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ABSTRACT
The growing influence of web applications in every aspect of
society makes their dependability an immense concern. A
fundamental building block of web applications that use the
Model-View-Controller (MVC) pattern is the data model,
which specifies the object classes and the relations among
them. We present an approach for unbounded, automated
verification of data models that 1) extracts a formal data
model from an Object Relational Mapping, 2) converts ver-
ification queries about the data model to queries about the
satisfiability of formulas in the theory of uninterpreted func-
tions, and 3) uses a Satisfiability Modulo Theories (SMT)
solver to check the satisfiability of the resulting formulas.
We implemented this approach and applied it to five open-
source Rails applications. Our results demonstrate that the
proposed approach is feasible, and is more efficient than
SAT-based bounded verification.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Formal methods; D.2.11 [Software Engineering]:
Software Architectures—Data abstraction

General Terms
Verification

Keywords
Unbounded verification, MVC frameworks, SMT solvers

1. INTRODUCTION
The web has evolved into an ubiquitous medium for com-
puting and communication services that both businesses and
individuals rely on extensively. There is reason to be con-
cerned about this ever-increasing reliance on web applica-
tions: web application development is an error-prone pro-
cess that produces a complicated distributed software sys-
tem with complex interactions among many components.
Moreover, due to the extensive use of scripting languages in
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Figure 1: Tool Architecture

web application development, static analysis of web software
is very difficult.

One positive advancement in web application development
has been the adoption of the Model-View-Controller (MVC)
pattern [14]. Many popular web application development
frameworks such as Ruby on Rails (Rails for short), Zend
for PHP, CakePHP, Django for Python, and Spring for J2EE
are based on the MVC pattern. This pattern facilitates the
separation of the data model (Model) from the user interface
logic (View) and the control flow logic (Controller). The
modularity and separation of concerns principles imposed
by the MVC pattern provide opportunities for developing
customized verification and analysis techniques.

Our work focuses on the verification of data models in web
applications. A data model specifies the types of objects
(e.g., user, photo, profile, etc.) and the relations among the
objects (e.g., the relations between users and photos and
profiles) in a web application. A data model also specifies
constraints on the data model relations (e.g., the relation
between users and profiles must be one-to-one).

In this paper we present an unbounded, automated verifi-
cation technique and tool (Figure 1) for data model verifi-
cation of MVC-based web applications. MVC-based frame-
works use an object-relational mapping (ORM) to map the
data representation of the web application to the back-end



database. The front-end of our tool automatically extracts
a formal data model from the ORM specification of the in-
put web application. Currently, our front-end only supports
ORM specifications of Ruby on Rails web applications. The
back-end of our tool converts verification queries to formu-
las in the theory of uninterpreted functions and then uses
a Satisfiability Modulo Theories (SMT) solver to determine
the satisfiability of the queries. Based on the output of the
SMT solver, our tool reports whether the property holds or
fails, and for failing assertions it also reports a data model
instance as a counter-example. Our SMT-based verification
approach does not bound the sizes of the object classes or
the relations, so if our verification tool reports that an as-
sertion holds, it is guaranteed to hold for any data model
instance.

We applied our approach to five open-source Ruby on Rails
applications and identified a variety of data model errors.
Our results show that our verification technique is feasible
and useful in analyzing real-world applications. We also
compared the performance of our approach with a bounded-
verification approach based on SAT solvers, and our exper-
iments demonstrate that, in addition to guaranteeing cor-
rectness for verified properties (which is not possible with
bounded verification), surprisingly, our unbounded verifica-
tion approach is more efficient than bounded verification
when the bound on the class size exceeds 10.

Our contributions in this paper include: 1) An automated
translation of data model verification queries to formulas in
the theory of uninterpreted functions. 2) A new data model
verification technique for MVC-based web applications that
uses SMT solvers and can handle unbounded data models.
3) A technique for reducing the size of the data model spec-
ification by projecting it based on the property that is being
verified. 4) Experimental evaluation of the proposed ap-
proach on five real-world applications.

The rest of the paper is organized as follows: Section 2 dis-
cusses data models in web applications and gives a formal-
ization of the data model verification problem. Section 3
presents the translation of data model verification queries
to the theory of uninterpreted functions. Section 4 explains
our data model projection technique. Section 5 presents our
experimental results. Related work is discussed in Section 6
and Section 7 concludes the paper.

2. WEB APPLICATION DATA MODELS
The data model forms the foundation of an MVC-based web
application. Any error in this foundation can have a signifi-
cant impact on the entire application. The data model pro-
vides an abstraction between the application code and the
backend datastore in a web application. Typically, from the
backend datastore’s point of view the data is stored in a re-
lational database, whereas from the perspective of the appli-
cation code the data is represented using an object-oriented
data model. The ORM provided by the MVC-based web
application development frameworks handles the translation
between these two views, so that the application code and
the backend datastore can interact with each other while
preserving their own views of the data.

1 class User < ActiveRecord::Base
2 has_and_belongs_to_many :roles

3 has_one :profile, :dependent => :destroy
4 has_many :photos, :through => :profile
5 end

6 class Role < ActiveRecord::Base
7 has_and_belongs_to_many :users

8 end
9 class Profile < ActiveRecord::Base

10 belongs_to :user
11 has_many :photos, :dependent => :destroy
12 has_many :videos, :dependent => :destroy,

13 :conditions => "format=’mp4’"
14 end

15 class Photo < ActiveRecord::Base
16 belongs_to :profile

17 has_many :tags, :as => :taggable
18 end
19 class Video < ActiveRecord::Base

21 belongs_to :profile
22 has_many :tags, :as => :taggable

23 end
24 class Tag < ActiveRecord::Base
25 belongs_to :taggable, :polymorphic => true

26 end

Figure 2: A data model example

The ORM used in the Ruby on Rails framework is called
Active Records. Figure 2 shows a simple Active Records
specification for a social networking application where users
have profiles which store their photo and video files. The
photos and videos can be tagged by users, and users can
have different roles. Below, we explain different types of
declarations supported by Active Records using this exam-
ple, and we discuss how these declarations can be formalized
as relational constraints on a formal data model.

