
Open Research Online

Citation

Cabral, Liliana; Norton, Barry and Domingue, John (2009). The business process
modelling ontology. In: 4th International Workshop on Semantic Business Process
Management (SBPM 2009), Workshop at ESWC 2009, 1 Jun 2009, Crete, Greece.

URL

https://oro.open.ac.uk/20613/

License

None Specified

Policy

This document has been downloaded from Open Research Online, The Open University's
repository of research publications. This version is being made available in accordance
with Open Research Online policies available from Open Research Online (ORO) Policies

Versions

If this document is identified as the Author Accepted Manuscript it is the version after peer
review but before type setting, copy editing or publisher branding

https://oro.open.ac.uk/20613/
https://www5.open.ac.uk/library-research-support/open-access-publishing/open-research-online-oro-policies

The Business Process Modelling Ontology
Liliana Cabral

KMi, The Open University
Milton Keynes, UK
+44 1908 653800

l.s.cabral@open.ac.uk

Barry Norton
KMi, The Open University

Milton Keynes, UK
+44 1908 653800

b.j.norton@open.ac.uk

John Domingue
KMi, The Open University

Milton Keynes, UK
+44 1908 653800

j.b.domingue@open.ac.uk

ABSTRACT
In this paper we describe the Business Process Modelling
Ontology (BPMO), which is part of an approach to modelling
business processes at the semantic level, integrating knowledge
about the organisational context, workflow activities and
Semantic Web Services. We harness knowledge representation
and reasoning techniques so that business process workflows can:
be exposed and shared through semantic descriptions; refer to
semantically annotated data and services; incorporate
heterogeneous data though semantic mappings; and be queried
using a reasoner or inference engine. In this paper we describe our
approach and evaluate BPMO through a use case.

Categories and Subject Descriptors
I.2.4 [Knowledge Representation Formalisms and Methods]:
Representations. F.3.2 [Semantics of Programming
Languages]: Process models.

General Terms
Design, Standardization, Management, Languages.

Keywords
Semantic Business Process Modelling, Semantic Interoperability,
Ontology, Workflow Management.

1. INTRODUCTION
Business organisations today need agility and flexibility to deal
with highly dynamic environments, providing ever-changing
services and products as well as in interacting with diverse
customers and partners. A significant problem in the area of
Business Process Management (BPM) lies in bridging between
the organisational context, the diverse process workflow
notations, and the executable services that fulfill process
activities, by which business analysts would like to understand,
maintain and adapt their business processes.

Currently, business analysts use process modelling notations such
as BPMN [11] and EPC [14] to define business process models as
part of tool suites for BPM. These notations are useful at the
business level, but alone they provide no inference reasoning over
business processes. For example, BPMN tools are rich in control-
flow constructs, but the graphical elements contain only limited
textual information with no formal semantics. Some EPC-based
tools such as ARIS [14] on the other hand, provide integration of
different views (e.g. organisation, data and control) and levels
(e.g. requirements and implementation); however mediating
between these views and levels is a very complex task due to the
variety of underlying representations. In addition, it is very
difficult to use these notations to automatically query the business
context or draw relations between existing processes or services.
In this paper we present the Business Process Modelling
Ontology1 (BPMO), which plays a key role in solving the
problem above, by enabling the semantic annotation of high-level
business process models, which we assume can be fulfilled by
Web services. This work is part of the SUPER project2, which in
particular provides a set of integrated ontologies for facilitating
Semantic Business Process Management [6].
The rest of this paper is structured as follows. Section 2 describes
the BPMO approach. Section 3 describes the main concepts of
BPMO. Section 4 illustrates the use of BPMO and shows results
through a use case. Section 5 presents our conclusions and related
work.

2. APPROACH OVERVIEW
The Business Process Modelling Ontology (BPMO) is part of an
approach to modelling business processes at the semantic level,
integrating knowledge about the organisational context, workflow
activities and Semantic Web Services. This approach provides
support for various BPM activities, from modelling and querying
to execution and analysis; regardless of specific notations in a
manner which crosses domains and organisational boundaries. We
harness a number of knowledge representation and reasoning
techniques so that business process workflows can: be exposed
and shared through semantic descriptions; refer to semantically
annotated business data and services; incorporate heterogeneous
data though semantic mappings; and be queried using a reasoner
or inference engine. We argue therefore, that BPMO enables

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

1 http://www.ip-super.org/ontologies/process/bpmo/v2.0.1#bpmo
2 Semantics Utilised for Process Management within and between

