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1. INTRODUCTION

Towards the second half of the nineties, Internet Engineering Task Force (IETF) and
the research community have proposed many service models and mechanisms [Xiao
and Ni 1999] to meet the demand for network Quality of Service (QoS). The rea-
son is that traditional networks cannot recognize a priority associated with data,
because they handle network traffic with the best effort principles. According to
this treatment, the network does not provide any guarantees that data is delivered
or that a user is assisted with a guaranteed QoS level or a certain priority (due to
congestions). In best effort networks, all users obtain exactly the same treatment.

However nowadays, networked applications, such as Enterprise Resource Plan-
ning (ERP), data mining, distance learning, resource discovery, e-commerce, and
distribution of multimedia-content, stock quotes, and news, are bandwidth hungry,
need a certain “timeliness” (i.e. events occurring at a suitable and opportune time)
and are also mission critical.

For all these reasons, the routing problem has naturally been extended to include
and to guarantee QoS requirements [Younis and Fahmy 2003; Xiao and Ni 1999],
and consequently is usually abbreviated to QoS routing. As defined in [Crawley
et al. 1998], QoS is “a set of service requirements to be met by the network while
transporting a flow”, where a flow is “a packet stream from source to a destination
(unicast or multicast) with an associated Quality of Service (QoS)”. To be imple-
mented and subsequently satisfied, service requirements have to be expressed in
some measurable QoS metrics, such as bandwidth, number of hops, delay, jitter,
cost and loss probability of packets.

This paper combines and extends the two works presented in [Bistarelli et al.
2002] and [Bistarelli et al. ]. First, we detail the modelling procedure to repre-
sent and solve plain Shortest Path (SP) [Cormen et al. 1990] problems with Soft
Constraint Logic Programming (see Section 2). We consider several versions of SP
problems, from the classical one to the multi-criteria case (i.e. many costs to be
optimized), from partially-ordered problems to those that are based on modalities
associated to the use of the arcs (i.e. modality-based), and we show how to model
and solve them via SCLP programs. The basic idea is that the paths represent net-
work routes, edge costs represent QoS metric values, and our aim is to guarantee
the requested QoS on the found unicast routes, by satisfying the QoS constraints
and optimizing the cost of the route at the same time. The different criteria can
be, for example, maximizing the global bandwidth and minimizing the delay that
can be experienced on a end-to-end communication.

Then, extending the unicast solution, we suggest a formal model to represent and
solve the multicast routing problem in multicast networks (i.e. networks supporting
the multicast delivery schema) that need QoS support. To attain this, we draw the
network adapting it to a weighted and-or graph [Martelli and Montanari 1978],
where the weight on a connector corresponds to the cost of sending a packet on the
network link modelled by that connector. Then, we translate the hypergraph in a
SCLP program and we show how the semantic of this program computes the best
tree in the corresponding and-or graph. We apply this result to find, from a given
source node in the network, the multicast distribution tree having the minimum
cost and reaching all the destination nodes of the multicast communication. The
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costs of the connectors can be described as vectors (multidimensional costs), each
component representing a different QoS metric value. We show also how modalities
can be added to multicast problems, and how the computational complexity of this
framework can reduced. Therefore, in this paper we present a complete formal
model to represent and solve the unicast/multicast QoS routing problem.
As a quick reminder, SCLP programs are logic programs where each ground

atom can be seen as an instantiated soft constraint [Bistarelli et al. 1995; 1997b]
and it can be associated with an element taken from a set. Formally, this set is a
c-semiring [Bistarelli 2004] (or simply, semiring), that is, a set plus two operations,
+ and ×, which basically say how to combine constraints and how to compare them.
The presence of these two operations allows to replace the usual boolean algebra
for logic programming with a more general algebra where logical and and logical
or are replaced by the two semiring operations. In this way, the underlying logic
programming engine provides a natural tool to specify and solve combinatorial
problems, while the soft constraint machinery provides greater expressivity and
flexibility.
In our solution, we use SCLP for some important features of this framework: the

first is that SCLP is a declarative programming environment and, thus, is relatively
easy to specify a lot of different problems, ranging from paths to trees. The second
reason is that the semiring structure is a very flexible and parametric tool where to
represent several and different cost models, with respect to QoS metrics; obviously,
the same SCLP programming environment and operational semantic engine can be
used with all these different semirings. Finally, since QoS routing problem can be
in general NP-Complete (Sec. 3), SCLP promises to be suitable tool, due to its
ability for solving combinatorial problems.

1.1 Structure of the paper

The remainder of this paper is organized as follows. In Section 2 we describe the
SCLP framework, while in Section 3 we complete the background by introducing
the multicast/unicast QoS routing: we show that the problem of defining a route
that has to be optimized and is subject to constraints concerning QoS metrics, is,
in general, a NP-Complete problem. Then, we report some of the solutions, mostly
through heuristics, given in the real world. Section 4 proposes how to model and
solve the unicast QoS routing with SCLP, considering also problems with mul-
tidimensional costs (i.e. multi-criteria problems) and based on modalities of use
associated with the links of the network (i.e. modality-based problems). Section 5
outlines a similar framework, based on hypergraph and SCLP, for the management
of the multicast QoS routing: we show how to translate a network in a correspond-
ing and-or graph and then we compute the best distribution tree by using SCLP.
Even in this case we extend the model to include problems with modalities and,
afterwards, we suggest how to mitigate the computational complexity of the model,
with the adoption of tabling techniques. Section 6 gives some important consid-
erations about semirings that improve the model when the costs of the network
links are multidimensional and partially ordered: this is the common case, since
an effective measurement of QoS will necessarily involve a collection of measures.
At last, Section 7 ends the paper with the final conclusions and ideas about future
work.
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2. SOFT CONSTRAINT LOGIC PROGRAMMING

The SCLP framework [Bistarelli 2004; Bistarelli et al. 1997a; Georget and Codognet
1998], is based on the notion of c-semiring introduced in [Bistarelli et al. 1995;
1997b]. A semiring S is a tuple 〈A,+,×, 0, 1〉 where A is a set with two special
elements (0, 1 ∈ A) and with two operations + and × that satisfy certain properties:
+ is defined over (possibly infinite) sets of elements of A and thus is commutative,
associative, idempotent, it is closed and 0 is its unit element and 1 is its absorbing
element; × is closed, associative, commutative, distributes over +, 1 is its unit
element, and 0 is its absorbing element (for the exhaustive definition, please refer
to [Bistarelli et al. 1997b]).

