40] may be particularly effective to address this issue. This,
however, is different from the relaxed consistency discussed in
this paper. Here, the quality degradation originates from the
inconsistent design of the origin server architecture. Although
targeting different problems, the methods and techniques used in
the above two distinct bodies of work bear some resemblance to
ours and can potentially provide inspiration for future work.
Social network archiving is gaining traction [25], with the focus
mainly on Twitter. The Library of Congress started a project to
comprehensively archive Twitter [32]. The approach taken was
through server-side archiving, where the authoritative server
records were to be transferred and preserved. These records
included all the tweets but exclude the following network.
However this approach is only feasible when the content owner is
willing to cooperate. Otherwise crawling remains the next best
option. Even for Twitter, the publicly available Garden Hose API
only provides a small sample of all the tweets, making the
resulting datasets neither comprehensive nor selective. Morstatter
et al. point out the limitations of such sampling [27].

Scaling distributed applications has been a hot topic for decades.
Traditionally researchers rely on consistency guaranteeing
network communication protocols to achieve better performance
than two-phase commit. Examples include the multicast total
ordering as used in Postgres-R [20], RSI-PC as used in Ganymed
[29], the total ordering certifier as used in Tashkent [13], Pub/Sub
as used in Ferdinand [15], and the deterministic total preordering
[38]. Their performance is in theory upper-bounded by the
centralized service implementing these protocols.

The explosive growth of the global-scale web applications,
especially the social networks, demands even higher scalability
and availability. Relaxing consistency has since gained not only
theoretical backing [1][6][16] but also industrial support.
Following the seminal papers on Google Bigtable [7] and Amazon
Dynamo [11], various relaxed consistency techniques and systems
have been developed and widely used. Examples include
MongoDB, CouchDB, Cassandra, Riak, Voldermort, and PNUTS
[9] etc. Cloud hosted and managed key-value stores like Google
App Engine, Amazon SimpleDB, and Amazon DynamoDB
further push such technologies to wider market at commodity
price. However eventual consistency [41] may not be ideal for all
applications. More recent research [2][3][9][22][31] recognizes
the need for tighter consistency, e.g., causal consistency. However
in the context of archiving, the causality cannot be determined a

priori. Any missing message from the historical records may have
implications not obvious at the time of archiving.

A number of recent researchers report their results on evaluating
inconsistency in relaxed consistency data stores [5][30][42]. The
inconsistency windows range from 200ms to 12 seconds. We
adopt the observable inconsistency approach from Rahman et al
[30], but because we are measuring different things, our results
are several orders larger than theirs.
Using relaxed consistency key-value store for social networking
functionality is an ongoing effort [23]. Yahoo! PNUTS [35][36] in
particular has been used to handle the feed-following problem,
which our experiment actively follows. However they have not
reported what level of inconsistency has been observed.

3. RELAXED CONSISTENCY
In this section we discuss the definition of consistency, why and
how large-scale websites relax consistency, and what this means
to web archives.

Consistency has different meanings in different contexts. In this
paper, we adopt the definition given by the proof [16] of Brewer’s
Conjecture [6] or the CAP theorem. Under this definition, a
consistent system, even built on distributed machines, guarantees
an illusion of a total order in which concurrent events can be
observed and interpreted as happening on a single machine.

A consistent web service must give all its users a unified view of
how things happen on an imaginary single server, no matter if and
how they are executed on many distributed machines. Any
conflict between the views must be resolvable through the
established global order. For example, let us assume a global
order of events (i, j, k, l) is established as i <t j <t k <t l, where <t
denotes the “happens before” relation. If User A sees i <t j <t k
and User B sees j <t k <t l, the difference can be easily interpreted
as User A’s request is processed at the server before User B. On
the other hand, if User A sees i <t j <t l and User B sees j <t k <t l,
then the missing event k cannot be easily explained therefore
indicates inconsistency.

Maintaining consistency in a large-scale distributed system is very
expensive. Moreover, the CAP theorem states that if a network
partition occurs, then it is impossible to guarantee both
availability and consistency. Even without the network partition,
many system designers opt to relax the consistency in order to
achieve lower latency [1]. This forms the theoretical basis for
relaxing consistency in large-scale web services.

In a relaxed consistency model, the system is allowed to have a
period of “inconsistency window” during which a global order
cannot be established. For example, in a shared nothing, fully or
partially replicated distributed environment, we may declare an
event update successful as soon as one of the replicas commits it
locally and before this update finishes propagating to the other
replicas. By eliminating the consistency locks, the replicas
become more independent and can work in a more concurrent
manner. But as a result, the system user’s view may become
rather unpredictable until the update propagates to more replicas
than a quorum and the system enters a consistent state. The
archival deviation depicted in Figure 1 demonstrates such
distinctive characteristics of an ephemeral inconsistency window,
which also helps to explain why refreshing can recover the
missing messages. Indeed, the Weibo technical team confirmed
that their system architecture included various relaxed consistency
components [43].