Enterprises (http://www.ip-super.org)

seamless interoperation, querying, sharing, mediation and
translation of business processes.
Within our approach, a business analyst can draw a business
process diagram with a tool that automatically generates BPMO
instances (see example in Section 3), or he can use translators that
will transform specific notations from and to BPMO. BPMO can
thus be viewed as a bridging ontology enabling the annotation of
business processes workflows extended with organisational
context and automated translation between an open-ended set of
existing notations and languages.
As we will show in the rest of the paper, the BPMO model
captures domain independent organisational aspects, control-flow
features of notations such as BPMN, via a number of workflow
patterns as in [1], process interaction features from BPEL3, and
finally service description and invocation features from Semantic
Web Services (SWS) [4]. BPMO builds on the formalization of
Business Process Diagrams as presented in [12], and as such is
oriented towards the production of well-formed workflow models,
where graphs decompose unambiguously into sub-graphs that
start and end with compatible constructs.
More specifically, in the SUPER project we provide ontologies
for standards such as BPMN, EPC and BPEL (see [2], [5], [10])
as well as corresponding translators to BPMO. In addition, it is
possible for business analysts to create alternative organisational
ontologies to define BPMO process organisational attributes. This
is done via UPO4 (Upper-level Process Ontology), an ontology
defining high-level business process concepts, which are shared
by all ontologies in SUPER.
A BPMO diagram can be defined using the WSMO Studio BPMO
Modeller tool5, which automatically generates instances of BPMO
in WSML [16]. More precisely, we use WSML-Flight, which
adds F-Logic like features to the WSML core, directly supporting
WSMO Web Service descriptions [4]. WSML- Flight also allows
us to apply data mappings (via rule-type axioms) directly in the
ontology language without having to rely on a hybrid approach of
a separate rule language. BPMO and the related ontologies
mentioned above are publicly available at the SUPER website
(http://www.ip-super.org/ontologies).

3. BPMO DESCRIPTION
BPMO is a representation for high-level business process
workflow models, abstracting from existing business process
notations. Nevertheless, the workflow elements of a BPMO
process diagram comply with a corresponding subset of BPMN
control-flow elements and are informed by, and named according
to Workflow Patterns [1]. Moreover, BPMO concepts related to
interaction activities (e.g. Send, Receive) have a number of
attributes that correspond to BPEL constructs.
Basically, a BPMO process description captures the business
context of the modelled process and contains the process
workflow, which represents the behaviour of the process (through
control-flow and data-flow constructs) and process activities
(through Tasks). The main BPMO process elements are structured
as follows (see Table 1):

3 http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
4 http://www.ip-super.org/ontologies/process/upo/v2.0.1#upo
5 http://www.wsmostudio.org/

• Workflow – The business process container for Workflow
Elements. The initial Workflow Element may be a
StartEvent or a block pattern, commonly a Sequence or
ParallelSplit Synchronise. If the StartEvent is present,
subsequent elements will be linked in graph style by
Controlflow Connectors. If the Workflow Element is a
Sequence, a sequence flow is implicit between the contained
elements. If the Workflow Element is
ParallelSplitSynchronise, a parallel flow is implicit.

• Workflow Elements – These are general elements that
belong to a business process workflow, including Processes,
Tasks, Events, block patterns and graph patterns;

• Block Patterns – These are structured or pattern-based
control-flow elements representing workflow decision points
(gateways), including Sequence, ParallelSplitSynchronise,
ExclusiveChoiceMerge, DeferredChoiceMerge, While,
Repeat, and so on.

• Graph patterns – These are link based control-flow elements
representing workflow decision points (gateways), including
ParallelSplit, ExclusiveChoice, DeferredChoice,
SimpleMerge, Synchronise, and so on.

As can be seen, BPMO combines features of block-oriented and
graph-oriented workflow models. The main purpose of block
patterns is to explicitly represent structured elements and
workflow patterns that can be used to facilitate process
verification and the translation to notations in the execution level.
The BPMO design enforces well formed diagrams, via graph
patterns and structures, but further restrictions can be easily
provided via axioms.

Table 1 Description of main BPMO Process Elements

BPMO Element Description

StartEvent An event signalling the start of a process

TimerEvent An event signalling that a specific time has been
reached

ErrorEvent An event signalling that an error has occurred

EndEvent An event signalling the end of a process

Task An atomic activity within a Process.

Goal Task A Task with an attached Semantic Capability, used
for invoking SWS goals

Send A Task for sending messages. Provides a semantic
description of the requested capability.

Receive A Task for receiving messages. Provides a semantic
description of the provided capability.

ReceiveMessageEvent A Receive task associated with an event (which may
resolve choices, see DeferredChoice).

Mediation Task A Task for dataflow and data mediation

Sequence An ordered set of activities (also a linked list) with an
implicit sequence flow (Block pattern)

ParallelSplit A gateway (or decision point) for creating concurrent
branches

Synchronisation A gateway for synchronizing concurrent branches

ParallelSplitSynchronis
e

ParallelSplit with an implicit Synchronisation (Block
pattern)

ExclusiveChoice A decision gateway for selecting one out of a set of
mutually exclusive alternative branches based on

BPMO Element Description

data. One of the branches may be default.

ExclusiveChoiceMerge Exclusive Choice with an implicit Simple Merge
(Block pattern)

DeferredChoice A decision gateway for selecting one out of a set of
mutually exclusive alternative branches based on
external event

DeferredChoiceMerge Deferred Choice with an implicit Simple Merge
(Block pattern)

SimpleMerge Gateway for joining a set of mutually exclusive
alternative branches into one branch

MultipleChoice A decision gateway for selecting many out of a set of
alternative branches into several parallel branches
based on data. One of the branches may be default.