The + operation defines a partial order ≤S over A such that a ≤S b iff a+ b = b;
we say that a ≤S b if b represents a value better than a. Other properties related
to the two operations are that + and × are monotone on ≤S , 0 is its minimum
and 1 its maximum, 〈A,≤S〉 is a complete lattice and + is its lub. Finally, if ×
is idempotent, then + distributes over ×, 〈A,≤S〉 is a complete distributive lattice
and × its glb.

Semiring-based Constraint Satisfaction Problems (SCSPs) [Bistarelli 2004] are
constraint problems where each variable instantiation is associated to an element of
a c-semiring A (to be interpreted as a cost, level of preference, . . . ), and constraints
are combined via the × operation and compared via the ≤S ordering. Varying the
set A and the meaning of the + and × operations, we can represent many different
kinds of problems, having features like fuzziness, probability, and optimization.
Notice also that the cartesian product of two c-semirings is a c-semiring [Bistarelli
et al. 1997b], and this can be fruitfully used to describe multi-criteria constraint
satisfaction and optimization problems.

Constraint Logic Programming (CLP) [Jaffar and Maher 1994] extends Logic
Programming by replacing term equalities with constraints and unification with
constraint solving. The SCLP framework extends the classical CLP formalism in
order to be able to handle also SCSP [Bistarelli et al. 1995; 1997b] problems. In
passing from CLP to SCLP languages, we replace classical constraints with the
more general SCSP constraints where we are able to assign a level of preference to
each instantiated constraint (i.e. a ground atom). To do this, we also modify the
notions of interpretation, model, model intersection, and others, since we have to
take into account the semiring operations and not the usual CLP operations.

The fact that we have to combine several refutation paths when we have a partial
order among the elements of the semiring (instead of a total one), can be fruitfully
used in the context of this paper when we have an graph/hyoergraph problems
with incomparable costs associated to the edges/connectors. In fact, in the case
of a partial order, the solution of the problem of finding the best path/tree should
consist of all those paths/trees whose cost is not “dominated” by others.

A simple example of an SCLP program over the semiring 〈N,min,+,+∞, 0〉,
where N is the set of non-negative integers and D = {a, b, c}, is represented in
Table I. The choice of this semiring allows us to represent constraint optimization
problems where the semiring elements are the costs for the instantiated atoms. To
better understand this Table, we briefly recall the SCLP syntax: a program is a set
of clauses and each clause is composed by a head and a body. The head is just an
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Table I. A simple example of an SCLP program.

s(X) :- p(X,Y).

p(a,b) :- q(a).

p(a,c) :- r(a).

q(a) :- t(a).

t(a) :- 2.

r(a) :- 3.

atom, and the body is either a collection of atoms, or a value of the semiring, or a
special symbol (✷) to denote that it is empty. Clauses where the body is empty or
it is just a semiring element are called facts and define predicates which represent
constraints. When the body is empty, we interpret it as having the best semiring
element (that is, 1).
The intuitive meaning of a semiring value like 3 associated to the atom r(a) (in

Table I) is that r(a) costs 3 units. Thus the set N contains all possible costs, and
the choice of the two operations min and + implies that we intend to minimize
the sum of the costs. This gives us the possibility to select the atom instantiation
which gives the minimum cost overall. Given a goal like s(x) to this program, the
operational semantics collects both a substitution for x (in this case, x = a) and
also a semiring value (in this case, 2) which represents the minimum cost among the
costs for all derivations for s(x). To find one of these solutions, it starts from the
goal and uses the clauses as usual in logic programming, except that at each step
two items are accumulated and combined with the current state: a substitution and
a semiring value (both provided by the used clause). The combination of these two
items with what is contained in the current goal is done via the usual combination
of substitutions (for the substitution part) and via the multiplicative operation of
the semiring (for the semiring value part), which in this example is +. Thus, in the
example of goal s(X), we get two possible solutions, both with substitution X = a
but with two different semiring values: 2 and 3. Then, the combination of such two
solutions via the min operation give us the semiring value 2.

3. BACKGROUND ON QOS ROUTING

With Constraint-Based Routing (CBR) we refer to a class of routing algorithms
that base path selection decisions on a set of requirements or constraints, in addi-
tion to destination criteria. These constraints may be imposed by administrative
policies (i.e. policy routing), or by QoS requirements (i.e. QoS routing, as already
cited in Section 1), and so they can be classified in two classes with different char-
acteristics. The aim of CBR is to reduce the manual configuration and intervention
required for attaining traffic engineering objectives [Rosen et al. 2001]; for this rea-
son, CBR enhances the classical routing paradigm with special properties, such as
being resource reservation-aware and demand-driven.
The routing associated with administration decisions is referred to as policy rout-

ing (or policy-based routing), and it is used to select paths that conform to ad-
ministrative rules and Service Level Agreements (SLAs) stipulated among service
providers and clients. In this way, routing decisions can be based not only on the
destination location, but also on other factors such as applications or protocols
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used, size of packets, or identity of the communicating entities. Policy constraints
can help improving the global security of the network: constraints can be used to
guarantee agreed service provisioning and safety from malicious users attempting
to steal the resources not included in their contracts. Finally, the policy routing
problem can be viewed as a resource allocation problem that includes business
decisions.
QoS routing attempts to simultaneously satisfy multiple QoS requirements re-

quested by real-time applications: the requirements are usually expressed using
metrics as, e.g. delay and bandwidth. Policy routing (or policy-based routing) is
instead used to select paths that conform to imposed administrative rules. In this
way, routing decisions can be based not only on the destination location, but also
on factors such as used applications and protocols, size of packets, or identity of
both source and destination end systems of the flow. Policy constraints can improve
the global security of network infrastructure and are able to realize business related
decisions.
Traditionally, QoS metrics can be organized into three distinct classes, depending

on how they are combined along a path: they can be i) additive, ii) multiplicative
or iii) concave [Wang and Crowcroft 1996]. They are defined as follows: with
n1, n2, n3 . . . , ni,
nj representing network nodes, let m(n1, n2) be a metric value for the link con-
necting n1 and n2). For any path P = (n, n2, . . . , ni, nj), the metric corresponding
is:

—Additive, if m(P ) = m(n1, n2) +m(n2, n3) + ... +m(ni, nj) The additive metric
of a path is the sum of the metric for all the links constituting the path. Some
examples are delay, jitter (the delay variation on a network path), cost and hop-
count.

—Multiplicative, if m(P ) = m(n1, n2) × m(n2, n3) · · · × m(ni, nj) Multiplicative
metric of a path consists in the multiplication of the metric values for all the
links constituting the path. Example is reliability or loss probability.

—Concave, if m(P ) = max /min{m(n1, n2),m(n2, n3), ...,m(ni, nj)}. The concave
metric of a path is the maximum or the minimum of the metric values over
all the links in the path. The classical example is bandwidth, meaning that
the bandwidth of a path is determined by the link with the minimum available
bandwidth, i.e. the bottleneck of the path.

Even if usually the metric classes are introduced for paths, most of times they
can be suitable also for trees: consider, for example, if we need to find a global cost
of the tree by summing up all the weights on the tree edges (i.e. additive), or if we
want to maximize the bandwidth of bottleneck link (i.e. concave).
Given a node generating packets, we can classify network data delivery schemas

into three main classes: i) unicast, when data is delivered from one sender to one
specific recipient, providing one-to-one delivery, ii) broadcast, when data is instead
delivered to all hosts, providing one-to-all delivery, and finally, iii) multicast, when
data is delivered to all the selected hosts that have expressed interest; thus, this last
method provides one-to-many delivery. Since our intention is to provide a model
for reasoning on QoS routing (both unicast and multicast), we will concentrate on
i) and iii).

ACM Journal Name, Vol. V, No. N, 20YY.
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In the next two Sections we describe the background about unicast and multicast
QoS delivery-schemas (respectively in Section 3.2 and Section 3.3). We list and
discuss some of the related problems and proposed solutions in this field. In the
following of the paper we will mainly focus over QoS routing, even if we will propose
some considerations also for policy routing. In Section 3.1 we start by explaining
why tractability is the primary challenge with QoS routing.

3.1 Two NP-Complete Problems

By composing together the notions of QoS routing and QoS metrics, we can deduce
a very important outcome if we use multiple metrics to model and try to solve QoS
routing: in general, this problem is a NP-Complete problem. A typical scenario
involves resources that are independent and allowed to take real or unbounded in-
teger values [Kompella and Awduche 2001]. For example, it could be necessary to
find a route with the objective of cost minimization (i.e. a quantitative constraint)
and subject to a path delay ≤ 40msec (i.e. a boolean constraint) at the same time,
therefore we would have the set of constraints C = (delay ≤ 40,min(cost)). In
such scenarios, satisfying two boolean constraints, or a boolean constraint and a
quantitative (optimization) constraint is NP-Complete [Younis and Fahmy 2003].
If all resources except one take bounded integer values, or if resources are depen-
dent, then the problems can be solved in polynomial time [Chen and Nahrstedt
1998]. Most of the proposed algorithms in this area apply heuristics to reduce the
complexity, as we will see in Sections 3.2 and 3.3.
Multicast and unicast QoS routing can be reconducted to two well-known and

more general problems: respectively, Multi-Constrained Path (MCP) [Korkmaz and
Krunz 2001] and Steiner Tree (ST) [Winter 1987] problems, which, together with
their variants and associated problems, we will define in the following of this Section.

Definition 3.1. A Multi-Constrained Path can be found in a directed graph
G = (V,E), where V is the set of nodes and E is the set of links. Each link (i, j) ∈ E
is associated with k non-negative additive weights wk(i, j) for k = 1, 2, . . . ,K. Given
K constraints ck, k = 1, 2, . . . ,K, the problem is to find a path p, from source node
s to destination node t, that simultaneously satisfy all the K constraints:

Σ(i,j)∈p wk(i, j) 6 ck, for k = 1, 2, . . . ,K

Note that the metric composition function (Σ in Def. 3.1) can be a generic f , if
we are using also other non-additive metrics; f can represent the × operation of the
semiring structure (see Sections 4 and 5). The NP-Completeness conclusion can
be reached also when we consider multiplicative metrics instead of only additive
ones, or even mixing them [Wang and Crowcroft 1996] together. Constraints on
concave measures can be treated, for instance, by omitting all links (and possibly
disconnected nodes) which do not satisfy the requested constraints. This procedure
is usually referred as topology filtering.
There may be multiple different paths in the graph G(N,E) that satisfy the same

set of constraints. Such paths are said to be feasible. According to Definition 3.1,
any of these paths is a solution to the MCP problem. However, often it might be
desirable to retrieve an optimal path, according to some criteria, and respecting also
the bounds imposed by the constraints. This more difficult problem is known as the
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Multi-Constrained Optimal Path (MCOP) problem. Clearly, since the paths must
be optimized according to some costs criteria, MCOP intersects the SP problem:

Definition 3.2. A Shortest Path problem can be represented as a directed graph
G = (N,E), where each arc e ∈ E from node p to node q (p, q ∈ N) has associated
a label representing the cost of the arc from p to q: the problem is to find a path
between two vertices such that the sum of the weights of its constituent edges is
minimized.