Consistency may be relaxed at multiple subsystems composing
the web service. It is impossible to exhaustively enumerate where
and how the consistency may be relaxed. The following are a few
obvious options. The persistent data store is usually the most
apparent candidate to relax consistency since it is often the
scalability bottleneck. Most commercial and open-source NoSQL
database systems provide such relaxation, often down to the level
of eventual consistency [41]. Although some NoSQL and
NewSQL database systems boast strict consistency, since they
restrict the type of consistent transaction, e.g., to per row [31] or
within the same data partition [19], in practice the more
complicated queries still need to be broken down into multiple
conforming transactions at the application layer. This will
compromise the consistency guarantee. Similarly, if an
application is backed by a key-value store but the data
manipulation can not be easily mapped to a simple key-value
READ, WRITE, or SCAN operation, the application layer will
still have to introduce more inconsistency. Inconsistency may also
be intentionally injected from the application cache layer in order
to reduce the server workload. More importantly, the effects of
relaxation from multiple subsystems can compound, resulting in
an even worse consistency situation than that of any single one.

As the Weibo example shows, the effects of relaxed consistency
may seep into web archives and degrade their quality. These
effects may include, at least in theory, all identifiable concurrency
anomalies. Nevertheless, the relaxed consistency technologies are
becoming prevalent in many if not all leading web portals, news
aggregators, and social networks. It is often hard to pinpoint
which website uses what technology at which level unless
disclosed by their technical team.

Given the prominence of these websites, we naturally want to
assess the extent of the quality degradation they may cause to the
web archives. Another related question concerns the inconsistency
window. Prior research has shown that the maximum
inconsistency window in many NoSQL data stores is only in the
order of seconds [5][30][42], but the Weibo experiment exposes
inconsistency delays up to 16 minutes. How do we explain the
difference? Is this the norm or exception? We will discuss these
issues in the next few sections.

4. AN EMPIRICAL STUDY
In this section we describe an empirical study used to assess and
characterize the archival quality degradation. We explain the
methodology and give detailed descriptions on the experimental
settings. The results and analysis are presented in section 5.

4.1 Methodology
We propose to gauge the archival inconsistency with a controlled
experiment. We choose feed following as the representative web
application, and argue that only observable inconsistency needs to
be concerned. We further simplify the case so that only two types
of inconsistency exist and then force an artificial global order in
the experiment in order to significantly cut down the
computational complexity for conflict detection.

4.1.1 Controlled experiment
A controlled experiment may be a better or even the only option
to seek sensible answers to our questions. This is because existing
web archives do not provide sufficient data to expose
inconsistency from within, yet it is not quite feasible to conduct
large-scale experiments against live web services either.

The frequency in which the existing web archives crawl the web
is too low for our purpose. For example, although we know
Yahoo! uses relaxed consistency data store PNUTS to power its
homepage [37], as late as March 2013 the Internet Archive’s
Wayback Machine took only 512 snapshots of it for the whole
month, averaging about 16 snapshots per day. The crawling
frequencies for existing Twitter collections in Archive-It are even
lower, averaging about once every few days.

Conducting experiments on live websites can be problematic too.
Even if we have access to the backend, it is almost impossible to
establish a true global time and global order in a real-world,
massively distributed environment. This can be as hard as the
original challenge that the relaxed consistency design chooses to
circumvent. Moreover, we will not be able collect all the
request/response pairs from a live system as well as all the
information about the data models, relations, and
interconnections. A live system is always changing, making it
even harder to detect the inconsistencies. Besides, we will not be
able to control the workload and the working conditions of a live
web application. Their fluctuations will significantly impact the
level of inconsistency.

4.1.2 Feed following
We need to choose an appropriate web application for the
controlled experiment. This application should be inherently hard
to scale otherwise there will not be much incentive to use relaxed
consistency technologies. It should be broadly representative of
the real world web applications that handle big data and struggle
to meet the needs of large amount of users. Preferably the data
model is simple and abstract; it should be easily set up and tested,
and allows us to focus on the core inconsistency instead of
unrelated issues. The feed following problem seems to be an ideal
fit.

Feed following is based on a following network consisting of
large numbers of feed consumers and feed producers. Each feed
consumer follows a usually large and distinctive group of feed
producers, and each producer independently produces event items
over time. Now each of the consumers wants to query the n most
recent event items produced by all the producers this particular
consumer follows. Silberstein et al. give a more formal definition
of the problem [37].