MultipleMerge Unsynchronised convergence of two or more distinct
branches

MultipleChoiceMerge Multiple Choice with an implicit Multiple Merge
(Block pattern)

MultipleMergeSynchro
nise

Synchronised convergence of two or more distinct
branches

Repeat A structured loop where the condition is evaluated
after the body of the loop is executed

While A structured loop where the condition is evaluated
before the body of the loop is executed

We will discuss next the use of a number of key BPMO concepts,
which are defined in WSML, including Process, Business
Activity, Task (Send, Receive, GoalTask), SemanticCapability,
MediationTask and DataMediator.
The Process concept (shown in Listing 1) defines several
organisational attributes, by inheriting from BusinessActivity,
according to the types BusinessDomain, BusinessFunction,
BusinessStrategy, BusinessPolicy, BusinessProcessMetrics,
BusinessProcessGoal and BusinessResource. These business-level
concepts (attribute types) are primarily defined in external
ontologies, which model a specific business domain and
organisation. These ontologies are linked to the BPMO process by
subclassing the UPO concept (note that upo# is the prefix for the
UPO namespace). As a result, we enable the querying of
processes against organisational aspects by business analysts (see
example in the next section). The Process itself can also have a
corresponding Web Service description (hasWSDescription
attribute). In addition, the Process concept defines the process
workflow (attribute hasWorkflow). The concept Workflow defines
the first element of the workflow (hasFirstWorkflowElement).
The workflow is modelled with Workflow Elements contained in
or following (via connectors) the first element.

Listing 1. Process and Business Activity Concepts

Concept BusinessActivity subConceptOf
upo#BusinessActivity
 hasName ofType (0 1) _string
 hasDescription ofType (0 1) _string
 hasNonFunctionalProperties ofType (0 1)
BusinessActivityNonFunctionalProperties
 hasBusinessDomain ofType upo#BusinessDomain
 hasBusinessFunction ofType upo#BusinessFunction
 hasBusinessStrategy ofType upo#BusinessStrategy
 hasBusinessPolicy ofType upo#BusinessPolicy
 hasBusinessProcessMetrics ofType
upo#BusinessProcessMetrics
 hasBusinessProcessGoal ofType upo#BusinessProcessGoal
 hasBusinessResource ofType upo#Resource

concept Process subConceptOf {BusinessActivity,
 upo#BusinessProcessModel}
 hasWSDescription ofType(0 1) SemanticCapability
 hasWorkflow ofType (0 1) Workflow

concept Workflow subConceptOf
upo#ProcessOrchestrationSpecification
 hasHomeProcess ofType (0 1) Process
 hasFirstWorkflowElement ofType(1 1) WorkflowElement

The concepts related to interaction tasks in BPMO are GoalTask,
Receive, Send and ReceiveMessageEvent (see Listing 2), which
are subconcepts of Task. A Task is also a Business Activity (as in
Listing 1) and thus can also refer to business attributes such as a
business policy or a business process goal. Tasks have attributes
to represent information about the interaction with a partner
process, such as partner role (hasPartnerRole), inputs
(hasInputDescription) and outputs (hasOutputDescription). Most
attribute types in Tasks are defined as SemanticCapability which
is a wrapper for ontology elements or service descriptions. For
example, a SemanticCapability instance can refer to the URI of an
concept within an ontology or to the URI of a Web Service or
Goal description.

Listing 2. Concepts related to interaction tasks

concept GoalTask subConceptOf Task
 hasPartnerGoal ofType (0 1) SemanticCapability
 hasPartnerRole ofType (0 1) BusinessRole
 messageTo ofType (0 1) Receive
 messageFrom ofType (0 1) Send
 hasInputDescription ofType SemanticCapability
 hasOutputDescription ofType SemanticCapability
 requestsCapability ofType (0 1) SemanticCapability
 providesCapability ofType (0 1) SemanticCapability

concept Send subConceptOf Task
 hasPartnerWebService ofType (0 1)SemanticCapability
 hasPartnerRole ofType (0 1) BusinessRole
 hasReceiveCounterpart ofType (0 1) Receive
 messageTo ofType (0 1) Receive
 hasOutputDescription ofType SemanticCapability
 requestsCapability ofType (0 1) SemanticCapability

concept Receive subConceptOf Task
 hasPartnerWebService ofType (0 1 SemanticCapability
 hasPartnerRole ofType (0 1) BusinessRole
 hasSendCounterpart ofType Send
 messageFrom ofType (0 1) Send
 hasInputDescription ofType SemanticCapability
 providesCapability ofType (0 1) SemanticCapability

concept ReceiveMessageEvent subConceptOf {
 IntermediateEvent, Receive}

A GoalTask represents an atomic activity, which can be
automatically achieved through a SWS invocation (synchronous
communication). The attribute hasPartnerGoal is used in this
case to refer to the Goal description. The hasInputDescription and
hasOutputDescription attributes refer to the semantic descriptions
of request and response data respectively. Hence, dataflow is
enabled by sharing the same data description across tasks in the
workflow. The requestsCapability and providesCapability
attributes refer to the semantic descriptions of operations related
to request and response respectively. The Send and Receive tasks
are similar to Goal tasks, but they are used for asynchronous
communication. A Receive task can be associated with a Send in
the same workflow via the hasSendCounterpart attribute (and
conversely for Send). ReceiveMessageEvent works as a Receive
task, but is also associated to an event, which is triggered when a
message is received.