We define a data model as a tuple M = 〈S, C, D〉 where S is
the data model schema identifying the sets and relations of
the data model, C is a set of relational constraints, and D

is a set of dependency constraints. The schema S identifies
the names of the object classes and the names and domains
of the relations in the data model. For example, the schema
for the example shown in Figure 2 will identify the following
set of object classes {User, Role, Profile, Photo, Video, Tag}
and the relations among these object classes {photo-profile,
photo-tag, photo-user, profile-user, profile-video, role-user,
tag-video}, The relational constraints in C express the con-
straints on these relations that are imposed by their declara-
tions. If a given relation r satisfies a given constraint, then
we would state that r |= C.

Basic Relation Declarations.Rails supports three basic
types of relations among objects: 1) one-to-one, 2) one-to-

many, and 3) many-to-many. The has_one and belongs_to

declarations in lines 3 and 10 in Figure 2 define a one-to-one
relation between the User and Profile classes. More accu-
rately, this is a one-to-zero-or-one relation and it declares
that each User object must be associated with zero or one
Profile object, and each Profile object must be associated
with exactly one User object. In order to formalize this re-
lation as a constraint, let us use oU and oP to denote the set
of objects for the User and Profile classes and rU−P to de-
note the relation between User objects and Profile objects.



Then the constraint that corresponds to this relation is for-
malized as:

(∀p ∈ oP ,∃u ∈ oU , (u, p) ∈ rU−P )

∧ (∀p, p′ ∈ op, ∀u ∈ oU ,

((u, p) ∈ rU−P ∧ (u, p′) ∈ rU−P ) ⇒ p = p′)

∧ (∀p ∈ op,∀u, u′ ∈ oU ,

((u, p) ∈ rU−P ∧ (u′, p) ∈ rU−P ) ⇒ u = u′) (1)

Next, let us consider the one-to-many relation between the
Profile and Photo classes, which is declared in the Rails
data model in Figure 2 using the has_many and belongs_to

declarations in lines 11 and 16. Using oP and oPh to denote
the set of objects for the Profile and Photo classes and rP−Ph

to denote the profile-photo relation, the formal data model
constraint that corresponds to this declaration is:

(∀ph ∈ oPh,∃p ∈ oP , (p, ph) ∈ rP−Ph)

∧ (∀p, p′ ∈ oP , ∀ph ∈ oPh,

((p, ph) ∈ rP−Ph ∧ (p′, ph) ∈ rP−Ph) ⇒ p = p′) (2)

Finally, a many-to-many relation can be expressed in Rails
using the has_and_belongs_to_many declaration on both sides
of the relation as shown in lines 2 and 7 in Figure 2. This
declares a many-to-many relation between the User and Role
classes. For such declarations we do not have to create any
additional constraints since any relation is a many-to-many
relation.

Extensions.Rails provides a set of options that can be
used to extend the three basic relations mentioned above.
The first option is the :through option for the has_many and
has_one declarations. The :through option enables the dec-
laration of new relations that are the composition of two
other relations. Consider line 4 in Figure 2 which ends with
:through => :profile and declares a relation between User
and Photo objects. When this declaration is combined with
the declarations of the relation between User and Profile ob-
jects (lines 3 and 10) and Profile and Photo objects (lines 11
and 16), it specifies that the relation between the User and
Photo objects (rU−Ph) is the composition of the relations
between the User and Profile objects (rU−P ) and the Profile
and the Photo objects (rP−Ph). This can be formalized as:

∀u ∈ oU , ∀ph ∈ oPh, (u, ph) ∈ rU−Ph ⇔

(∃p ∈ oP , (u, p) ∈ rU−P ∧ (p, ph) ∈ rP−Ph) (3)

The second option that can be used to extend relations is the
:conditions option, which can be set on all of the four decla-
rations (has_one, has_many, belongs_to, and
has_and_belongs_to_many). The :conditions option limits the
relation to those objects that meet a certain criteria. For ex-
ample, based on the relation declaration in lines 12 and 13 in
Figure 2, Video objects are only related to a Profile object if
their format field is mp4. (Note that the condition statement
needs to be in the form of the WHERE clause of a SQL
query.) The formalization of this constraint defines a set of
objects (oV ′) that is a subset of the Video objects (oV ) (cor-
responding to Video objects with format field “mp4”) and

restricts the relation between the Profile and Video objects
(rP−V ) to that subset. Formally:

oV ′ ⊆ oV ∧ (∀p ∈ oP , ∀v ∈ oV , (p, v) ∈ rP−V ⇒ v ∈ oV ′) (4)

Rails also supports the declaration of polymorphic associ-
ations. This is similar to the idea of interfaces in object
oriented design, where dissimilar things may have common
characteristics that are embodied in the interface they im-
plement. In Rails, polymorphic associations are declared by
setting the :polymorphic option on the belongs_to declara-
tion and the :as option on the has_one or has_many declara-
tions. We see the use of the :polymorphic option in Figure 2
between Tags, Photos and Videos (lines 17, 22, 25). Photos
and Videos do not have a sub-class relationship but they
both can have Tags. The use of the :polymorphic option in
the Tag class creates a relationship which allows any class to
act as a Taggable object and relate to the Tag class via this
relation. This is formalized by defining a set of objects for
the superset and then expressing inheritance using subset
constraints. For the example above, we define a new set of
objects called Taggable (oT ), the superset, and declare that
Video objects (oV ) and Photo objects (oPh) are mutually
exclusive subsets of the Taggable objects as follows:

oV ⊆ oT ∧ oPh ⊆ oT ∧ oV ∩ oPh = ∅ (5)

Now a relation can be formally specified between Tag and
Taggable objects using ideas discussed earlier.