Feed following is known to be hard to scale [36], yet it forms the
foundation of many web portals, aggregators, and social networks.
Twitter’s timeline application is a typical feed following problem,
where each event item is called a tweet. Many other social
networking features may also be modeled as variations of feed
following, and the “n most recent” predicate may also have many
other flavors. But the common theme is that each feed following
query can be quite personalized and distinctive from the others.
Feed following is the target of many relaxed consistency
researches. A naïve relaxed consistency solution is to build a
materialized view for each consumer reflecting its changing
timeline [23]. When a producer sends a new tweet, the system will
preemptively update all timeline records for consumers following
this particular producer. When a consumer requests its timeline,
the system will directly respond with the established materialized
view with no further database query. The query latency will be
very low although it takes more time to process a new tweet.
Since updating large number of records in one atomic transaction
is expensive, the relaxed consistency approach chooses to
abandon the atomicity requirement and allows the updates to be
conducted asynchronously. For example, as soon as any of the

timeline updates is successful, the system could declare the tweet
event successful and move on to handle the other requests. The
application layer will keep updating the other timeline views and
the key-value store will keep replicating these updates across all
the database replicas. But if any of these consumers now issues a
timeline request and the request lands on a replica that has not
been updated, a potential inconsistency is produced and
propagated to the end user. In this circumstance, the source of
inconsistency is not limited to the data store. Since the application
layer breaks down a supposedly atomic transaction into
potentially large number of key-value operations, the resulting
inconsistency may be much higher than that caused by the
inconsistent key-value store. Whether the inconsistency can be
observed depends on the other users. We will discuss this topic in
more details in the following sections.

4.1.3 Simplifications
To reduce the complexity of the analysis, we introduce two
simplifications. First, we keep the established social network
unchanged during the experiment. This eliminates all the conflicts
caused by mismatches between the timelines and the changing
following network. It also drastically simplifies our data model
design and allows us to replicate the full following network to the
front-end servers. Second, we do not allow tweet deletions and
retweets. Now all updates in the system are new tweet events and
the only possible cause for inconsistency is missing tweets.

4.1.4 Archival Quality and Inconsistency
Since the archival crawler does not differentiate itself from the
other system users, we can treat the archived content as an
unbiased sample from all the user responses, therefore the
inconsistency rate of all the user responses may be used as an
indicator of the archival quality.

Rahman et al [30] argue that inconsistency measurements should
take the client-centric view and avoid the observer’s effects.
Following the same rationale, in this experiment we only focus on
the observable inconsistencies, which are the user responses that
conflict with each other. The purpose is to ensure that as a
minimum the web archive does not contradict with what people
can see. This distinction is important, because not every possible
web system state has been exposed to human consumption. For
archives that collect people’s collective history and memory, we
can safely regard those system states as nonexistent if they have
never been seen by anyone. If they do not exist, there is no
contradiction and no inconsistency.
Due to our simplifications, the types of observable inconsistencies
may be explicitly identified. As shown in Figure 2, assume both
User 2 and 3 follow User 1, and User 1 sends new tweets in the
following sequence: A <t B <t C <t D <t E. Now both User 2 and
User 3 issue timeline requests. User 2 receives a timeline response
that consists of A, C and D. The response is timestamped at ti.
User 3 also receives a timeline response consisting of A, B, and C,
but is timestamped at a later time ti+1.We identify the following
two types of conflicts:

• User 2 does not see B in between A and C. If there
exists any other timeline, e.g., timeline(User 3), that
contains B, then timeline(User 2) is considered
inconsistent.

• User 3 does not see tweet D at time ti+1. If we can find
any other timeline, e.g., timeline(User 2), that was
timestamped earlier than ti+1 and it contains D, then
timeline(User 3) will be identified as inconsistent. We

cannot blame the disappearing tweet on the network
latency, because consumer 2 sees it even before the
frontend server responds to consumer 3.

Note that neither staleness nor network latency causes conflict in
our experiment.

Figure 2. Detect Inconsistency

4.1.5 Establishing normal working condition
As Rahman et al [30] point out, in a relaxed consistency system, a
higher workload will stress out the system and exacerbate the
inconsistency. Some prior work detects inconsistency on
individual key-value pair by applying extreme workloads [5]. In
the context of web archiving, what we want to know is not the
system’s inconsistency limits under the worst-case scenario.
Instead, we are more interested in the inconsistency level
observed under the normal operating conditions. More likely these
are the conditions under which the archival crawlers gather web
content. Of course, there are many interpretations on what
constitute a normal operating condition. In this paper we use a
benchmarking tool to establish such working conditions.

4.1.6 Detecting inconsistency
Even after substantial simplifications, detecting inconsistency can
still be an intractable problem. We would like to avoid having to
crosscheck inconsistency among millions or more timeline
responses. Realizing that the observable inconsistent timeline as a
whole is a subset of all inconsistent timelines, we devise a method
to first shortlist the possible inconsistent timelines, and then only
compare them with the other timeline responses for inconsistency.
This, however, requires establishing a global order.

Although establishing the global order is difficult in a real world
system, it is indeed possible in an experimental setting. We take
lessons from Thomson and Abadi [38] and force all new tweets to
be submitted to a single frontend machine. This is the machine
that assigns timestamps from its local system clock that forms the
global order. After the timestamp is assigned, the request is then
sent to the backend data store. Even if the request is unsuccessful
and needs to be redone, the established timestamp does not
change in the process. We put the user_id and the timestamp
directly into the message body in JSON format, as shown in the
following:

{"producer_id": "1353955", "t": "2013-01-31T04:00:32.256647"}

This allows us to easily compare timelines for inconsistency
detection.