Listing 3. Concepts related to Mediation

concept MediationTask subConceptOf Task
 hasSourceTask ofType (0 1) Task
 hasTargetTask ofType (0 1) Task
 hasDataMediator ofType DataMediator

concept Mediator subConceptOf upo#BusinessProcessMediator
 hasName ofType (0 1) _string
 hasDescription ofType (0 1) _string

concept ProcessMediator subConceptOf Mediator
 hasSourceProcess ofType (1 1) Process
 hasTargetProcess ofType (1 *) Process
 hasMediationProcess ofType (0 1) MediationProcess
 hasSWSMediator ofType (0 1) SemanticCapability

concept DataMediator subConceptOf Mediator
 hasMediator ofType SemanticCapability
 hasMediationService ofType SemanticCapability
 hasInputDescription ofType (0 1) SemanticCapability
 hasOutputDescription ofType(0 1) SemanticCapability

concept MediationProcess subConceptOf Process

BPMO also supports data and process mediation through a
number of concepts as shown in Listing 3. See also the examples
in the next section. A MediationTask is a task that provides data
mapping specifications to be used between tasks during runtime.
A MediationTask can have one or more DataMediators. The
DataMediator concept refers to a data mediator or mediation
service and the input and output for them. In a typical use case,
the hasMediator attribute will refer to a mapping definition
(URI), the hasInputDescription will refer to a source ontology
(URI) and the hasOutputDescription will refer to a target
ontology (URI). In addition, the ProcessMediator concept is used
as a descriptor to identify a process with a mediation role
(hasMediation Process) and mediated processes
(hasSourceProcess, hasTargetProcess) in order to facilitate the
job of tools for verification and creation of mediation processes.
The ProcessMediator can also refer to a mediator component
(hasSWSMediator).

4. USE CASE
In this section we will illustrate and evaluate the BPMO model
through an example taken from the mediation scenario provided
in the SWS Challenge (http://sws-challenge.org). This scenario is
about a Purchase Order process and involves three partners: the
service requester (customer), company Blue, which order
products; the service provider, company Moon, which sells
products; and the mediator, which must be implemented to
mediate between Blue and Moon. The goal of the mediator is to
map the incoming and outgoing messages between Blue and
Moon and also invoke required services from Moon so that the
interactions necessary to buy a product is complete. Company
Blue sends a purchase order and receives an acknowledgment via
the mediator. In this paper we focus on the part of the solution
comprising the use of ontology based-technology, required to
solve the scenario above. We use BPMO for modelling the main
process using SWS references for Task descriptions, and domain
ontologies for modelling data and mappings.
We created a BPMO diagram to represent the mediator process
(Moon Mediator Process) as shown in Figure 1, using WSMO
studio’s BPMO modeller. The modeller generates an initial set of
BPMO instances corresponding to the process control-flow, to
which the user can add data instances for attributes using the
modeller’s property editor. A number of BPMO instances

corresponding to the diagram presented in Figure 1 are shown in
Listing 4.

Figure 1. BPMO diagram of the Mediator process
The Moon Mediator Process workflow is quite self-explanatory.
Basically, we used activities Receive Purchase Order and Send
PO Confirmation to interact with the Blue Company, modelled as
Receive and Send BPMO tasks accordingly. Map Purchase Order
and Map Result are modelled as Mediation Tasks and used to map
the values needed by the Moon and Blue Web Services,
respectively. Search Customer, Create Order and Close Order are
modelled as Goal Tasks for invoking Web Services provided by
Moon. Add Line Item and Confirm Line Item are modelled as
corresponding asynchronous Send and Receive tasks, which are
called in a Repeat (loop) for every item in the received Purchase
Order. Start and End are events used to initiate and finalise the
process.

Listing 4. BPMO instances for the Moon Mediator Process

instance Process_MoonMediator memberOf bpmo#Process
 bpmo#hasName hasValue "Moon Mediator Process"
 bpmo#hasWorkflow hasValue Workflow_1217
 bpmo#hasBusinessStrategy hasValue moon#strategy45
 bpmo#hasBusinessPolicy hasValue moon#policy33
 upo#hasInvolvedRole hasValue moonMediator

instance moonMediator memberOf bpmo#BusinessRole
 bpmo#hasName hasValue "Moon Mediator"
 bpmo#hasOrganisation hasValue kmi

instance kmi memberOf upo#Organisation
 upo#hasName hasValue "KMi, The Open University, UK"

instance blue memberOf upo#Organisation
 upo#hasName hasValue "Blue, SWS Challenge"

instance customer memberOf bpmo#BusinessRole
 bpmo#hasName hasValue "Blue Customer"
 bpmo#hasOrganisation hasValue blue

instance moon memberOf upo#Organisation
 upo#hasName hasValue "Moon, SWS Challenge"