In Section 4 we model SP problems with SCLP and we extend them by also
adding constraints on the path, as required by QoS routing.
The MCP problem is a NP-Complete problem. The authors of [Garey and John-

son 1979] were the first to list the MCP problem with a number of metrics m = 2
as being NP-complete, but they did not provide a proof. Wang and Crowcroft have
provided this proof form ≥ 2 in [Wang and Crowcroft 1996] and [Wang 1999], which
basically consisted of reducing the MCP problem for m = 2 to an instance of the
partition problem, a well-known NP-complete problem [Garey and Johnson 1979].
However, simulations performed in (for example) [Mieghem et al. 2001; Kuipers
et al. 2004; Younis and Fahmy 2003] show that QoS routing may not be intractable
in some of the possible cases.
Now we define the ST problem:

Definition 3.3. Given an undirected distance graph G = (V,E, d) and a set S,
where V is the set of vertices in G, E is the set of edges in G, C is a distance
function which maps E into the set of nonnegative numbers and S ⊆ V is a subset
of the vertices of V , the Steiner Tree problem is to find a tree of G that spans S
with minimal total distance on its edges:

∑

∀e∈S

C(e) is minimized

If the S = V , the ST problem reduces to the Minimum Spanning Tree (MST)
problem. A solution to the MST problem have to span all the nides in the graph and
minimize the total weight of the tree at the same time; in Prim algorithm [Cormen
et al. 1990], at each step the solution tree is augmented with an edge that contributes
with the minimum amount possible to the total cost of the tree, thus the algorithm
is greedy. ST has been extended to Constrained Steiner Tree (CST), to include
constraints concerning the weights of the links; for example, if we want that the
sum of the metric values for each path p from the source s to each leaf s ∈ S, is
less than a chosen limit ∆, the constraint is:

∑

∀p∈Path(s,v)

D(e) < ∆

WhereD is another function mapping the edges to a different cost (e.g. measuring
the link delay). Thus, a CST minimizes the global cost of the tree and satisfy these
constraints. ST and CST are NP-Complete problems [Winter 1987] since the second
can be reduced to the first one.
As can be seen, the problems related to multicast inherit both the difficulty of

multiple constrained metrics, and the difficulty to reach multiple end-nodes at the
same time.
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Fig. 1. An example of a unicast distribution between the source and the receiver. Oriented arcs
highlight the path, while dashed lines correspond to links not traversed by the flow.

3.2 Unicast Routing with QoS Extensions

In Fig. 1 we show an example of a unicast communication between the source, gen-
erating data, and the only one receiver (i.e. the destination of the communication):
the thick oriented lines highlight the direction of the packet flow, while dashed lines
correspond to links not traversed.
Now we present some of the unicast QoS routing proposals, each of them oriented

at optimizing only a small subset of the possible QoS metrics or using heuristics,
since, as presented in Section 3.1, the problem is in general NP-Complete. For
example, several solutions have been proposed to bandwidth-bounded routing: an
interesting approach proposed in [Ma and Steenkiste 1997] exploits the dependen-
cies among resources, e.g. available bandwidth, delay, and buffer space, to simplify
the problem; then, a modified version Bellman-Ford algorithm can be used. One
approach to satisfy both bandwidth and delay bounds is to first prune all links not
satisfying the bandwidth requirement. Dijkstras shortest path algorithm is then
applied to find a feasible path, if any, satisfying the delay requirements [Wang and
Crowcroft 1996]. The problem of optimizing both the bandwidth and the delay can
be either solved as a widest shortest path problem or a shortest widest path problem,
depending if the algorithm gives higher priority to selecting paths with minimum
hop counts (i.e. widest shortest path), or to selecting paths with maximum band-
width (i.e. shortest widest path) [Wang and Crowcroft 1996]. The objective of
multi-constrained routing is to simultaneously satisfy a set of constraints, as de-
scribed in [Ma and Steenkiste 1997; Korkmaz and Krunz 2001]. In [Korkmaz and
Krunz 2001] is proposed a heuristic approach for the multi-constrained optimal
path problem (defined a H MCOP), which optimizes a non-linear function (for fea-
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sibility) and a primary function (for optimality). There are also solutions for band-
width and cost bounded routing, which typically map the cost or the bandwidth
to a bounded integer value, and then solve the problem in polynomial time using
an extended version of Bellman-Ford or Dijkstra algorithms [Chen and Nahrstedt
1998].

3.3 Multicast Routing with QoS extensions

Multicast is an important bandwidth-conserving technology that reduces traffic by
simultaneously delivering a single stream of information to multiple receivers (as
shown in Fig. 2). Therefore, while saving resources, multicast is well suited to con-
currently distribute contents on behalf of applications asking for a certain timeliness
of delivery: thus, also multicast routing has naturally been extended to guarantee
QoS requirements [Wang and Hou 2000]. In its simplest implementation, multicast
can be provided using multiple unicast transmissions, but with this solution, the
same packet can traverse the same link multiple times. For this reason, the network
must provide this service natively.
A multicast address is also called a multicast group address, with which the

routers can locate and send packets to all the members in the group. A group
member is a host that expresses interest in receiving packets sent to a specific
group address. A group member is also sometimes called a receiver or a listener. A
multicast source is a host that sends packets with the destination address set to a
multicast group. To deliver data only to interested parties, routers in the network
build a multicast (or distribution) tree (Figure 2). Each subnetwork that contains
at least one interested listener is a leaf of the tree. Where the tree branches, routers
replicate the data and send a single packet down each branch. No link ever carries
a duplicate flow of packets, since packets are replicated in the network only at the
point where paths diverge, reducing the global traffic.
Multicast problem has been studied with several algorithms and variants, such as

