skip to main content
research-article

Progressive photon beams

Published: 12 December 2011 Publication History

Abstract

We present progressive photon beams, a new algorithm for rendering complex lighting in participating media. Our technique is efficient, robust to complex light paths, and handles heterogeneous media and anisotropic scattering while provably converging to the correct solution using a bounded memory footprint. We achieve this by extending the recent photon beams variant of volumetric photon mapping. We show how to formulate a progressive radiance estimate using photon beams, providing the convergence guarantees and bounded memory usage of progressive photon mapping. Progressive photon beams can robustly handle situations that are difficult for most other algorithms, such as scenes containing participating media and specular interfaces, with realistic light sources completely enclosed by refractive and reflective materials. Our technique handles heterogeneous media and also trivially supports stochastic effects such as depth-of-field and glossy materials. Finally, we show how progressive photon beams can be implemented efficiently on the GPU as a splatting operation, making it applicable to interactive and real-time applications. These features make our technique scalable, providing the same physically-based algorithm for interactive feedback and reference-quality, unbiased solutions.

Supplementary Material

JPG File (a181-jarosz.jpg)
MP4 File (a181-jarosz.mp4)

References

[1]
Akenine-Möller, T., Haines, E., and Hoffman, N. 2008. Real-Time Rendering 3rd Edition. A. K. Peters, Ltd., Natick, MA, USA.
[2]
Chandrasekar, S. 1960. Radiative Transfer. Dover Publications.
[3]
Chen, J., Baran, I., Durand, F., and Jarosz, W. 2011. Realtime volumetric shadows using 1D min-max mipmaps. In Symposium on Interactive 3D Graphics and Games, 39--46.
[4]
Engelhardt, T., and Dachsbacher, C. 2010. Epipolar sampling for shadows and crepuscular rays in participating media with single scattering. In Symposium on Interactive 3D Graphics and Games, 119--125.
[5]
Engelhardt, T., Novák, J., and Dachsbacher, C. 2010. Instant multiple scattering for interactive rendering of heterogeneous participating media. Tech. rep., Karlsruhe Institut of Technology, Dec.
[6]
Hachisuka, T., and Jensen, H. W. 2009. Stochastic progressive photon mapping. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia 2009) 28, 5 (Dec.), 141:1--141:8.
[7]
Hachisuka, T., Ogaki, S., and Jensen, H. W. 2008. Progressive photon mapping. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia 2008) 27, 5 (Dec.), 130:1--130:8.
[8]
Hachisuka, T., Jarosz, W., and Jensen, H. W. 2010. A progressive error estimation framework for photon density estimation. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia 2010) 29, 6 (Dec.), 144:1--144:12.
[9]
Havran, V., Bittner, J., Herzog, R., and Seidel, H.-P. 2005. Ray maps for global illumination. In Rendering Techniques 2005: (Proceedings of the Eurographics Symposium on Rendering), 43--54.
[10]
Herzog, R., Havran, V., Kinuwaki, S., Myszkowski, K., and Seidel, H.-P. 2007. Global illumination using photon ray splatting. Computer Graphics Forum (Proceedings of Eurographics 2007) 26, 3 (Sept.), 503--513.
[11]
Hu, W., Dong, Z., Ihrke, I., Grosch, T., Yuan, G., and Seidel, H.-P. 2010. Interactive volume caustics in single-scattering media. In Symposium on Interactive 3D Graphics and Games, 109--117.
[12]
Jarosz, W., Zwicker, M., and Jensen, H. W. 2008. The beam radiance estimate for volumetric photon mapping. Computer Graphics Forum (Proceedings of Eurographics 2008) 27, 2 (Apr.), 557--566.
[13]
Jarosz, W., Nowrouzezahrai, D., Sadeghi, I., and Jensen, H. W. 2011. A comprehensive theory of volumetric radiance estimation using photon points and beams. ACM Transactions on Graphics (Presented at SIGGRAPH 2011) 30, 1 (Jan.), 5:1--5:19.
[14]
Jensen, H. W., and Christensen, P. H. 1998. Efficient simulation of light transport in scenes with participating media using photon maps. In SIGGRAPH '98, 311--320.
[15]
Jensen, H. W. 2001. Realistic Image Synthesis Using Photon Mapping. A. K. Peters, Ltd., Natick, MA, USA.
[16]
Kajiya, J. T. 1986. The rendering equation. In Computer Graphics (Proceedings of SIGGRAPH 86), 143--150.
[17]