instance moonCRM memberOf bpmo#BusinessRole
 bpmo#hasName hasValue "Moon Customer Relationship
Management"
 bpmo#hasOrganisation hasValue moon

instance Workflow_1217 memberOf bpmo#Workflow
 bpmo#hasHomeProcess hasValue Process_MoonMediator
 bpmo#hasFirstWorkflowElement hasValue StartEvent_1

instance StartEvent_1 memberOf bpmo#StartEvent
 bpmo#hasHomeProcess hasValue Process_MoonMediator
 bpmo#hasName hasValue "Start"

instance ControlflowConnector_100 memberOf
bpmo#ControlflowConnector
 bpmo#hasHomeProcess hasValue Process_MoonMediator

 bpmo#hasSource hasValue StartEvent_1
 bpmo#hasTarget hasValue Receive_ReceivePO

instance Receive_ReceivePO memberOf bpmo#Receive
 bpmo#hasHomeProcess hasValue Process_MoonMediator
 bpmo#hasName hasValue "Receive Purchase Order"
 bpmo#hasPartnerWebService hasValue
SemanticCapability_ReceivePO_WSMO
 bpmo#hasPartnerRole hasValue customer
 bpmo#hasSendCounterpart hasValue Send_SendPOConf
 bpmo#hasInputDescription hasValue
SemanticCapability_PurchaseOrderDesc

instance SemanticCapability_PurchaseOrderDesc memberOf
bpmo#SemanticCapability
 bpmo#hasSemanticDescription hasValue
"http://kmi.open.ac.uk/swsc/datamediator#PurchaseOrderReq
uest"

instance SemanticCapability_ReceivePO_WSMO memberOf
bpmo#SemanticCapability
 bpmo#hasSemanticDescription hasValue
"http://kmi.open.ac.uk/swsc/wsmo/RequestPOWS#RequestPOWS"

instance GoalTask_CreateOrder memberOf bpmo#GoalTask
 bpmo#hasName hasValue "Create Order"
 bpmo#hasHomeProcess hasValue Process_MoonMediator
 bpmo#hasPartnerGoal hasValue
SemanticCapability_CreateOrder_WSMO
 bpmo#hasPartnerRole hasValue moonCRM
 bpmo#hasInputDescription hasValue
SemanticCapability_OrderDesc
 bpmo#hasOutputDescription hasValue
SemanticCapability_OrderResponseDesc

instance SemanticCapability_OrderDesc memberOf
bpmo#SemanticCapability
 bpmo#hasSemanticDescription hasValue "http://
kmi.open.ac.uk/swsc/datamediator#Order"

instance Repeat_AddLineItem memberOf bpmo#Repeat
 bpmo#hasHomeProcess hasValue Process_MoonMediator
 bpmo#hasCondition hasValue
Condition_1218020116299_1731096821
 bpmo#executes hasValue Send_AddLineItem

instance Condition_1218020116299_1731096821 memberOf
bpmo#Condition
 bpmo#hasExpression hasValue "Another Item?"

In this example starting with a Start event, all workflow elements
are linked sequentially in an explicit way using
ControlflowConnector. Each ControlflowConnector points to a
source WorkflowElement and a target Workflow Element. For
example, StartEvent_1 is linked to Receive task
Receive_ReceivePO via Controlflow Connector_100. Note that in
this example we use structured loops (Repeat), which are treated
as one block element (with a condition and an execution body).
Note also in Listing 4 how we have added information about the
partner roles and involved organisations. The attributes
hasBusinessStrategy and hasBusinessPolicy have values that refer
to strategies and policies defined by Moon Company in an
external ontology. The value of attribute upo#hasInvolvedRole
in Process_MoonMediator defines the role (BusinessRole) of this
process. In this case kmi (Organisation) is playing the mediator
role (moon Mediator). In a similar way we define the roles of blue
(customer) and moon (moonCRM) partners. In Receive_
ReceivePO we provide values for attributes hasPartnerRole,
hasPartner WebService, hasSendCounterpart and hasInput
Description. These attributes values are necessary in order to
establish an interaction with a partner. In particular, Receive_
ReceivePO obtains data from partner blue. The data received is
defined in hasInputDescription (via Semantic Capability), which
in this case is kmi.open.ac.uk/swsc/datamediator#PurchaseOrder
Request. The definition of Purchase OrderRequest (omitting
namespace) and other concepts used in the scenario are shown in
Listing 5 together with some instances. These concepts and

instances have been derived from the XML Schema given in the
original scenario, but simplified here for illustration purposes.