Dependency Constraints.The final Rails construct we
want to discuss adds some dynamism to the data model.
It allows the modeling of object deletion at the data model
level. The Rails construct for this is the :dependent op-
tion, which can be set for all the relation declarations ex-
cept :has_and_belongs_to_many. Normally when an object
is deleted, its related objects are not deleted. However, by
setting the :dependent option to :destroy or :delete

(:delete_all for has_many), deleting an object will also delete
the associated objects. Although there are several differ-
ences between :destroy and :delete, the one that is im-
portant for our purposes is that :delete will directly delete
the associated objects from the database without looking at
their dependencies, whereas :destroy first checks whether
the associated objects itself has associations with the :de-

pendent option set.

In Figure 2 we see that the User class has the :dependent

option set for the relation with the Profile class (line 3).
Thus, when a User object is deleted, the Profile object that
is associated with that User will also be deleted. Further,
since the :dependent option is set to :destroy, any relations
of the Profile class with the :dependent option set will cause
those associated objects to be deleted as well.

Formal modeling of the dependency constraints requires us
to model the delete operation. Consider the relation between
the User and Profile objects. In order to model the delete
operation we have to specify the set of User objects, the
set of Profile objects and the relation between the User and
Profile objects both before and after the delete operation
(oU , o′U , oP , o′P , rU−P , and r′U−P , respectively). Then we



need to specify that when a User object is deleted, the Profile
objects related to that User are also deleted. Formally:

o′P ⊆ oP ∧ o′U ⊆ oU ∧ r′U−P ⊆ rU−P

∧ (∃u ∈ oU , u 6∈ o′U ∧ (∀u′ ∈ oU , u′ 6= u ⇒ u′ ∈ o′U )

∧ (∀p ∈ oP , (u, p) ∈ rU−P ⇒ p 6∈ o′P )

∧ (∀p ∈ oP , (u, p) 6∈ rU−P ⇒ p ∈ o′P )

∧ (∀u′ ∈ oU , ∀p ∈ oP , ((u′, p) ∈ rU−P ∧ (u, p) 6∈ rU−P )

⇒ (u′, p) ∈ r′U−P )) (6)

The constructs we have discussed above form the essence
of Rails data models. Similar constructs are also supported
by other ORMs such as CakePHP, which has the equivalent
of the four basic Rails association declarations and all dec-
laration options except for the :polymorphic, and Django,
which has the ability to create all three basic relations and
:through relations like in Rails, but none of the remaining
features. Using such constructs, a developer can specify
complex relations among objects of an application. Since
a typical application would contain dozens of object classes
with many relations among them, it is possible to have er-
rors and omissions in the data model specification that can
result in unexpected behaviors and bugs. Hence, it would be
worthwhile to automatically verify the data models. Below,
we formalize the data model verification problem.

Formalizing Verification Queries.In order to formalize
verification queries, we first define data model instances and
what it means for the data model instance to satisfy a given
set of data model constraints.

A data model instance is a tuple I = 〈O, R〉 where O = {o1,

o2, . . . onO
} is a set of object classes and R = {r1, r2, . . . rnR

}
is a set of object relations and for each ri ∈ R there exists
oj , ok ∈ O such that ri ⊆ oj × ok.

Given a data model instance I = 〈O, R〉, we write R |= C to
denote that the relations in R satisfy the constraints in C.
Similarly, given two instances I = 〈O, R〉 and I ′ = 〈O′, R′〉
we write (R,R′) |= D to denote that the relations in R and
R′ satisfy the constraints in D.

A data model instance I = 〈O, R〉 is an instance of the data
model M = 〈S, C, D〉, denoted by I |= M , if and only if 1)
the sets in O and the relations in R follow the schema S,
and 2) R |= C.

Given a pair of data model instances I = 〈O, R〉 and I ′ =
〈O′, R′〉, (I, I ′) is a behavior of the data model M = 〈S, C, D〉,
denoted by (I, I ′) |= M if and only if 1) O and R and O′

and R′ follow the schema S, 2) R |= C and R′ |= C, and 3)
(R, R′) |= D.

Given a data model M = 〈S, C, D〉, we will define four types
of properties: 1) state assertions (denoted by AS): these
are properties that we expect to hold for each instance of
the data model; 2) behavior assertions (denoted by AB):
these are properties that we expect to hold for each pair of
instances that form a behavior of the data model; 3) state
predicates (denoted by PS): these are predicates we expect
to hold in some instance of the data model; and, finally, 4)
behavior predicates (denoted by PB): these are predicates

we expect to hold in some pair of instances that form a
behavior of the data model. We will denote that a data
model satisfies an assertion or a predicate as M |= A or
M |= P , respectively. Then, we can use the following formal
definitions for these four types of properties:

M |= AS ⇔ ∀I = 〈O, R〉, I |= M ⇒ R |= AS

M |= AB ⇔ ∀I = 〈O, R〉, ∀I′ = 〈O′, R′〉

(I, I′) |= M ⇒ (R, R′) |= AB

M |= PS ⇔ ∃I = 〈O, R〉, I |= M ∧ R |= PS

M |= PB ⇔ ∃I = 〈O, R〉, ∃I′ = 〈O′, R′〉),

(I, I′) |= M ∧ (R, R′) |= PB

To perform verification of data models, we use the formal-
ization presented above to convert verification queries about
the data model to satisfiability of formulas in the theory of
uninterpreted functions. We then use an SMT solver to an-
swer the verification queries, as we discuss next.

