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ABSTRACT
We present MaSiF, a novel tool to auto-tune parallelization
parameters of skeleton parallel programs. It reduces the cost
of searching the optimization space using a combination of
machine learning and linear dimensionality reduction. To
auto-tune a new program, a set of program features is de-
termined statically and used to compute k nearest neighbors
from a set of training programs. Previously collected perfor-
mance data for the nearest neighbors is used to reduce the
size of the search space using Principal Components Anal-
ysis. This results in a set of eigenvectors that are used to
search the reduced space.

MaSiF achieves 88% of the performance of the oracle,
which searches a random set of 10,000 parameter values.
MaSiF searches just 45 points, or 0.45% of the optimization
space, to achieve this performance. MaSiF provides an aver-
age speedup of 1.18x over parallelization parameters chosen
by a human expert.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel programming

General Terms
Measurement, Performance, Experimentation

Keywords
Auto-tuning, FastFlow, Machine Learning, Multi-core,
Parallel Skeletons

1. INTRODUCTION
Parallel skeletons provide a predefined set of parallel tem-

plates that can be combined, nested and parameterized with
sequential code to produce complex parallel programs. The
implementation of each skeleton includes parameters that
have a significant effect on performance; so carefully tuning
them is vital. The optimization space formed by these pa-
rameters is complex, non-linear, exhibits multiple local op-
tima and is program dependent. This makes manual tuning
impractical. Effective automatic tuning is therefore essential
for the performance of parallel skeleton programs.
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Figure 1: Optimizing a new program using eigenvec-
tor search (right) using training data from a similar
program (left).

We present MaSiF, a tool that auto-tunes the FastFlow
parallel skeleton framework [1]. We have identified five im-
plementation parameters within FastFlow that have an ef-
fect on performance. MaSiF auto-tunes them using machine
learning guided search applied to performance data for a
subset of the parameter space collected a priori. Given a new
program, a set of static features are extracted that catego-
rize its behavior. A nearest neighbor classifier then chooses
k programs from the training set that are the closest match
for the new program.

The best performing points in the optimization space for
these k programs are collected together. Dimensionality re-
duction is applied to these points, to produce a reduced
sized search space. The search is then performed within
this smaller space, along the directions of greatest variation
in the best points provided by the dimensionality reduction.

Our results show that MaSiF achieves 88% of the perfor-
mance of the oracle, which searches a random set of 10,000
parameter values. MaSiF searches just 45 parameter val-
ues on average. MaSiF also achieves an average speedup of
1.18× over parallelization parameters chosen by a human ex-
pert. These results demonstrate that our technique is effec-
tive at automatically optimizing parallel skeleton programs
without the need for human expertise.

2. MOTIVATION
Figure 1 illustrates how we optimize a new program (bzip2),

given training data from a similar program (mandelbrot).
The left plot in Figure 1 shows the optimization space of
the mandelbrot program with 2 parallelization parameters.
Shaded areas mark parallelization parameter values that ob-
tain 95% or more of the best performance. Applying Prin-
cipal Components Analysis (PCA) [2] to these best parame-
ter values provides a mean and two eigenvectors. These are
shown in the plot.
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Figure 2: Schematic of how machine learning guides
the search. The dotted box indicates the offline
training phase. Ê Extract program features from
training programs. Ë Find a set of near optimal pa-
rameter values for each training program, by mea-
suring a random subset of the space. Ì Extract pro-
gram features from the new program. Í Compute
the k-nearest neighbors, using the program features,
to create a set of near optimal parameter values for
all nearest neighbors. Î Apply PCA to the set of
near optimal parameter values. The resulting mean
and eigenvectors are used to perform the search.

The right plot in Figure 1 shows the optimisation space of
a different program: bzip2, with the same 2 parallelization
parameters as the mandelbrot program. Again, the grey
shaded area indicates parameter values with 95% or more
of the best available performance. Even though the opti-
mization space looks completely different, we can apply a
search to optimise bzip2 using the mean and eigenvectors
from mandelbrot. Starting at that mean, we exhaustively
search along the first eigenvector in both directions to find
the best point. From there, we now search along the direc-
tion of the second eigenvector. The search finds a point that
obtains 97% of the best available performance.

This motivating example shows that the eigenvectors pro-
vided by the PCA for one program can be used to guide the
search in the optimisation space of a different program, if
the programs are a good match. In Section 3, we show how
similar programs can be found.

3. AUTO-TUNING USING MaSiF
MaSiF starts by collecting all ‘near optimal’ parameter

values from similar training programs, using machine learn-
ing detailed in Figure 2. We define ‘near optimal’ parameter
values as those at 95% or more of the best performance of
the oracle (a random search over 10,000 parameter values).

Applying PCA to this set of parameter values provides a
new set of orthogonal basis vectors, or eigenvectors, for the
parameter space.

PCA also returns a measure of the variance of the data
in the direction of each eigenvector, called the eigenvalues.
These are used to scale the eigenvectors so that they cover
the region of the space where the majority of the ‘near op-
timal’ parameter values lie. The search space is reduced by
only searching within the plane defined by the two eigenvec-
tors that capture the most variation. The search space is
further reduced by searching along each eigenvector in turn,
as discussed in Section 2.
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Figure 3: The percentage of the oracle performance
achieved by a human expert and MaSiF. MaSiF
searches along two eigenvectors, exploring 45 pa-
rameter values on average. The error bars show 99%
confidence intervals for the mean.

4. RESULTS
We evaluate MaSiF using a 32-core shared memory ma-

chine and 10 existing skeleton parallel programs implemented
using FastFlow.

Figure 3 shows the percentage of the oracle performance
achieved by MaSiF and parallelization parameters chosen by
the FastFlow authors. This plot demonstrates that MaSiF
achieves performance closer to the oracle than the expert in
all but one case. For 7 of the 10 programs, MaSiF achieves
at least 90% of the oracle performance, and in some cases
is close to 100%. On average over all programs, MaSiF
achieves 88% of the oracle performance.

It is important to note that MaSiF only measures the
performance at 45 points on average, in order to obtain this
performance. This is far fewer than the size of the space,
which consists of 127,008 points.

5. CONCLUSIONS AND FUTURE WORK
We have demonstrated that MaSiF achieves 88% of the

performance of the oracle; which searches a random subset of
the entire space. The results also show that MaSiF provides
a 1.18× speedup over human expert chosen parameters, on
average over all programs.

These results show that MaSiF does not significantly im-
pact the maximum possible performance achievable—in fact
it does better than a human expert—whilst markedly reduc-
ing the number of parameters that need to be searched. The
PCA space reduction reduces the size of the search space by
275× on average, and searching along just two eigenvectors
reduces the space by 1,925×.

Our technique is fully automatic and not constrained to
only work with FastFlow. It can be easily adapted to tune
different parameters. In the future, we will investigate search-
ing the reduced parameter space at runtime. We will also
investigate more sophisticated techniques to improve over
the exhaustive search along each eigenvector.
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