Listing 5 Domain data ontology concepts and instances

concept PurchaseOrderRequest
 fromRole ofType PartnerRoleDescription
 hasPurchaseOrder ofType PurchaseOrder

concept PartnerRoleDescription
 hasContact ofType ContactInformation
 hasRole ofType _string
 partnerDescription ofType PartnerDescription

concept Order
 authToken ofType _string
 contact ofType Contact
 shipTo ofType OrderInformation
 billTo ofType OrderInformation

concept OrderInformation
 name ofType _string
 street ofType _string
 city ofType _string
 postalCode ofType _string
 country ofType _string

concept Contact
 name ofType _string
 telephone ofType _string
 email ofType _string

instance bluePORequest memberOf PurchaseOrderRequest
 fromRole hasValue bluePartnerRole
 hasPurchaseOrder hasValue bluePurchaseOrder

instance bluePartnerRole memberOf PartnerRoleDescription
 hasContact hasValue blueContact
 hasRole hasValue "Buyer"
 partnerDescription hasValue bluePartnerDescription

instance bluePartnerDescription memberOf
PartnerDescription
 contactInfo hasValue blueContact
 businessInfo hasValue blueBusiness
 physicalLocation hasValue blueAddress

instance blueAddress memberOf PhysicalAddress
 addressLine1 hasValue "North Business Center, Bl 9"
 cityName hasValue "Innsbruck"
 countryCode hasValue "AT"
 postalCode hasValue "A-6020"

instance blueBusiness memberOf BusinessDescription
 hasName hasValue "Company Blue"

instance blueContact memberOf ContactInformation
 contactName hasValue "Stefan Blue"
 emailAddress hasValue "stefan.blue@blue.com"
 telephoneNumber hasValue "+43(650)89930011"

We use the instances in Listing 5 to illustrate dataflow as well as
the use of a MediationTask to map instances of
PurchaseOrderRequest used by the requester (Receive_
ReceivePO) to Order, used by the provider (GoalTask_
CreateOrder), as shown in Listing 6 and Listing 7.
MediationTask_MapPurchaseOrder provides two
DataMediators: DataMediator_MapOrderRequestToSearch
Customer and DataMediator_MapOrderRequestToOrder.

Listing 6 BPMO instances related to data mediation

instance MediationTask_MapPurchaseOrder
 memberOf bpmo#MediationTask
 bpmo#hasName hasValue "Map Purchase Order"
 bpmo#hasHomeProcess hasValue Process_MoonMediator
 bpmo#hasDataMediator hasValue
 {DataMediator_MapOrderRequestToSearchCustomer,
 DataMediator_MapOrderRequestToOrder}

instance DataMediator_MapOrderRequestToOrder
 memberOf bpmo#DataMediator
 bpmo#hasMediator hasValue
 SemanticCapability_MapOrderRequestToOrder

 bpmo#hasInputDescription hasValue
 SemanticCapability_PurchaseOrderDesc
 bpmo#hasOutputDescription hasValue
 SemanticCapability_OrderDesc

instance SemanticCapability_MapOrderRequestToOrder
 memberOf bpmo#SemanticCapability
 bpmo#hasSemanticDescription hasValue
"http://kmi.open.ac.uk/swsc/datamediator#OrderFromPurchas
eOrderResquest"

Note in particular that the data mapping (hasMediator attribute)

p

Listing 7. Example of a mapping specification

SemanticCapability_MapOrderRequestToOrder defined in
DataMediator DataMediator_MapOrderRequestToOrder with
value OrderFromPurchaseOrderResquest (omitting names ace)
is shown in Listing 7. This WSML axiom defines a mapping rule,
which infers (implies) instances of Order (used by company
Moon) from instances of PurchaseOrderRequest (used by
company Blue)6.

relation MapOrderRequestToOrder(impliesType
 PurchaseOrderResquest, impliesType Order)

axiom OrderFromPurchaseOrderResquest
 definedBy
 ?request[fromRole hasValue ?pr]
 memberOf PurchaseOrderRequest
 and ?pr[partnerDescription hasValue ?pd]

 memberOf PartnerRoleDescription
 and ?pd[contactInfo hasValue ?ci,
 businessInfo hasValue ?bd,
 physicalLocation hasValue ?pl]
 memberOf PartnerDescription
 and ?ci[contactName hasValue ?contactName]
 memberOf ContactInformation
 and ?bd[hasName hasValue ?bussName]
 memberOf BusinessDescription
 and ?pl[addressLine1 hasValue ?adr,
 cityName hasValue ?c,
 countryCode hasValue ?co,
 postalCode hasValue ?pc]
 memberOf PhysicalAddress

 implies moonOrder(?request)
 [authToken hasValue "LilianaCabral",
 contact hasValue contact(?ci),
 shipTo hasValue shipTo(?bd)]
 memberOf Order
 and contact(?ci)
 [name hasValue ?contactName] memberOf Contact

 and shipTo(?bd)
 [name hasValue ?bussName,
 street hasValue ?adr,
 city hasValue ?c,
 postalCode hasValu e ?pc,
 country hasValue ?co]
 memberOf OrderInformation
 and
 MapOrderRequestToOrder(?request, moonOrder(?request)).

For illustration purposes, we performed the query below over the

 contact hasValue ?c, shipTo

sample instances to test the OrderFromPurchaseOrderResquest
axiom, using the IRIS reasoner7:
“?order [authToken hasValue ?auth,
hasValue ?s] memberOf Order and ?s [name hasValue
?businessName, street hasValue ?street, city hasValue ?city,
postalCode hasValue ?postalCode, country hasValue ?country]
memberOf OrderInformation”

6 Such a rule is beyond the capabilities of a DL-based ontology language
7 IRIS is an open source reasoner for WSML Flight, available as an

integrated component of WSMO Studio

This query asks about any instance of Order with corresponding
attribute values. The result of the query is presented in Figure 2,
which basically shows a newly inferred instance of Order (named
using the function symbol moonOrder, in accordance with the
consequent of the axiom8) to which the attribute values of
instance bluePORequest is mapped.