3. TRANSLATION TO SMT
SMT-LIB is the standard input language for SMT solvers [18].
We have implemented a translator that takes Rails Active
Record files describing the data model as input and gen-
erates an SMT-LIB specification for the data model. The
generated SMT-LIB specification consists of a conjunction of
constraints in the theory of uninterpreted functions. In this
section we describe how different Active Record constructs
that define the data model can be translated to constraints
in the theory of uninterpreted functions.

SMT-LIB specifications are written as sequences of
s-expressions. Uninterpreted functions are declared using
the declare-fun command and types are declared using the
declare-sort command. For example, the specification

(declare-sort Video 0)
(declare-fun isMp4Video (Video) Bool)

declares a Video type (that takes 0 parameters) and a boolean
function called isMp4Video that accepts a value of type Video.

SMT-LIB supports the basic boolean operators (not, and,

or), equality (=), implication (=>), and if-then-else (ite).
Quantifiers are expressed using the forall and exists op-
erators. Constraints are specified using the keyword assert.

After this short overview of the SMT-LIB language syntax,
we now explain how we translate the formal model con-
straints discussed in Section 2 to SMT-LIB. Let us first con-
sider constraint (3) from Section 2 which characterizes the
semantics of a one-to-many relation declaration. We trans-
late the one-to-many relation between the Profile and Photo
classes to SMT-LIB using an uninterpreted function as:

(declare-sort Profile 0)

(declare-sort Photo 0)
(declare-fun profile_photo (Photo) Profile)

where a Photo and a Profile object are related if and only if
the profile_photo function maps one to the other.

Constraint (1) in Section 2 represents the semantics of a
one-to-one relation declaration. We translate such a rela-
tion to SMT-LIB using an uninterpreted function above, but
adding an extra constraint restricting the cardinality of the
relation. For example, the one-to-one relation between User
and Profile is translated as:



(declare-sort User 0)

(declare-sort Profile 0)
(declare-fun user_profile (Profile) User)

(assert (forall ((p1 Profile)(p2 Profile))
(=> (not (= p1 p2))

(not (= (user_profile p1) (user_profile p2) ))

) ))

Note that the above constraint specifies each User is asso-
ciated with one or no Profile and each Profile is associated
with exactly one User as we expect based on the semantics
of the one-to-one relation declaration.

Since uninterpreted functions map each input value to a sin-
gle value in the range, it is not possible to represent a many-
to-many relation between two sets using an uninterpreted
function with one parameter as we did for the one-to-one
and one-to-many relations. Instead, we translate a many-
to-many relation declaration to SMT-LIB by declaring an
uninterpreted boolean function with two arguments that re-
turns true if and only if the two objects passed in as argu-
ments are related. For instance, a many-to-many relation
between the User and Role classes is translated as:

(declare-sort User 0)
(declare-sort Role 0)

(declare-fun user_role (User Role) Bool)

As discussed in Section 2, relations that are the composition
of other relations can be declared in a data model using the
:through keyword and constraint (4) provides a formalization
of such declarations. For example, assume that Users are
associated with Profiles, Profiles are associated with Photos
and the data model declares a third relation between Users
and Photos such that it is the composition of the other two
relations. This is translated to SMT-LIB as1:

(declare-sort Profile 0)

(declare-sort Photo 0)
(declare-sort User 0)

(declare-fun profile_photo (Photo) Profile)
(declare-fun user_profile (Profile) User)
(declare-fun user_photo (Photo) User)

(assert (forall ((u User)(ph Photo))
(iff (= u (user_photo ph)) (exists ((p Profile))

(and (= u (user_profile p)) (= p (profile_photo ph)) ))
) ))

The :conditions option is used to express a relationship be-
tween one set of objects and the subset of another set of ob-
jects and is formalized in constraint (5) of Section 2. Since
there is no support for subtyping or inheritance in the SMT-
LIB language, we model the :conditions option by creating
a boolean function that returns true if and only if the argu-
ment object is in the designated subset. To give a concrete
example, say Videos are associated with a Profile only if
the Profile is active. The SMT-LIB translation of such a
declaration would be:

(declare-sort Video 0)

(declare-sort Profile 0)
(declare-fun isActive (Profile) Bool)
(declare-fun activeprofile_video (Profile) Video)

(assert (forall ((p Profile)(v Video))
(=> (= v (activeprofile_video p)) (isActive p) )

))

1The if and only if operator, iff, is used here for clarity.
This can easily be converted into a double implication to
conform to the official SMT-LIB set of operators.

Here, the isActive function is used to characterize the subset
of Profiles that are active, and the final constraint ensures
that the function activeprofile_video only returns active
Profiles.

Next, Rails Active Records support the specification of poly-
morphic relations as discussed in Section 2 and formalized in
constraint (6). In order for one type to be related to multiple
other types, one can create a supertype that the former type
can relate to. For example, if a Tag can be related to both
Photos and Video, we can create a supertype of Photo and
Video that Tag can be related to. Let us call this supertype
Taggable and let Photo and Video be subtypes of it. As
mentioned earlier, SMT-LIB does not support subtyping so
we use boolean functions to model such a declaration. We
also add a constraint that states the Taggable type is ab-
stract, i.e. all Taggable objects are either Photos or Videos,
and that these subtypes are mutually exclusive:

(declare-sort Tag 0)
(declare-sort Taggable 0)

(declare-fun isPhoto (Taggable) Bool)
(declare-fun isVideo (Taggable) Bool)
(assert (forall ((t Taggable)) (and