4.2 Experiment Configuration
We now conduct the feed following experiment. We first establish
the following network and the workload based on a Yahoo!
PNUTS based feed following experiment. We then build a feed
following system and run it on Amazon EC2. We choose Amazon
DynamoDB as the backend data store and choose per-key strong
consistency as our level of relaxed consistency. After running the
experiments, all logged data are transferred to and processed on
another cloud application built for the purpose of detecting
conflict.

As explained before, we assume the conflict rates are the same for
the archived contents and the responses received by all the users.
We therefore skip the crawling and the archiving steps without
affecting the validity of this experiment.

4.2.1 Following Network and Workload
We derive both the following network and the workload from a
Yahoo! PNUT based feed following experiment [37]. We assume
these can be used to represent a typical web application under
normal working condition. The Yahoo! experiment built the
following network by crawling Twitter and then derived the
workload from the Yahoo! Social Updates platform. They
concluded that both the following network and the workload
followed Zipfian distribution. We therefore adopt the same Zipf
parameters but use Yahoo! Cloud Serving Benchmark [10] to
generate a synthetic following network as well as the workload, as
shown in Table 1. The slight differences between the average
values indicate the different sources of data: Yahoo!’s data were
collected from real-world applications but ours are generated from
a benchmarking tool. In our following network of about 200,000
users, the most popular producer has 5452 followers, and the
nosiest consumer follows 335 producers, although the average
numbers are only 13.38 and 4.63, respectively.

Table 1. Comparing workload parameters with the Yahoo!
PNUTS based feed following experiment [37]

 PNUTS This
Number of producers 67,921 67882
Number of consumers 200,000 196,283

Consumers per producer
Average 15.0 13.38
Zipf parameter 0.39 0.39

Producers per consumer
Average 5.1 4.63
Zipf parameter 0.62 0.62

Per-producer rate
Average 1/hour 1/hour
Zipf parameter 0.57 0.57

Per-consumer rate
Average 5.8/hour 5.8/hour
Zipf parameter 0.62 0.62

4.2.2 Consistency level
A crucial piece of this experiment is the relaxed consistency data
store that demonstrates properties of relaxed consistency. In the
early stage of this study we decided to run the experiments on a
computing cloud. DynamoDB, Amazon’s newest generation of
managed key-value store, was launched in early 2012 to coincide
with this experiment.

Since DynamoDB is managed, we do not have to tweak the
configuration in order to get the best performance or risk skewing

the results. Built on novel ideas from many other key-value stores
and researches, DynamoDB actually offers consistency options
tighter than pure eventual consistency. After thorough
consideration, we decided to take advantage of the per-key strong
consistency feature, namely conditional WRITE. A conditional
WRITE checks to make sure the value to be overwritten is indeed
the one it is supposed to be. Using this feature, new tweets are
written into individual follower’s timeline in a strictly ordered
manner across all the replicas and no new tweet can be
permanently overwritten due to inconsistency. We consider this a
base requirement for any similar web application, although it costs
twice as much as an eventual consistency WRITE. A failed
WRITE also causes our implementation to retry until it succeeds.
This change intentionally avoids many detectable inconsistencies
that could have happened in a pure eventual consistency
implementation. The overall consistency property, however,
remains eventual consistency. This is because each new tweet still
involves many timeline WRITEs and as a whole they are not
completed in a single, atomic transaction.

Figure 3. Feed Following Experiment Configurations

4.2.3 Server configuration
The experiment is conducted on the Amazon clouds. The server
configuration is shown in Figure 3. To ensure the results are not
skewed by limited computing resources, we provisioned sufficient
machine and database capacities, much higher than they normally
require. We have not observed any overload during the
experiments.

We provision three pairs of servers. Each pair consists of one
httperf server that emits the workload and one frontend server that
runs a Django application that implements the feed following
model. One pair is only used to post new tweets. The frontend
machine in this pair timestamps, serializes, and logs all the
WRITEs by its local system clock. The other two pairs serve the
timeline query workload. No response is cached during the
experiments.

We run the experiment for a little longer than two hours. Both the
consumed READ and WRITE capacities on DynamoDB reached
the level of about 400 READ/WRITE per second. All the query
responses are logged, totaling about 2 Gigabytes.

4.2.4 Data processing configuration
We anticipate more conflict will appear in the later stages of the
experiment, because in the initial stage most timelines are still
empty. After the initial warm-up stage these timelines start to get
filled and repeatedly updated, that is when inconsistencies become
more visible. We therefore pick the data from the latter half of the
experiment, totaling 1.2 million timelines.

For each of these timeline results, we must first calculate the
consistent timeline from the total order and the following network.
This would require repeated database queries against the
following network table. For each of the missing tweets
discovered, we must then ask the question: which consumer has
ever received this missing tweet? The second type of conflict
detection also requires comparing the timestamps. This requires
large amount of the processing power and database throughput,
which forces us to build another data processing cloud
infrastructure for this purpose. We first provision three X-large
EC2 instances; each handles a portion of the timeline response
result. These machines parse the results, and then load the
timeline data into another DynamoDB table, which takes several
hours. We repeat the data loading for three times to ensure all
tweets in the timelines are in DynamoDB. We then provision 100
small EC2 instances; each runs its own local PostgreSQL database
containing the following network relations, and a Python script to
query the DynamoDB through the boto library. This portion of
data processing takes about two hours.