Figure 2 Query result using mappings
We next illustrate a query that can be performed over BPMO
instances related to its component workflow activities. A business
analyst might be interested in knowing about tasks and partners of
a specific process. For example, in the query below we ask which
tasks are related to partner role customer (company Blue), with
the corresponding attributes values of hasName (?name) and
hasPartnerWebService (?ws):
“?task [bpmo#hasName hasValue ?name, bpmo#hasPartnerRole
hasValue customer, bpmo#hasPartnerWebService hasValue ?ws]
memberOf bpmo#Task”

Figure 3 Query result for finding workflow activities
The result of this query (Figure 3) contains the instances of
Receive (Receive Purchase Order) and Send (Send PO
Confirmation) corresponding to the interaction with company
Blue as expected.
Another interesting query, of which we omit the details only for
brevity, would be a query over processes according to the
associated organisational attributes, such as business policies and
strategies. We note that, like semantic search, many implicit
inferences may be involved in such queries. Queries are not,
therefore, limited in scope by the data that are explicitly
represented, as they would be in a database. Furthermore, by
representing all of these modelling concerns of BPM in a uniform
and connected model we can issue cross-cutting queries that are

8 This use of function symbols is safe, does not affect the decidability of

WSML-Flight reasoning, is supported by the IRIS reasoner and can be
reduced to a normal URI name on lowering.

impossible in a tool dedicated to, say, process modelling where
other aspects are separately modelled and maintained.

5. CONCLUSIONS AND RELATED WORK
BPMO describes a rich business process model, as demanded by
the BPM community, using ontological descriptions to capture
workflow and organisational concerns in a uniform and extensible
manner, and reuses the results of Semantic Web Services research
for the description of interaction activities.
There are various advantages for using BPMO. First, BPMO
provides comprehensive semantic annotations for business
processes that can be used for automated inference at the business
level while facilitating the translation to the execution level.
Second, BPMO provides links from the process to organisational
aspects, which can be modelled independently for different
domains. Third, BPMO can be used to verify at the semantic level
restrictions applied to the workflow or certain process activities.
Finally, BPMO facilitates the modelling of new (or mediation)
processes based on existing ones as well as the discovery of
services for goal-based activities.
BPMO facilitates semantic interoperability by modelling
interaction activities using SWS descriptions of inputs, outputs
and operations. These activities use ontologically defined data for
dataflow and also take advantage of the semantic mappings
provided by the BPMO Data Mediators.
BPMO diagrams can be created using practical and freely
available tooling with WSMO Studio. The advantage is that the
BPMO modeller of WSMO Studio automatically generates
BPMO instances from the workflow diagram and allows easy
reference to ontology instances and service descriptions. BPMO
uses WSML-Flight as the representation language, which can be
used with the IRIS reasoner for performing instance validation
and queries.
From the business viewpoint, business analysts can perform
semantically enabled queries directly and uniformly on the
business context and activities of a business process. The queries
can be extended to BPMO’s translation destinations and sources
throughout the process life cycle from creation to deployment,
monitoring and execution. In this way, reuse across the
business/IT divide is facilitated and great scalability is achieved
through increased automation supported by ontology-based
reasoning.
There is substantial work discussing the translation and
mismatches between BPMN and BPEL (e.g [12], [13]), and more
generically between block and graph oriented workflow notations
[8], that has informed the implementation of BPMO concepts and
attributes, especially in what concerns enabling the translation of
BPMO constructs from notations such as BPMN, and to
languages such as BPEL. For instance, we have developed a
number of translators (e.g. [9]) within the SUPER project that use
appropriate workflow pattern representations in BPMO to avoid
workflows with acyclic loops and unsynchronised branches. One
main difference from existing standards to BPMO, though, is that
we use ontologies and extensions to support Semantic Web
Services.

OWL-S9, the SWS ontology submitted to W3C, contains a
semantic-based process workflow description (i.e. the process
model), which serves the same purpose as BPMO; however this
model is not very rich. As pointed out in [3], there are a number
of constructs from BPEL, such as conditions, synchronization and
external (event-based) choices and handlers that cannot be
expressed in OWL-S.
The Semantic Web approach presented in [3] has similar goals to
our approach using BPMO in that the authors there argue that the
syntactic approach provided by BPEL has shortcomings that limit
its ability to provide seamless interoperability. They propose the
use of semantic-based technologies (OWL-S) to support
automated service discovery, customization and semantic
translation for BPEL based processes; however, their annotations
for services and data are decoupled from the control-flow
language. BPMO, instead, provides semantically annotated
control-flow constructs coupled with semantic descriptions of
data and services. In addition, BPMO workflow includes semantic
data mediation via Mediation Tasks and Data Mediators, which
can refer to mapping rules and mediation services.
In [15] an approach called Semantic Process Templates (SPT) is
presented, which provides semantic extensions to a (XML-based)
BPEL-compatible process workflow specification. A semantic
template is used for every activity in the process definition in
order to attach concepts from a given ontology to inputs, outputs
and operations. SPT differs from BPMO because it is a bottom-up
approach, tied to a particular execution standard (BPEL), and the
control-flow constructs have no ontological representation.