Shortest-Path Tree (SPT), MST, ST, CST (see Section 3), and other miscellaneous
trees [Wang and Hou 2000]. Algorithms based on SPT (e.g. Dijkstra or Bellman-
Ford [Cormen et al. 1990]) aim to minimize the sum of the weights on the links
from the source to each receiver, and if all the link cost one unit, the resulting tree
is the least-hop one.
Multicast QoS routing is generally more complex than unicast QoS routing, and

for this reason less proposals have been elaborated in this area [Younis and Fahmy
2003]. With respect to unicast, the additional complexity stems from the need to
support shared and heterogeneous reservation styles (towards distinct group mem-
bers) and global admission control of the distribution flow. Some of the approaches
use a Steiner tree formulation [Berman et al. 1979] or extend existing algorithm to
optimize the delay (i.e. MOSPF [Moy 1998] is the multicast version of the classical
OSPF), while the Delay Variation Multicast Algorithm (DVMA) [Rouskas and Bal-
dine 1997] computes a multicast tree with both bounded delay and bounded jitter.
Also, delay-bounded and cost-optimized multicast routing can be formulated as a
Steiner tree: an example approach is QoS-aware Multicast Routing Protocol [Chen
et al. 2000] (QMRP). Other multicast QoS routing algorithms and related problems
(entailing stability, robustness and scalability) are presented in [Younis and Fahmy
2003].
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Fig. 2. An example of a multicast tree built over a network: oriented arcs highlight the tree
(direction is down stream), while dashed lines correspond to links not traversed by the flow.

4. FINDING UNICAST QOS ROUTES WITH SCLP PROGRAMS

In this Section we will show how to represent and solve unicast QoS routing with
SCLP. At the beginning the problem will be treated only from the cost optimization
view, i.e. as a SP problem, while in the last part we propose an example on how
to add constraints on the path (i.e. solving the MCOP problem seen in Sec. 3.2).
Section 4.1 translates SP problems as SCLP programs, while in Section 4.2 the
same model is extended for multi-criteria optimizations, thus featuring vectors of
costs on the edges, and not a single value. Section 4.3 describes the case where each
arc also stores information about the modality to be used to traverse the arc. At
last, in Section 4.4 we add constraints on the QoS metrics, in order to fully obtain
a model for constrained paths.

4.1 From SP Problems to SCLP Programs

We suppose to work with a graph G = (N,E), where each oriented arc e ∈ E from
node p to node q (p, q ∈ N) has associated a label representing the cost of the arc
from p to q, as the example in Fig 3. This graph can be easily used to represent a
network, if nodes are associated to network devices (routers and hosts) and arcs to
network links. From any SP problem we can build an SCLP program as follows.
For each arc we have two clauses: one describes the arc and the other one its

cost. More precisely, the head of the first clause represents the starting node, and
its body contains both the final node and a predicate, say c, representing the cost of
the arc. Then, the second clause is a fact associating to predicate c its cost (which
is a semiring element). Even if in this Section the concept of cost is quite general,
we recall that with this fact we represent the QoS metric values on the arc (see
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Fig. 3. An SP problem.

Table II. The SCLP program representing the SP problem in Figure 3.

p :- cpq, q. cpq :- 2.

p :- cpr, r. cpr :- 3.

q :- cqs, s. cqs :- 3.

r :- crq, q. crq :- 7.

r :- crt, t. crt :- 1.

r :- cru, u. cru :- 3.

s :- csp, p. csp :- 1.

s :- csr, r. csr :- 2.

s :- csv, v. csv :- 2.

t :- cts, s. cts :- 3.

u :- cup, p. cup :- 3.

u :- cut, t. cut :- 2.

u :- cuv, v. cuv :- 3.

v :- 0.

Section 3). For example, if we consider the arc from p to q with cost 2, we have the
clause
p :- cpq, q.

and the fact
cpq :- 2.

Finally, we must code that we want v to be the final node of the path. This is done
by adding a clause of the form v :- 0. Note also that any node can be required
to be the final one, not just those nodes without outgoing arcs (like v is in this
example). The whole program corresponding to the SP problem in Figure 3 can be
seen in Table II.
To represent the classical version of SP problems, we consider SCLP programs

over the semiring S = 〈N,min,+,+∞, 0〉, which is an appropriated framework to
represent constraint problems where one wants to minimize the sum of the costs of
the solutions. For example, we can imagine that the cost on the arcs represents to us
the average delay experienced on the related link (measured in tens milli-seconds).
To compute a solution of the SP problem it is enough to perform a query in the
SCLP framework; for example, if we want to compute the cost of the path from
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Fig. 4. An SP problem with labeled arcs.

r to v we have to perform the query :- r. For this query, we obtain the value 6,
that represents the cost of the best path(s) from r to v, optimizing in this way the
total delay experienced on the route from r to v. Clearly, different semirings can be
chosen to represent the composition properties of the different metrics, as we will
see better in Section 4.2 by proposing bandwidth as the second metric describing
the link costs.

Notice that to represent classical SP problems in SCLP, we do not need any
variable. Thus the resulting program is propositional. However, this program,
while giving us the cost of the shortest paths, does not give us any information
about the arcs which form such paths. This information could be obtained by
providing each predicate with an argument, which represents the arc chosen at
each step.
Figure 4 shows the same SP problem of Figure 3 where the arcs outgoing each

node have been labeled with different labels to distinguish them. Such labels can
then be coded into the corresponding SCLP program to “remember” the arcs tra-
versed during the path corresponding to a solution. For example, clause
p :- cpq, q.

would be rewritten as
p(a) :- cpq, q(X).