(or (isPhoto t) (isVideo t) )
(iff (isPhoto t) (not (isVideo t)) )

)))
(declare-fun taggable_tag (Tag) Taggable)

This example shows a simple case of polymorphic relations.
In general, a class may be polymorphically-related to multi-
ple classes. For instance, Multimedia may have a polymor-
phic relation with the Video and Audio classes. Combined
with the scenario above, Video will now require two super-
types (say Taggable and MultimediaItem). In our tool we
actually create one ultimate supertype called Polymorphic-
Class of which any polymorphically-related types are sub-
types (such as Photo, Video, and Audio) as well as their
supertypes (Taggable and MultimediaItem). All these sub-
types are expressed in SMT-LIB language using boolean
functions. Then an assert is added which contains con-
straints specifying which types are subtypes of which super-
types, that subtypes are mutually exclusive of others in the
same supertype, that the supertypes themselves are abstract
(meaning all elements belong to one of its subtypes), and
that PolymorphicClass is also abstract. Furthermore, since
subtypes (such as Photo and Video) are not types of their
own (i.e. no sort is declared for them), any non-polymorphic
relations with these classes require an assert that enforces
the range of the function, similar to constraint (5).

Finally, let us discuss delete dependencies that are declared
using the :dependent option and formalized with constraint
(7) in Section 2. This type of constraint expresses a change
from one state of the model (before an object is deleted) to
another (the state of the model after the object deleted, i.e.,
post-delete state). We model the post-delete state in SMT-
LIB translation using boolean functions (denoted with the
prefix “Post”). There is one such function for every type.
This function returns true if the object exists after the delete
operation. For example:

(declare-sort User 0)

(declare-fun Post_User (User) Bool)



There is also one such boolean function for every relation.
This function returns true if and only if the two objects are
still related after the deletion occurs. For instance:

(declare-fun user_profile (Profile) User)

(declare-fun Post_user_profile (Profile User) Bool)

When one wants to perform a verification query about how
the deletion of an object affects other objects and relations,
these boolean functions are used to express the property. For
example, to express a property about deleting a User, our
translator generates a constraint that defines the Post object
functions as well as the Post relation functions according to
the dependencies expressed in the data model. The algo-
rithm to generate this takes into account the effect of depen-
dencies on transitive, conditional and polymorphic relations.
Our algorithm assumes no cyclic delete dependencies. En-
coding cyclic dependencies requires transitive closure, which
is not expressible in the theory of uninterpreted functions.
Here is the constraint generated by our translation algorithm
for the simple User-Profile scenario of deleting a User, where
x denotes the User being deleted:

(assert (not (forall ((x User)) (=> (and

(forall ((a User)) (ite (= a x)
(not (Post_User a)) (Post_User a)))

(forall ((b Profile)) (ite (= x (user_profile b))

(not (Post_Profile b)) (Post_Profile b) ))
(forall ((a Profile) (b User)) (ite

(and (= b (user_profile a)) (Post_Profile a))
(Post_user_profile a b)

(not (Post_user_profile a b)) ))
) ;Remaining property-specific constraints go here

)))

4. DATA MODEL PROJECTION
Our tool checks the correctness of each verification query
separately, and this creates an opportunity for reducing the
size of the generated SMT-LIB specifications. Reducing the
size of the generated SMT-LIB specifications reduces the
cost of the satisfiability check and hence increases the per-
formance of our tool. The basic idea is the following: Given
a property to verify, we can reduce the size of the gener-
ated SMT-LIB specification by removing the declarations
and constraints about the parts of the data model that does
not depend on the property that we are planning to verify.
We call this technique property-based data model projection.

We formally define the property-based data model projec-
tion as a function, denoted by Π, that takes a data model
and a property as input and returns a new data model.
Hence, given a data model M = 〈S, C, D〉 and a property p,
Π(M, p) = Mp where Mp = 〈S, Cp, Dp〉 is the projected data
model such that Cp ⊆ C and Dp ⊆ D. Note that the projec-
tion function removes some of the relational and dependency
constraints from the model, therefore reducing the size of the
projected model. If the property p is a state assertion or a
state predicate (denoted by AS and PS in Section 2), then
the projection function Π removes all the dependency con-
straints (i.e., Dp = ∅) since dependency constraints are only
relevant for behavior assertions and predicates (denoted by
AB and PB in Section 2).

A key property of the projection function Π is that it pre-
serves the correctness of the input property. Formally, M |=
p ⇔ Π(M, p) |= p, for any property p.

Algorithm 1 Data Model Projection Algorithm
Input: model: Rails Active Records files; p: property; delclass: the

class name for the deleted object (only needed when p is a behavior
assertion or predicate)

Output: Projected SMT-LIB specification

pclasses := list of classes mentioned in p

prelations := list of relations mentioned in p

if p is a behavior assertion or predicate then

Follow dependencies for delclass with respect to the relations
given in prelations

Add any dependent classes, and the relations through which
they are dependent, to pclasses and prelations

end if

for all class in pclasses do

Output an uninterpreted function declaration and Post function
declaration for class

if there exists a relation in prelations that has a conditional
relation with class then

Output a boolean function declaration that models the con-
ditional subset

end if

end for

Output the polymorphic constraints for the polymorphic classes in
pclasses

for all relation in prelations do

Output a function declaration, any associated constraints based
on the declaration of the relation, and the Post function declaration
for the relation

if relation is a transitive relation that is composition of multiple
relations then