6. ACKNOWLEDGMENTS
The work presented in this paper was partly funded by the
European Commission under the SUPER project (FP6-026850).

7. REFERENCES
[1] Aalst, W., Hofstede, A., Kiepuszewski, B. and Barros, A.

Workflow Patterns. Distributed and Parallel Databases,
14(3):5–51 (2003)

[2] Abramowicz, W., Filipowska, A., Kaczmarek, M.,
Kaczmarek, T.: Semantically enhanced Business Process
Modelling Notation, Proceedings of the Workshop on
Semantic Business Process and Product Lifecycle
Management (SBPM-2007), Vol-251, CEUR-WS, June
2007, ISSN 1613-0073 (2007).

[3] Aslam, M., Auer, S., Shen, J. and Herrmman, M. Expressing
Business Process Models as OWL-S Ontologies. Workshop
on Grid and Peer-to-Peer Based Workflows (GPWW) in
conjunction with BPM 2006. LNCS 4103, pp. 400-415
(2006)

[4] Fensel, D., Lausen, H., Polleres, A., Bruijn, J., Stollberg, M.,
Roman, D. and Domingue, J.: Enabling Semantic Web
Services: the Web Service Modelling Ontology (WSMO).
Springer (2006)

[5] Filipowska, A., Kaczmarek, M. and Stein, S.: Semantically
Annotated EPC within Semantic Business Process
Management. Workshop on Advances in Semantics for Web
Services (semantic4ws), Milan, Italy (2008)

9 http://www.w3.org/Submission/OWL-S/

[6] Hepp, M., Leymann, F., Domingue, J., Wahler, A. and
Fensel, D.: Semantic Business Process Management: A
Vision Towards Using Semantic Web Services for Business
Process Management. Proceedings of IEEE Intl. Conf. on e-
Business Engineering (ICEBE 2005) pp. 535-540. Beijing,
China (2005).

[7] Mandell, D. and McIlraith, S. Adapting BPEL4WS for the
Semantic Web: The Bottom-Up Approach to Web Service
Interoperation. In proceedings of the 2nd International
Semantic Web Conference (ISWC 2003). LNCS 2870,
Springer (2003)

[8] Mendling, J., Lassen, K. and Zdun, U. Transformation
Strategies between Block-Oriented and Graph-Oriented
Process Modelling Languages. Available at http://wi.wu-
wien.ac.at/home/mendling/XML4BPM2006/XML4BPM-
Mendling.pdf (2006)

[9] Norton, B., Cabral, L. and Nitzsche, J. Ontology-based
Translation of Business Process Model. The Fourth
International Conference on Internet and Web Applications
and Services (ICIW 2009), Venice, Italy, IEEE Computer
Society. (2009)

[10] Nitzsche, J., Wutke, D., Lessen, T.: An Ontology for
Executable Business Processes, Proceedings of the
Workshop on Semantic Business Process and Product
Lifecycle Management (SBPM-2007), Vol-251, CEUR-WS,
June 2007, ISSN 1613-0073 (2007)

[11] Object Management Group. Business Process Modeling
Notation (BPMN). Available at http://www.bpmn.org/

[12] Ouyang, C., Aalst, W., Dumas, M. and Hofstede, A.: From
Business Process Models to Process-oriented Software
Systems: The BPMN to BPEL Way. Available at
http://eprints.qut.edu.au/ archive/00005266/01/5266.pdf
(2006)

[13] Recker, J. and Mendling, J. On the Translation between
BPMN and BPEL: Conceptual Mismatch between Process
Modeling Languages. Available at http://eprints.qut.edu.au/
archive/00004637/01/4637.pdf (2006)

[14] Scheer, A., Oliver, T. and Otmar, Adam. Process Modelling
Using Event-Driven Process Chains. Chapter in Process-
Aware Information Systems, Wiley (2005).

[15] Sivashanmugam, K., Miller, J., Sheth, A. and Verma K.
Framework for Semantic Web Process Composition.
International Journal of Electronic Commerce, Winter 2004–
5, Vol. 9, No. 2, pp. 71–106 (2005)

[16] WSML Working Group. D16.1v1.0 Web Service Modelling
Language Reference Available at http://www.wsmo.org/
wsml/wsml-syntax (2008)

[17] Wohed, P., Aalst, W., Dumas, M., Hofstede, M. and Russell,
N.. On the Suitability of BPMN for Business Process
Modelling. In Proceedings of the Fourth Business Process
Management Conference (BPM 2006). LNCS 4102, pp.161-
176, Springer (2006)

	INTRODUCTION
	APPROACH OVERVIEW
	BPMO DESCRIPTION
	USE CASE
	CONCLUSIONS AND RELATED WORK
	ACKNOWLEDGMENTS
	REFERENCES