Here constant a represents one of the arcs going out of p: the one which goes to q.
If all clauses are rewritten similarly, then the answer to a goal like :- r(X) will be
both a semiring value (in our case 6) and a substitution for X . This substitution
will identify the first arc of a shortest path from r to v. For example, if we have
X = b, it means that the first arc is the one that goes from r to t. To find a com-
plete shortest path, we just need to compare the semiring values associated with
each instantiated goal, starting from r and following the path. For example, in our
case (of the goal ∃X.r(X)) we have that the answer to the goal will be X = c with
semiring value 6. Thus we know that a shortest path from r to v can start with the
arc from r to u. To find the following arc of this path, we compare the semiring
values of u(a), u(b), and u(c). The result is that u(c) has the smallest value, which
is 3. Thus the second arc of the shortest path we are constructing is the one from u
to v. The path is now finished because we reached v which is our final destination.
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Notice that a shortest path could be found even if variables are not allowed in
the program, but more work is needed. In fact, instead of comparing different
instantiations of a predicate, we need to compare the values associated with the
predicates that represent nodes reachable by alternative arcs starting from a certain
node, and sum them to the cost of such arcs. For example, instead of comparing
the values of p(a) and p(b) (Figure 4), we have to compare the values of q + 2 and
of r + 3 (Figure 3).
A third alternative to compute a shortest path, and not only its cost, is to use

lists: by replacing each clause of the form
p :- cxy, q.

with the clause
p([a|T]) :- cxy, q(T).

during the computation we also build the list containing all arcs which constitute
the corresponding path. Thus, by giving the goal :- p(L)., we would get both the
cost of a shortest path and also the shortest path itself, represented by the list L.
An alternative representation, probably more familiar for CLP-ers, of SP prob-

lems in SCLP is one where there are facts of the form
c(p,q) :- 2.
...
c(u,v) :- 3.

to model the graph, and the two clauses
path(X,Y) :- c(X,Y).

path(X,Y) :- c(X,Z), path(Z,Y).

to model paths of length one or more. In this representation the goal to be given to
find the cost of the shortest path from p to v is :- path(p,v). This representation
is obviously more compact than the one in Table II, and has equivalent results and
properties. However, in next Sections we will continue using the simpler representa-
tion, used in Table II, where all the clauses have at most one predicate in the body.
The possibility of representing SP problems with SCLP programs containing only
such a kind of clauses is important, since it will allow us to use efficient algorithms
to compute the semantics of such programs (see [Bistarelli et al. 2002] for more
details).

4.2 Partially-Ordered SP Problems

Sometimes, the costs of the arcs are not elements of a totally ordered set. A typical
example is obtained when we consider multi-criteria SP problems. Consider for
example the multi-criteria SP problem shown in Figure 5: each arc has associated
a pair that represent the weight of the arc in terms of cost of use and average delay
(i.e. two possible QoS metrics); thus, the values are in the 〈cost, delay〉 form. Given
any node p, we want to find a path from p to v (if it exists) that minimizes both
criteria. In this example, there may be cases in which the labels of two arcs are not
compatible, like 〈5, 20〉 and 〈7, 15〉, since the cost is better in the first pair, while
the delay is lower in the second one. In general, when we have a partially ordered
set of costs, it may be possible to have several paths, all of which are not dominated
by others, but which have different incomparable costs (see also Section 6).
We can translate this SP problem in in Figure 5 into the corresponding SCLP
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Fig. 5. A multi-criteria SP problem.

Table III. The SCLP program representing the multi-criteria SP problem in Figure 5.

p :- cpq, q. cpq :- < 2,4 >.

p :- cpr, r. cpr :- < 3,1 >.

q :- cqs, s. cqs :- < 3,3 >.

r :- crq, q. crq :- < 7,3 >.

r :- crt, t. crt :- < 1,3 >.

r :- cru, u. cru :- < 3,4 >.

s :- csp, p. csp :- < 1,1 >.

s :- csr, r. csr :- < 2,2 >.

s :- csv, v. csv :- < 2,1 >.

t :- cts, s. cts :- < 3,2 >.

u :- cup, p. cup :- < 3,3 >.

u :- cut, t. cut :- < 2,1 >.

u :- cuv, v. cuv :- < 3,4 >.

v :- < 0,0 >.

program in Table III. This program works over the semiring

〈N2,min’,+′, 〈+∞,+∞〉, 〈0, 0〉〉,

where min′ and +′ are classical min and +, suitably extended to pairs. In prac-
tice, this semiring is obtained by putting together, via the Cartesian product, two
instances of the semiring 〈N,min,+,+∞, 0〉 (we recall that the Cartesian product
of two c-semirings is a c-semiring as well [Bistarelli et al. 1997b]). One of the two
instances is used to deal with the cost criteria, the other one is for the delay criteria.
By working on the combined semiring, we can deal with both criteria simultane-
ously: the partial order will tell us when a 〈cost, delay〉 pair is preferable to another
one, and also when they are not comparable.
To give an idea of another practical application of partially-ordered SP problems,

just think of network routing problems where we need to optimize according to the
following criteria: minimize the delay, minimize the cost, minimize the number of
arcs traversed, and maximize the bandwidth. The first three criteria correspond
to the same semiring, which is 〈N,min,+,+∞, 0〉, while the fourth criteria can
be characterized by the semiring 〈B,max,min, 0,+∞〉, where B is the set of the
possible bandwidth values (in Section 5.1 we will better investigate these semirings).
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In this example, we have to work on a semiring which is obtained by vectorizing
all these four semirings. Each of the semirings is totally ordered but the resulting
semiring, whose elements are four-tuples, is partially ordered.