5. RESULTS AND ANALYSIS
In this section we report the experimental results and provide
some basic interpretations. As much as 6.27% of the responses
contain observable conflicts, and on average they are observed
823 seconds after the missing messages are created. This delay is
much larger than the inconsistency window measured at the data
store, indicating the majority of the inconsistency is most likely
created at the application layer.

We further analyze the data in an attempt to correlate the
inconsistency with the properties of the consumers and the
producers. The results show that at least in our implementation,
inconsistency only positively correlates with the producer’s
popularity, implying that the Internet celebrities’ tweets are more
likely to be subject to inaccurate web archiving.

5.1 Level of Inconsistency and Time Gap
Out of the 1.2 million timeline responses we analyzed, a total of
75,181 responses or 6.27% contain observable conflicts. This is a
non-trivial percentage, indicating the problem discussed in this
paper cannot be easily dismissed as marginal.

We now take a closer look at their temporal properties. Suppose at
the consistency detection stage we discover m missing tweets that
belong to a consistent timeline timestamped at T. Among these m
tweets we can further identify observable conflicts on n tweets,
say M0, M1, … Mn-1, and we have m >= n. Let Ti be the timestamp
of the ith tweet, for 0 <= i < n. We can be certain that Ti <t T for
all i, otherwise the timestamps are mistaken that let people see
things in the future. We define the Inconsistency Time Gap

G = max(T - Ti)

Note G is not the inconsistency window but is bounded by it.

We now calculate G for each of the 75181 observed conflicts. To
our surprise, all except 2 have G greater than one second.
Moreover, the average G is as high as 823 seconds, roughly in line
with the 16 minutes inconsistency gap detected in the Weibo
experiment. An hour-long inconsistency gap is not rare.

The distribution of the G value is depicted in Figure 4. In the
figure, axis x denotes the distribution range and axis y denotes the
number of G value that falls in the range. For example, 9731 G
values fall in the range from 0 to 99 seconds, 7693 G values fall in
the range from 100 to 199 seconds. In comparison, only 79 G

values fall in the range from 4000 to 4099 seconds, and 7 in the
range from 6000 to 6099 seconds.

As mentioned in section 2, existing work put the measured
inconsistency window in the order of seconds, yet the time gap in
this experiment is several orders larger than that. This certainly
begs explanation. We believe the reason lies in the difference on
what we measure. We measure overall inconsistency at the
application layer for a rather hard-to-scale application, but their
experiments are focused on the data store, mostly on single key-
value READ/WRITE. Since the feed following cannot be easily
mapped to any key-value store’s data manipulation primitive,
enormous inconsistency is introduced at the application layer and
compounded to the data store inconsistency. We anticipate many
real world hard-to-scale web applications will be in the similar
situation as ours, as demonstrated by the Weibo experiment.

This distribution leads us to believe that inconsistency is a
tangible problem for archiving relaxed consistency web content.
Moreover, it clearly illustrates that the inconsistency level indeed
decreases significantly with time. The promise of eventual
consistency has been kept, although the wait can be fairly long.

Figure 4. Inconsistency Time Gap

5.2 Inconsistency and Producers
Does inconsistency vary with the producer properties, such as,
how popular and how active they are? Figure 5 shows the
experimental results.

It comes as no surprise that in this particular implementation a
strong correlation can be found between the producer popularity
and the inconsistency she causes, as clearly shown in Figure 5(a).
To better illustrate the correlation we plot the results in logarithm
scale, with the x-axis denotes the logarithm of the number of
followers a producer has. Since all conflicts can be attributed to
missing tweets, we can easily trace them back to the offending
producers then the total number of inconsistency the producers
cause.

The strong correlation may be explained as follows. In our
implementation, when a producer, e.g. user #1353955 who has
234 followers, sends a new tweet, we must asynchronously insert
the following line into all 234 key-value pairs, each containing
one of its followers’ timeline.

{"producer_id": "1353955", "t": "2013-01-31T04:00:32.256647"}

The more followers, the more views need to be updated and
maintained, and the longer it takes to reach a consistent state,
therefore the higher possibility of inconsistency.

Such correlation exacerbates the archival problem, because the
Internet celebrities’ tweets carry more weight as news media and
tend to have higher preservation value.

On the other hand, as Figure 5(b) illustrates, there is little or no
correlation between inconsistency and how active a producer is.
This implies that directing the archival crawlers away from the
active producers may have little effect on archiving quality.

(a)

(b)

Figure 5. Inconsistency and Producer

5.3 Inconsistency and Consumers
We now attempt to establish correlations between the
inconsistency and the consumer’s behavior. We may think of the
feed consumer in this case as a representative information
consumer in any web environment, including the archiving
crawlers. Can they change their behavior to circumvent
inconsistencies?