Output function declarations, associated constraints, and
Post function declarations for all relations that are part of the com-
position

end if

end for

Let us now explain why this property holds. In our veri-
fication approach, all verification queries are translated to
satisfiability queries. Hence, the above property is equiva-
lent to stating that the SMT-LIB specification we generate
from the original model M and the property p is satisfiable
if and only if the SMT-LIB specification we generate from
the projected model Π(M, p) and the property p is satisfi-
able. Note that, if the SMT-LIB specification we generate
from the model Π(M, p) and the property p is not satisfiable,
then the SMT-LIB specification we generate from the origi-
nal model M and the property p cannot be satisfiable since
the projection operation Π(M,p) only removes constraints,
resulting in a less constrained SMT-LIB specification. How-
ever, our projection algorithm also guarantees that if the
SMT-LIB specification we generate from the model Π(M,p)
and the property p is satisfiable, then the SMT-LIB spec-
ification we generate from the original model M and the
property p is also satisfiable. This is true due to two rea-
sons: 1) The constraints that the projection function deletes
from the original model can never be self-contradictory since
they correspond to class and relation declarations, and it is
not possible to declare a self-contradictory data model that
does not allow any instances using the constructs we ana-
lyze; 2) The constraints that the projection function deletes
from the original model cannot contradict with the verified
property p since the projection algorithm only deletes a class
or a relation if that class or relation has no influence on the
property p.

We implemented this property-based data model projection
as part of our verification tool. The algorithm used is given
in Algorithm 1. It requires as input the Rails data model
and the property the user wishes to verify about the data



model. If the property is a behavior predicate or assertion,
it also requires the class name for the object to be deleted.
The projected SMT-LIB specification output by the trans-
lator contains constraints on only those classes and relations
that are explicitly mentioned in the property and the classes
and relations that are related to them based on transitive
relations, dependency constraints or polymorphic relations.

5. EXPERIMENTS
We used five open-source Ruby on Rails web applications for
evaluating the effectiveness of our SMT-based unbounded
data model verification approach. We wrote ten properties
about each application’s data model that we expected to
hold based on the semantics of the application. Then using
our tool, we generated an SMT-LIB specification for each
application. This specification is conjoined with a property
and then sent to the SMT solver for satisfiability check.

We used Microsoft’s SMT solver, Z3 [20], in our experiments.
In addition to returning unsatisfiable or satisfiable, an SMT
solver may also return “unknown” or it may timeout since
the quantified theory of uninterpreted functions is known to
be undecidable [4]. In our experiments the timeout limit
was set to five minutes.

Assertions that are verified using our approach are guar-
anteed to hold in the application. However, assertions that
fail may or may not hold in the application—the verification
results simply indicate that the property was not enforced
by the application’s data model. It may not be possible to
observe the failure during program execution since the prop-
erty may actually be enforced in parts of the application that
we do not model (e.g., in the Controller code). However, we
consider a failed property a data model error if the property
could have been enforced statically in the data model but
was not. On the other hand, if a failed property cannot be
enforced in the data model using the Ruby on Rails con-
structs, then we do not consider it a data model error. Thus
for properties that failed we performed further manual in-
vestigation to identify which failing properties were indeed
data model errors.

The Applications.Table 1 lists the sizes of the five appli-
cations in terms of lines of code, the number of classes, and
the number of data model classes. OpenSourceRails (OSR)
(http://www.opensourcerails.com) is a social project gallery
application that allows users to submit projects, as well as
bookmark and rate them. Tracks (http://getontracks.org/)
is an application that lets users create and manage to-do
lists, where lists can be organized by context and project.
FatFreeCRM (http://www.fatfreecrm.com/) is a customer
relationship management software that organizes a business’
customers, campaigns, opportunities, and accounts.
Substruct (http://code.google.com/p/substruct/) is an e-
commerce application where users can add products to cart
and create wishlists. LovdByLess (http://lovdbyless.com/)
is a social networking site with the usual features such as
user profile with pictures, becoming friends, etc.

Verification Results.The properties we checked on these
applications are listed in Table 2, along with their type from
Section 2. (AS for state assertions, AB for behavior asser-

Table 1: Sizes of the Applications
LOC Classes Data Models

LovdByLess 3787 61 13
Tracks 6062 44 13
OSR 4295 41 15
FatFreeCRM 12069 54 20
Substruct 15639 85 17

tions, PS for state predicates, and PB for behavior predi-
cates).

The results of the verification are also shown in Table 2.
Xindicates that the property was verified and × indicates
that the property failed. A total of sixteen properties we
tried to verify failed. We investigated each of these failures
manually to determine if they correspond to data model er-
rors.

For example, Property L5 from LovdByLess does not hold
due to the limited expressiveness in Rails constructs. There
is no construct that allows you to add a constraint to a
relation expressing that an object cannot be related to itself.
Thus the application programmer in LovdByLess had to add
a validation function to the model to ensure that a user
cannot create a Friend request for herself. Thus the failure
of the property L5 does not indicate a data model error.

Another property that failed was property O2. The setup
in OpenSourceRails is that a user can bookmark projects,
so a User has many Bookmarks, a Bookmark belongs to a
Project, and a Project has many Bookmarks. The property
O2 states that a User is allowed to Bookmark a Project at
most once. However, the declarations used to set up these re-
lationships allow the same user to create multiple bookmarks
with the same Project. Thus the application programmer
had to enforce this property using the user interface and code
in the controller. However, what the programmer desires is
a many-to-many relationship between User and Project, as
opposed to two one-to-many relationships. One reason for
such a setup is if they wanted to hold extra information in
the Bookmark class. Investigation into this class shows that
this is not the case; hence this corresponds to a data model
error in this application.

A failing property indicates the application’s data model
does not satisfy the property; however, the property may
still hold in the overall application because the property is
being enforced outside of the data model, as in property O2.
However, this was not the case for property O6. This prop-
erty failed because the declaration in the User model does
not have the :dependent option set. Thus a User’s associ-
ated Bookmarks are not deleted, causing the property to
fail. Because the deletion of a user leaves orphaned Book-
marks in the database, property O6 is an example of a data
model error that is also an error in the application.