4.3 Modality-based SP Problems

Until now we have considered situations in which an arc is labeled by its cost, be it
one element or a tuple of elements as in the multi-criteria case. However, sometimes
it may be useful to associate with each arc also information about the modality to
be used to traverse the arc.
For example, interpreting the arcs of a graph as links between cities, we may want

to model the fact that we can cover such an arc by car, or by train, or by plane.
Another example of a modality could be the time of the day in which we cover
the arc, like morning, afternoon, and night. One more example, this time strictly
related to topic of this paper, could be represented by the modalities associated
with the network link, e.g. wired, wireless or VPN, if there is the opportunity to
establish a Virtual Private Network on it. Therefore the modalities can be used to
manage policies for the routing (i.e. for policy routing). In all these examples, the
cost of an arc may depend on its modality.
An important thing to notice is that a path could be made of arcs which not

necessarily are all covered with the same modality. For example, the network
connection between two distant buildings of the same company can be made of
many hops, some of which are covered with the wireless modality and others with
wired one. Moreover, it can be that different arcs have different sets of modalities.
For example, from node n0 to node n1 we can use both the wired or wireless
connection, and from node n1 to node n2 we can use only a VPN. Thus modalities
cannot be simply treated by selecting a subset of arcs (all those with the same
modality).
An example of an SP problem with three modalities representing a network with

cryptographic service on the links (c) (both wired or wireless), wired/no-crypt (w),
and wireless/no-crypt (l) can be seen in Figure 6. Here the problem is to find a
shortest path from any node to v (our final destination), and to know both its delay
and also the modalities of its arcs. This SP problem can be modeled via the SCLP
program in Table IV. In this program, the variables represent the modalities. If
we ask the query :-p(c)., it means that we want to know the smallest delay for a
route from p to v using the the links with the cryptographic service. The result of
this query in our example is p(c) = 9 (using the path p− r − u− v).
Notice that the formulation shown in Figure IV puts some possibly undesired

constraints on the shortest path to be found. In fact, by using the same variable in
all the predicates of a rule, we make sure that the same modality (in our case the
same transport mean) is used throughout the whole path. If instead we want to
allow different modalities in different arcs of the path, then we just need to change
the rules by putting a new variable on the last predicate of each rule. For example,
the rule in Tab. IV
p(X) :- cpq(X), q(X).

would become
p(X) :- cpq(X), q(Y).

Now we can use a modality for the arc from p to q, and another one for the next
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Fig. 6. An SP problem with modalities.

Table IV. The SCLP program representing the SP problem with modalities in Fig. 6.

p(X) :- cpq(X), q(X). cpq(w) :- 2.

p(X) :- cpr(X), r(X). cpq(l) :- 3.

q(X) :- cqs(X), s(X). cpr(c) :- 3.

r(X) :- crq(X), q(X). cqs(l) :- 3.

r(X) :- crt(X), t(X). crq(c) :- 7.

r(X) :- cru(X), u(X). crt(w) :- 1.

s(X) :- csp(X), p(X). cru(c) :- 3.

s(X) :- csr(X), r(X). csp(c) :- 1.

s(X) :- csv(X), v(X). csp(w) :- 7.

t(X) :- cts(X), s(X). csr(w) :- 2.

u(X) :- cup(X), p(X). csv(w) :- 2.

u(X) :- cut(X), t(X). csv(c) :- 3.

u(X) :- cuv(X), v(X). cts(l) :- 3.

v(X) :- 0. cts(w) :- 3.

cup(c) :- 3.

cup(w) :- 1.

cut(w) :- 2.

cuv(w) :- 3.

cuv(c) :- 2.

arc. In this new program, asking the query :-p(c). means that we want to know
the smallest delay for a trip from p to v using the cryptographic service in the first
arc.
The same methods used in the previous sections to find a shortest path, or a

non-dominated path in the case of a partial order, can be used in this kind of
SCLP programs as well. Thus we can put additional variables in the predicates to
represents alternative arcs outgoing the corresponding nodes, and we can shift to
the semiring containing sets of costs to find a non-dominated path. In particular,
a clause like
p(X) :- cpq(X), q(Y).

would be rewritten as
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p(X,a) :- cpq(X), q(Y,Z).

4.4 Adding constraints to SP problems

As seen in Section 3.1 a MCOP is much more difficult to solve than a SP problem,
that is NP-Complete. So far we considered only variants of SP problems (partially-
ordered or modality-based), but our aim is to provide a complete model for the
unicast QoS routing. Thus, besides achieving cost optimization, we need also to
consider constraints on the QoS metrics.
In our example we consider again the multi-criteria graph in Fig. 5: each arc has

associated a pair that can represent the weight of the arc in terms of cost of use
and average delay. However, in this case our goal is to minimize the cost and to
guarantee a final average delay less than or equal to 8 (80msec), thus we want to
add the constraint delay ≤ 8.
We chose to represent constrained paths with a program in CIAO Prolog [Bueno

et al. 1997], a system that offers a complete Prolog system supporting ISO-Prolog,
but, at the same time its modular design allows both restricting and extending the
basic language. Thus, it allows both to work with subsets of Prolog and to work
with programming extensions implementing functions, higher-order (with predi-
cate abstractions), constraints, objects, concurrency, parallel and distributed com-
putations, sockets, interfaces to other programming languages (C, Java, Tcl/Tk),
relational databases and many more.
CIAO Prolog has also a fuzzy extension, but since it does not completely conform

to the semantic of SCLP defined in [Bistarelli et al. 1997a] (due to interpolation
in the interval of the fuzzy set), we decided to use the CIAO operators among
constraints (as < and ≤), and to model the × operator of the c-semiring with
them. For this reason, we inserted the cost of the edges in the head of the clauses,
differently from SCLP clauses which have the cost in the body of the clause.
In Tab. V is shown the CIAO program that represents the graph in Figure 5:

here the edges (i.e. all the Edges facts in Table V) are in the form:

edge(Source Node,Destination Node, [Link Cost, Link Delay])

Moreover, we can see the two clauses that describe the structure of paths: Rule
1 and Rule 2 respectively represent the base (or termination) case, where a path
is simply an edge, and the recursive case, needed to add one edge to the path. To
avoid infinite recursion, and thus the program crashing, we need to deal with graph
loops by considering the list of the already visited nodes, in order to prevent the
search from visiting them twice. Moreover, we inserted a variable in the head of the
path clauses to remember, at the end, all the visited nodes of the path: this list will
store the nodes following the correct ordering of the visit. Finally, the last variable
of the clause head is used to retrieve only the paths with a total delay equal or less
than the passed value. Thus, the path clause-heads are in the form:

path(Source Node,Destination Node, Path Nodes,Already V isisted Nodes,

[Path Cost, Path Delay], Path Max Delay)

ACM Journal Name, Vol. V, No. N, 20YY.