We focus on two specific properties of the consumer: the number
of producers she follows and the frequency she makes timeline
queries. Intuitively we anticipate more active information seekers
may encounter higher percentage of inconsistencies, but the
experiment results do not seem to support this conjecture, at least
under our experiment settings and implementation. Figure 6 gives
the results of these two relations. In Figure 6(a) the x-axis denotes
the number of producers a consumer follows. The y-axis denotes
the number of inconsistencies this consumer encounters. The
figure shows no obvious correlation between the two. The same is

true for the other factor, namely the number of timeline requests a
consumer made, which is depicted in Figure 6(b).

Such results may be counterintuitive because in a real world social
network there may exist some correlations between the activeness
of the producers and the consumers. However, the following
network and workloads used in this experiment were not deduced
from real world following applications as the Yahoo experiment.
Instead, they were synthesized using the same Zipf parameters.
The activeness correlation is therefore lost. Nevertheless, such
loss of reality turns out to be advantageous for our purpose,
because it allows us to separate the spillover effects of the
producer activeness from the true causality.

Overall, the results lead us to lean more towards the belief that
simply adjusting the crawling coverage or frequency may not
necessarily improve the archival quality.

(a)

(b)

Figure 6. Inconsistency and Consumer

6. CONCLUSIONS AND DISCUSSION
In this paper we explore the archival quality degradation
associated with crawling the relaxed consistency web
applications. The archived content is error-prone largely by
design. To gauge the size of the problem and gain insight into
possible solutions, we conducted a controlled experiment and
gathered data for analysis. We can draw the following conclusions
from the experiment:

• This study confirms the evident and non-trivial presence
of archival quality degradation.

• The inconsistency window may be significantly larger
than previously reported results. This observation is also
supported by cursory tests on an existing relaxed
consistency web service.

• The inconsistency level decreases significantly with
time. The promise of eventual consistency has been
withheld, therefore may be leveraged to offset the
quality degradation.

• At least under certain circumstances, it may be harder to
capture an accurate snapshot of the more popular web
resource.

However, we would like to urge caution on extrapolating the
experimental results much further from their contexts. For
example, it would be premature to conclude that consumer
behavior has absolutely no effect on archival quality. In fact, the
Yahoo! PNUTS based feed following implementation [37] does
not build a materialized view for every follower. Instead, a cost
function is established for each consumer/producer pair to decide
if a materialized view is necessary. In this case the consumer
behavior most likely will affect the resulting inconsistency.

Now that we can confirm the presence of the archival
inconsistency, what can we do? In the following we propose a few
possible ways to approach future work.

A proactive approach is to set up multiple archival crawlers to
conduct redundant crawling. Like our Weibo experiment, we may
set off multiple crawlers to crawl the same resource at the same
time; we then compare the results and filter out the possibly
inconsistent responses. As pointed out by Bailis et al. [3],
inconsistency by nature is instable and probabilistically bounded.
Depending on the number of replicas used in the data store, the
replication strategy, and how the data models are handled in the
key-value design, we may be able to determine how probable it is
for a crawler to receive consistent responses within a certain
period of time. We may then decide how many crawlers we’ll
need to increase the probability to an acceptable level. Even
without the exact knowledge of the probability, using multiple
crawlers should still improve the archival quality, since it’s highly
improbable for the inconsistent responses to be exactly the same
as each other. This approach, however, has its limitations. For
example, in general content owners do not allow highly active
crawlers, especially when they intensively crawl the web
resources in narrow time spans. The server may also choose to
flatten such peak workload by delaying some of the processing,
which defeats the purpose of redundant crawling.

A compensatory approach is to locate the possible inconsistent
copies, run consistency check, then label, remove, or modify
them. For example, we may heuristically figure out the
inconsistency window, possibly by doing analyses like ours and
then deduce it from the G value. With this knowledge in hand, we
can be relatively certain about which archived copies are less
likely to be inaccurate. These are the copies we can preserve for
long term. For the rest, we may discard the fresher part of the
responses, verify or recover them from other collected content, or
actively re-crawl the resource in order to correct the previously
archived one. As we mentioned in section 2, such re-crawling has
been widely used to both broaden the archival coverage and
correct the temporal incoherence. Alternatively, we may simply
label them as possibly inaccurate, assign credibility scores based
on inside knowledge about the systems, or hold them as valid

unless proven otherwise. This latter approach also applies to the
existing archived content where crosschecking or re-crawling is
no longer feasible.

The effectiveness of the above approaches still needs further
experimental validation. As the last resort, we can always fall
back to server-side archiving on important web resources.

To conclude, this study explores a potentially substantial yet
previously overlooked web archiving problem. The insights
gained may help the web archives to adjust the strategy and
improve the archival quality.

7. ACKNOWLEDGMENTS
The authors wish to thank Dr Martin Klein for his feedback on a
draft version.

8. REFERENCES
[1] Abadi, D. 2012. Consistency Tradeoffs in Modern

Distributed Database System Design: CAP is Only Part of
the Story. Computer. 45, 2 (Feb. 2012), 37–42.

[2] Bailis, P., Ghodsi, A., Hellerstein, J. and Stoica, I. 2013.
Bolt-on causal consistency. ACM SIGMOD (2013).