In total we discovered eleven data modeling errors from the
sixteen properties that failed. There were two data model
errors in LovdByLess, three each in Tracks and OSR, one in
Substruct and two in FatFreeCRM. The fact that we were
able to discover data model errors in real-world applications
is evidence that our approach can be an effective verification
approach in practice.



Performance.To further evaluate the effectiveness of our
approach, we measured performance of the verification task.
Specifically, we measured the verification time reported by
Z3 and the number of variables and clauses produced in
the SMT specification. By number of variables we mean
the number of sorts, functions, and quantified variables. By
number of clauses we mean the number of asserts, quantifiers
and operations in the SMT-LIB specification.

The measurements were taken for the SMT-LIB specification
generated for each property. The values were then averaged
over the properties for each application. The results for the
verification times are given in Table 3. What we immedi-
ately noticed is that the verification is extremely fast; the
longest verification time is just 0.025 seconds. One thing to
note is that these values do not include the times for those
properties that timed out during verification. There were
four such properties, all for FatFreeCRM. So although un-
bounded verification is very quick, the disadvantage is that
some properties may not give an answer to the verification
query.

The difficulty the SMT solver is having when it times out is
due to the number of quantifiers in the SMT specification.
To minimize this number we ran the experiments again, this
time using the data model projection algorithm discussed in
Section 4. With projection we were able to obtain answers to
all of the properties that timed out. Further, the verification
time decreased for all properties. On average, using the data
model projection the verification time decreased by 40%.

To compare effectiveness between bounded and unbounded
verification, we used the Alloy Analyzer [13] to verify
the same set of properties. The data models of all five
applications were run through the ActiveRecord to Alloy
translator that was implemented in our previous work [16].
The same measurements were taken as with Z3, but over an
increasing bound from at most 10 objects for each class to
at most 35 objects for each class. These values were plotted
alongside the Z3 verification time for each application where
the solver did not time out. As seen in Figure 3, unbounded
verification is much faster than bounded verification, even
for the smallest bound of 10 objects. Bounded verification
using Alloy took up to tens of seconds whereas Z3, took less
than a second. However, since Z3 is not guaranteed to ter-
minate because we are generating SMT-LIB specifications
in the theory of uninterpreted functions with quantification,
we observe that bounded and unbounded verification can be
complementary approaches since bounded verification can
be used when the unbounded approach fails.

Since Alloy specializes in the verification of object models,
it is rather surprising that there is such a drastic difference
between the verification times of Z3 and Alloy. There may
be several reasons why unbounded verification did so well.
Z3 uses many heuristics to eliminate quantifiers in formulas.
It uses an E-graph to instantiate quantified variables which,
in conjunction with code trees, an inverted path index and
eager instantiation, makes it very effective at dealing with
quantifiers [8]. Note that these heuristics do not affect the
soundness of the verification. Another reason why Z3 per-
formed better than Alloy may be due to their implementa-
tion languages: Z3 is implemented in C++ whereas Alloy

Table 2: Verification Results

LovdByLess Properties

AS L1. A Forum Post is always associated with a Topic X

PS L2. A Forum Topic may have no Forum Posts X

AS L3. A Photo is always associated with a user Profile X

AS L4. Profile’s FeedItems = Profile’s Feed’s FeedItems X

AS L5. A User can’t be her own Friend ×

AB L6. Deleting user Profile deletes Photos ×

AB L7. Deleting user Profile doesn’t delete any Friends X

AB L8. Deleting a user Profile leaves no orphan Users ×

AB L9. Deleting a Message doesn’t delete a User X

AB L10. Deleting a Forum Topic leaves no dangling Posts X

Tracks Properties

AS T1. Every Todo has a Context X

PS T2. A Context may have no Todos X

PS T3. Todo can have no associated Project ×

AS T4. Note’s User = Note’s Project’s User ×

AS T5. Every User has a Preference ×

AB T6. Deleting a Project leaves no dangling Notes X

AB T7. Deleting a Preference leaves no orphan Users ×

AB T8. Deleting a User leaves no dangling Contexts X

AB T9. Deleting a User leaves no dangling Projects X

AB T10. Deleting a Context leaves no dangling Todos X

OSR Properties

PS O1. A Project can have multiple Screenshots X

PS O2. A User can Bookmark a Project at most once ×

PS O3. A User can Bookmark her own submitted Project X

AS O4. Project’s Bookmark’s User = Project’s User X

PS O5. A User can put multiple Comments on one Project X

AB O6. Deleting a User deletes her Bookmarks ×

AB O7. Deleting a User deletes her Activities ×

AB O8. Deleting a User doesn’t delete her Comments X

AB O9. Deleting a Project deletes its Ratings ×

AB O10. Deleting a Project Rating doesn’t delete Project X

Substruct Properties

AS S1. Every Cart is associated with a User X

PS S2. An Product can be on multiple Wishlists X

PS S3. A Wishlist can be empty X

AS S4. A Product is on a User’s Wishlist at most once ×

PS S5. A User can have multiple Orders X

AB S6. Deleting a Cart doesn’t delete its Products X

AB S7. Deleting a Product deletes it from all Carts ×

AB S8. Deleting a User deletes her Orders ×

AB S9. Deleting User doesn’t delete Items on its Wishlists X

AB S10. Deleting a Wishlist doesn’t delete its Item X

FatFreeCRM Properties

AS F1. Every Task must have a User X

AS F2. Every Lead belongs to exactly one User X

AS F3. AccountOpportunity’s Opportunity =
AccountOpportunity’s Account’s Opportunity X