Knaus, C., and Zwicker, M. 2011. Progressive photon mapping: A probabilistic approach. ACM Transactions on Graphics (Presented at SIGGRAPH 2011) 30, 3 (May), 25:1--25:13.
[18]
Krüger, J., Bürger, K., and Westermann, R. 2006. Interactive screen-space accurate photon tracing on gpus. In Rendering Techniques 2006 (Proceedings of the Eurographics Workshop on Rendering), 319--330.
[19]
Lafortune, E. P., and Willems, Y. D. 1993. Bi-directional path tracing. In Compugraphics, 145--153.
[20]
Lafortune, E. P., and Willems, Y. D. 1996. Rendering participating media with bidirectional path tracing. In Eurographics Rendering Workshop 1996, 91--100.
[21]
Lastra, M., Ureña, C., Revelles, J., and Montes, R. 2002. A particle-path based method for monte carlo density estimation. In Rendering Techniques (Proceeeings of the Eurographics Workshop on Rendering).
[22]
Liktor, G., and Dachsbacher, C. 2011. Real-time volume caustics with adaptive beam tracing. In Symposium on Interactive 3D Graphics and Games, 47--54.
[23]
Lokovic, T., and Veach, E. 2000. Deep shadow maps. In SIGGRAPH, 385--392.
[24]
McGuire, M., and Luebke, D. 2009. Hardware-accelerated global illumination by image space photon mapping. In Proceedings of High Performance Graphics.
[25]
Parker, S. G., Bigler, J., Dietrich, A., Friedrich, H., Hoberock, J., Luebke, D., McAllister, D., McGuire, M., Morley, K., Robison, A., and Stich, M. 2010. Optix: A general purpose ray tracing engine. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2010) 29, 4 (July), 66:1--66:13.
[26]
Pauly, M., Kollig, T., and Keller, A. 2000. Metropolis light transport for participating media. In Rendering Techniques 2000 (Proceedings of the Eurographics Workshop on Rendering), 11--22.
[27]
Perlin, K. 2001. Noise hardware. In Realtime Shading, ACM SIGGRAPH Course Notes.
[28]
Raab, M., Seibert, D., and Keller, A. 2008. Unbiased global illumination with participating media. In Monte Carlo and Quasi-Monte Carlo Methods 2006. Springer, 591--606.
[29]
Schjøth, L., Frisvad, J. R., Erleben, K., and Sporring, J. 2007. Photon differentials. In GRAPHITE, ACM, New York.
[30]
Silverman, B. 1986. Density Estimation for Statistics and Data Analysis. Monographs on Statistics and Applied Probability. Chapman and Hall, New York.
[31]
Sun, X., Zhou, K., Lin, S., and Guo, B. 2010. Line space gathering for single scattering in large scenes. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2010) 29, 4 (July), 54:1--54:8.
[32]
Szirmay-Kalos, L., Tóth, B., and Magdics, M. 2011. Free path sampling in high resolution inhomogeneous participating media. Computer Graphics Forum 30, 1, 85--97.
[33]
Veach, E., and Guibas, L. 1994. Bidirectional estimators for light transport. In Photorealistic Rendering Techniques (Proceedings of the Eurographics Workshop on Rendering), 147--162.
[34]
Veach, E., and Guibas, L. J. 1997. Metropolis light transport. In Proceedings of SIGGRAPH 97, 65--76.
[35]
Walter, B., Zhao, S., Holzschuch, N., and Bala, K. 2009. Single scattering in refractive media with triangle mesh boundaries. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2009) 28, 3 (July), 92:1--92:8.
[36]
Williams, L. 1978. Casting curved shadows on curved surfaces. Computer Graphics (Proceedings of SIGGRAPH 78) 12 (Aug.), 270--274.
[37]
Woodcock, E., Murphy, T., Hemmings, P., and T. C., L. 1965. Techniques used in the GEM code for Monte Carlo neutronics calculations in reactors and other systems of complex geometry. In Applications of Computing Methods to Reactor Problems, Argonne National Laboratory.
[38]
Yue, Y., Iwasaki, K., Chen, B.-Y., Dobashi, Y., and Nishita, T. 2010. Unbiased, adaptive stochastic sampling for rendering inhomogeneous participating media. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia 2010) 29 (Dec.), 177:1--177:8.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 30, Issue 6
December 2011
678 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2070781
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 12 December 2011
Published in TOG Volume 30, Issue 6

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. density estimation
  2. global illumination
  3. participating media
  4. photon beams
  5. photon mapping

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)7
  • Downloads (Last 6 weeks)3
Reflects downloads up to 03 Nov 2024

Other Metrics

Citations

Cited By

View all

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media