[3] Bailis, P., Venkataraman, S., Franklin, M.J., Hellerstein, J.M.
and Stoica, I. 2012. Probabilistically bounded staleness for
practical partial quorums. Proc. VLDB Endow. 5, 8 (Apr.
2012), 776–787.

[4] Ben Saad, M. and Gançarski, S. 2011. Archiving the web
using page changes patterns: a case study. Proceeding of the
11th annual international ACM/IEEE joint conference on
Digital libraries (New York, NY, USA, 2011), 113–122.

[5] Bermbach, D. and Tai, S. 2011. Eventual consistency: How
soon is eventual? An evaluation of Amazon S3’s consistency
behavior. Proceedings of the 6th Workshop on Middleware
for Service Oriented Computing (New York, NY, USA,
2011), 1:1–1:6.

[6] Brewer, E.A. 2000. Towards robust distributed systems
(abstract). Proceedings of the nineteenth annual ACM
symposium on Principles of distributed computing (New
York, NY, USA, 2000), 7–.

[7] Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach,
D.A., Burrows, M., Chandra, T., Fikes, A. and Gruber, R.
2006. Bigtable: A Distributed Storage System for Structured
Data. Proc. 7th USENIX Symposium on Operating Systems
Design and Implementation (Seattle, WA, Nov. 2006), 205–
218.

[8] Cho, J. and Garcia-Molina, H. 2003. Effective page refresh
policies for Web crawlers. ACM Trans. Database Syst. 28, 4
(Dec. 2003), 390–426.

[9] Cooper, B.F., Ramakrishnan, R., Srivastava, U., Silberstein,
A., Bohannon, P., Jacobsen, H.-A., Puz, N., Weaver, D. and
Yerneni, R. 2008. PNUTS: Yahoo!’s hosted data serving
platform. Proc. VLDB Endow. 1, 2 (2008), 1277–1288.

[10] Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R. and
Sears, R. 2010. Benchmarking cloud serving systems with
YCSB. Proceedings of the 1st ACM Symposium on Cloud
Computing. (2010), 143–154.

[11] DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G.,
Lakshman, A., Pilchin, A., Sivasubramanian, S., Vosshall, P.
and Vogels, W. 2007. Dynamo: amazon’s highly available
key-value store. SIGOPS Oper. Syst. Rev. 41, 6 (Oct. 2007),
205–220.

[12] Denev, D., Mazeika, A., Spaniol, M. and Weikum, G. 2009.
SHARC: framework for quality-conscious web archiving.
Proc. VLDB Endow. 2, 1 (2009), 586–597.

[13] Elnikety, S., Zwaenepoel, W. and Pedone, F. 2005. Database
Replication Using Generalized Snapshot Isolation.
Proceedings of the 24th IEEE Symposium on Reliable
Distributed Systems (2005), 73–84.

[14] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L.,
Leach, P. and Berners-Lee, T. 1999. Hypertext transfer
protocol–HTTP/1.1. RFC 2616, June 1999.

[15] Garrod, C., Manjhi, A., Ailamaki, A., Maggs, B., Mowry, T.,
Olston, C. and Tomasic, A. 2008. Scalable query result
caching for web applications. Proc. VLDB Endow. 1, 1
(2008), 550–561.

[16] Gilbert, S. and Lynch, N. 2002. Brewer’s conjecture and the
feasibility of consistent, available, partition-tolerant web
services. SIGACT News. 33, 2 (2002), 51-59.

[17] Gomes, D., Miranda, J. and Costa, M. 2011. A Survey on
Web Archiving Initiatives. Research and Advanced
Technology for Digital Libraries. S. Gradmann, F. Borri, C.
Meghini, and H. Schuldt, eds. Springer Berlin Heidelberg.
408–420.

[18] Howell, B.A. 2006. Proving Web History: How to Use the
Internet Archive. Journal of Internet Law. 9, 8 (Feb. 2006),
3–9.

[19] Kallman, R., Kimura, H., Natkins, J., Pavlo, A., Rasin, A.,
Zdonik, S., Jones, E.P.C., Madden, S., Stonebraker, M.,
Zhang, Y., Hugg, J. and Abadi, D.J. 2008. H-store: a high-
performance, distributed main memory transaction
processing system. Proc. VLDB Endow. 1, 2 (2008), 1496–
1499.

[20] Kemme, B. and Alonso, G. 2000. Don’t Be Lazy, Be
Consistent: Postgres-R, A New Way to Implement Database
Replication. Proceedings of the 26th International
Conference on Very Large Data Bases (San Francisco, CA,
USA, 2000), 134–143.

[21] Kwak, H., Lee, C., Park, H. and Moon, S. 2010. What is
Twitter, a social network or a news media? 19th
International World Wide Web Conference, WWW2010,
April 26, 2010 - April 30, 2010 (Raleigh, NC, United states,
2010), 591–600.