PS F4. A Contact may have no Tasks X

AS F5. User’s Opportunity = User’s Campaigns’ Opportunity ×

AB F6. Deleting a Lead does not delete Contacts X

AB F7. Deleting Lead does not delete User X

AB F8. Deleting an Account deletes associated Tasks X

AB F9. Deleting a Lead leaves no dangling Contacts ×

AB F10. Deleting an Account does not delete Contacts X

Table 3: Z3 Verification Times in seconds
not projected projected

LovdByLess 0.025 0.015
Tracks 0.023 0.014
OSR 0.016 0.012
Substruct 0.025 0.011
FatFreeCRM 0.022 0.013



(as well as the SAT solver it uses, SAT4J) is implemented in
Java. Finally, another likely reason that Z3 is more efficient
than Alloy is that SMT solvers operate at a higher level of
abstraction than SAT solvers. Thus SMT solvers can use
information about the structure and semantics of a formula
to make inferences about satisfiability more accurately as
well as more efficiently than a SAT-based approach which
converts the verification to SAT formulas using a Boolean
encoding. In fact, due to increasing size of the Boolean
encoding, bounded verification suffers from an exponential
increase in verification time with increasing bound.

Besides verification time, we also measured the number of
clauses and variables created by Alloy’s SAT translation.
These measurements were averaged over the properties for
each application and plotted over increasing scope, as shown
in Figure 5.

The number of clauses and variables were also averaged over
properties for the SMT-LIB specifications for each applica-
tion. In Figure 4 is a plot of the number of clauses and
variables in the specifications for each application. Both the
projected and non-projected versions of the specifications
are shown. We see a tremendous 80% decrease in the num-
ber of variables and clauses after performing the data model
projection. Although the number of variables and clauses
in the SMT specification are not directly comparable to the
figures produced by Alloy, we can still observe that the SMT
formula size is much smaller than the one used by the SAT
solver. We also observe that bounded verification has the
disadvantage that the size of the formula used by the SAT
solver increases exponentially with respect to bound.

Overall our experimental results indicate that unbounded
verification using SMT solvers is more efficient than bounded
verification. This leads us to conclude that the approach we
presented in this paper is a feasible and efficient approach
to data model verification.

6. RELATED WORK
There has been prior work on the verification of data mod-
els; these works present bounded verification approaches us-
ing the Alloy Analyzer. For example, mapping relational
database schemas to Alloy has been studied before [7]. Also,
translating ORA-SS specifications (a data modeling language
for semi-structured data) to Alloy and using Alloy analyzer
to find an instance of the input data model has been investi-
gated [19]. However, unlike our work, these approaches are
bounded whereas our technique performs unbounded verifi-
cation. Also the translation is not automated in these earlier
efforts. Finally, Alloy has also been used for discovering bugs
in web applications related to browser and business logic in-
teractions [3]. This is a different class of bugs than the data
model related bugs we focus on in this paper.

There has been some recent work on unbounded verification
of Alloy specifications using SMT solvers [9], but to the best
of our knowledge this approach has not been implemented
yet. Unbounded verification of Alloy specifications may be
more challenging than the data model verification problem
that we focus on in this paper since the Alloy language pro-
vides powerful constructs such as transitive closure. Such
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constructs do not appear in the data models that we extract
from web applications.

There has been recent work on specification and analysis of
conceptual data models [17, 15, 11]. These efforts follow the
model-driven development approach whereas our approach
is a reverse engineering approach that extracts the model of
an existing application and analyzes it to find errors.

There are earlier results on the formal modeling of web appli-
cations focusing on state machine-based formalisms to cap-
ture the navigation behavior (for example, [12, 2, 10]). In
contrast to this line of work, we are focusing on analysis of
the data model rather than the navigational aspects of the
web applications.

There has been earlier work on reducing the cost of auto-
mated verification by analyzing dependencies such as cone
of influence reduction [1] and program analysis based reduc-
tions [5]. Compared to these earlier results, our projection
algorithm is a specialized reduction technique for data model
verification that utilizes the data model semantics.

The fact that verification with SMT solvers can be more
efficient than SAT-based bounded verification has been ob-
served in other verification domains [6]. However, the data
model verification problem we investigate in this paper is
different from the problems studied in these earlier works.

This paper builds on our earlier work on bounded verifi-
cation of Rails data models [16]. There are several signif-
icant differences in this paper compared to the work pre-
sented in [16]: 1) In this paper we use an unbounded ver-
ification approach based on SMT-solvers as opposed to the
bounded SAT-based verification approach used in [16]. 2)
This paper directly constructs formulas in the theory of un-
interpreted functions from verification queries about a given
Rails data model, whereas the approach presented in [16]
translates data models to Alloy specifications which Alloy
Analyzer then converts to boolean SAT formulas. 3) We
present a novel data model projection technique that sim-
plifies the generated formula by removing constraints about
the data model that are not relevant to the property be-
ing verified, improving the performance of the analysis. 4)
We present experimental analysis demonstrating the perfor-
mance of the proposed verification approach on five open
source Rails applications. 5) We experimentally compare
the unbounded verification approach presented in this paper
with the bounded verification approach presented in [16] and
show that the unbounded verification approach presented in
this paper is more efficient.

7. CONCLUSION
We presented an unbounded verification approach for web
application data models. We automatically extract a formal
data model from the ORM specifications in MVC-based web
applications and translate verification queries about these
models to satisfiability queries in the theory of uninterpreted
functions. We use an SMT solver to check the satisfiability
of the resulting formulas. This approach was implemented
in a tool that verifies Rails data models. Our experiments
demonstrate that our approach is effective in verifying data

models of real-world web applications, and that it is more
efficient than SAT-based bounded verification.
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