[22] Lloyd, W., Freedman, M.J., Kaminsky, M. and Andersen,
D.G. 2011. Don’t settle for eventual: scalable causal
consistency for wide-area storage with COPS. Proceedings
of the Twenty-Third ACM Symposium on Operating Systems
Principles (New York, NY, USA, 2011), 401–416.

[23] Looking to the future with Cassandra | Digg About:
http://about.digg.com/blog/looking-future-cassandra.
Accessed: 2010-09-09.

[24] Longitudinal Analytics of Web Archive data (LAWA),
http://www.lawa-project.eu/. Accessed: 2013-04-09.

[25] Marshall, C.C. and Shipman, F.M. 2012. On the institutional
archiving of social media. Proceedings of the 12th
ACM/IEEE-CS joint conference on Digital Libraries (New
York, NY, USA, 2012), 1–10.

[26] Masanès, J. 2010. Web Archiving. Springer.
[27] Morstatter, F., Jürgen Pfeffer, J., Liu, H. and Carley, K.M.

2013. Is the Sample Good Enough? Comparing Data from
Twitter’s Streaming API with Twitter’s Firehose. Proceeding
of the 7th International AAAI Conference on Weblogs and
Social Media (Boston, MA, Jul. 2013).

[28] Olston, C. and Pandey, S. 2008. Recrawl scheduling based
on information longevity. 17th International Conference on
World Wide Web 2008, WWW’08, April 21, 2008 - April 25,
2008 (Beijing, China, 2008), 437–446.

[29] Plattner, C. and Alonso, G. 2004. Ganymed: scalable
replication for transactional web applications. Proceedings of
the 5th ACM/IFIP/USENIX international conference on
Middleware (Toronto, Canada, 2004), 155–174.

[30] Rahman, M.R., Golab, W., AuYoung, A., Keeton, K. and
Wylie, J.J. 2012. Toward a principled framework for
benchmarking consistency. Proceedings of the Eighth
USENIX conference on Hot Topics in System Dependability
(Berkeley, CA, USA, 2012), 8–8.

[31] Rao, J., Shekita, E.J. and Tata, S. 2011. Using Paxos to build
a scalable, consistent, and highly available datastore. Proc.
VLDB Endow. 4, 4 (Jan. 2011), 243–254.

[32] Raymond, M. 2010. How tweet it is! Library acquires entire
Twitter archive. Library of Congress Blog (Apr. 14, 2010).
URl: blogs. loc. gov/loc/2010/04/how-tweet-it-is-library-
acquiresentire-twitter-archive (2010).

[33] SalahEldeen, H.M. and Nelson, M.L. 2012. Losing My
Revolution: How Many Resources Shared on Social Media
Have Been Lost? Theory and Practice of Digital Libraries.
P. Zaphiris, G. Buchanan, E. Rasmussen, and F. Loizides,
eds. Springer Berlin Heidelberg. 125–137.

[34] Shiozaki, R. and Eisenschitz, T. 2009. Role and justification
of web archiving by national libraries A questionnaire
survey. Journal of Librarianship and Information Science.
41, 2 (Jun. 2009), 90–107.

[35] Silberstein, A., Chen, J., Lomax, D., McMillan, B.,
Mortazavi, M., Narayan, P.P.S., Ramakrishnan, R. and Sears,
R. 2012. PNUTS in Flight: Web-Scale Data Serving at
Yahoo. IEEE Internet Computing. 16, 1 (Jan. 2012), 13–23.

[36] Silberstein, A., Machanavajjhala, A. and Ramakrishnan, R.
2011. Feed following: the big data challenge in social
applications. Databases and Social Networks (New York,
NY, USA, 2011), 1–6.

[37] Silberstein, A., Terrace, J., Cooper, B.F. and Ramakrishnan,
R. 2010. Feeding frenzy: selectively materializing users’
event feeds. 2010 International Conference on Management
of Data (Indianapolis, IN, United states, 2010), 831-842.

[38] Thomson, A. and Abadi, D.J. 2010. The case for
determinism in database systems. Proceedings of the VLDB
Endowment. 3, (Sep. 2010), 70–80.

[39] Van de Sompel, H., Nelson, M.L., Sanderson, R., Balakireva,
L.L., Ainsworth, S. and Shankar, H. 2009. Memento: Time
travel for the web. arXiv preprint arXiv:0911.1112. (2009).

[40] Van de Sompel, H. 2012. SiteStory Transactional Web
Archive Software Released. D-Lib Magazine. 18(9/10)
(2012).

[41] Vogels, W. 2009. Eventually consistent. Communications of
the ACM. 52, (Jan. 2009), 40–44.

[42] Wada, H., Fekete, A., Zhao, L., Lee, K. and Liu, A. 2011.
Data Consistency Properties and the Trade-offs in
Commercial Cloud Storage: the Consumers’ Perspective.
Proceedings of the 5th biennial Conference on Innovative
Data Systems Research (CIDR) (Asilomar, CA, USA, 2011),
134–143.

[43] Yang, W. 2011. Build High Performance Weibo System.
http://www.infoq.com/cn/presentations/ywh-build-high-
performance-weibo. Accessed: 2013-01-03