Unicast and Multicast Qos Routing with Soft Constraint Logic Programming · 19

Table V. The CIAO program representing all the paths of Fig. 5, with delay ≤ 8

Fig. 7. The CIAO output for the program in Tab. V: three paths are found with delay ≤ 8.

The Aggregator clause mimics the × operation of the semiring (i.e. + extended
to pairs, as in Sec. 4.2), and therefore it composes the global costs of the edges
together, edge costs with costs, and edge delays with delays.
All the found paths with a delay ≤ 8, and the relative query path(p, v, P, [p], [C,

D], 8) are shown in Fig. 7. The p source node of the path, must be included in the
list of the visited nodes from the beginning. Figure 7 corresponds to the output of
the CIAO program in Tab. V, and for each of the three found paths it shows the
variable P , which stores the sequence of the nodes in the path, and the C - D pair,
which corresponds to the total cost of the path in terms of 〈cost, delay〉.

5. EXTENDING THE MODEL TO DEAL WITH MULTICAST QOS ROUTING

Now we extend the framework given in Section 4 in order to manage also the
multicast delivery schema. The first step is represented by the use of hypergraphs
instead of simple graphs, since we need a method to connect one node to multiple
destinations at the same time (i.e. when the same packet must be routed on different
links). Section 5.1 presents a possible transformation procedure from networks
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to and-or graphs, showing also how to find a cost for the hyperarcs and related
semirings. In Section 5.2 we describe the SCLP programs representing and solving
the multicast QoS routing. In Section 5.3 we associate modalities to hyperarcs, as
we did in Section 4.3 for paths, and, at last, Section 5.4 proposes some suggestions
on reusing the same subcomputation results to reduce the computational complexity
of the problem, when working on large networks (with tabling techniques).

5.1 From networks to hypergraphs

In this Section we explain a method to translate the representation of a multicast
network with QoS requirements (Figure 9a) into a corresponding weighted and-or
graph [Martelli and Montanari 1978] (Figure 9b). This procedure can be split in
three distinct steps, respectively focusing on the representation of i) network nodes,
ii) network links and iii) link costs in terms of QoS metrics.
An and-or graph [Martelli and Montanari 1978] is defined essentially as a hy-

pergraph. Namely, instead of arcs connecting pairs of nodes there are hyperarcs
connecting an n-tuple of nodes (n = 1, 2, 3, . . .). Hyperarcs are called connectors
and they must be considered as directed from their first node to all others. Formally
an and-or graph is a pair G = (N,C), where N is a set of nodes and C is a set of
connectors

C ⊆ N ×
k⋃

i=0

N i.

Note that the definition allows 0-connectors, i.e. connectors with one input and
no output node. 0-connectors are represented as a line ending with a square (Fig-
ure 9b). In the following of the explanation we will also use the concept of and
tree [Martelli and Montanari 1978]: given an and-or graph G, an and tree H is a
solution tree of G with start node nr, if there is a function g mapping nodes of H
into nodes of G such that:

—the root of H is mapped in nr.

—if (ni0 , ni1 , . . . , nik) is a connector of H , then (g(ni0), g(ni1), . . . , g(nik)) is a con-
nector of G.

Informally, a solution tree of an and-or graph is analogous to a path of an ordinary
graph: it can be obtained by selecting exactly one outgoing connector for each node.
Each of the network nodes can be easily cast in the corresponding and-or graphs

as a single graph node: thus, each node in the graph can represent an intercon-
necting device (e.g. a router), or a node acting as the source of a multicast com-
munication (injecting packets in the network), or, finally, a receiver belonging to a
multicast group and participating in the communication. In Section 5.2, when we
will look for the best tree solution, the root of the best and tree will be mapped to
the node representing the source of the multicast communication; in the same way,
receivers will be modelled by the leaves of the resulting and tree. When we translate
a receiver, we add an outgoing 0-connector to model the end-point of the commu-
nication, and whose cost will be explained below. Suppose that {n0, n1, . . . , n9} in
Fig. 9a are the identifiers of the network nodes.
To model the links, we examine the forward star (f-star) of each node in the

network (i.e. the set of arcs outgoing from a node): we consider the links as
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Fig. 8. a) the f-star of ni network-node and b) its representation with connectors.

oriented, since the cost of sending packets from node ni to nj can be different from
the cost of sending from nj to ni (one non-oriented link can be easily replaced by
two oriented ones). Supposing that the f-star of node ni includes the arcs (ni, nj),
(ni, nk) and (ni, nz), we translate this f-star by constructing one connector directed
from ni to each of the subsets of destination nodes {j, k, z} (Figure 8), for a possible
maximal number of 2|N |−1 subsets (where |N | is the cardinality of the set of node in
the graph), i.e. excluding the emptyset; in Sec. 5.4 we will see how to minimize this
exponential growth. Thus, all the resulting connectors with ni as the input node are
(ni, nj), (ni, nk), (ni, nz), (ni, nk, nj), (ni, nk, nz), (ni, nj, nz) and (ni, nj , nk, nz).
In the connectors tuple-ordering of the nodes, the input node is at the first position
and the output nodes (when more than one) follow the orientation of the related
arrow in Figure 8.
To simplify Fig. 8b, the arcs linking directly two nodes represent 1-connectors

(ni, nj), (ni, nk) and (ni, nz), while curved oriented lines represent n-connectors
(with n > 1), where the set of their output nodes corresponds to the output nodes
of the traversed arcs. With respect to ni, in Fig. 8 we have a curved line labelled
with a that corresponds to (ni, nk, nj , nz), b to (ni, nk, nj), c to (ni, nj, nz), and,
at last, d to (ni, nk, nz). To have a clear figure, the network links in Fig. 9a are
oriented “towards” the receivers, thus we put only the corresponding connectors in
Fig. 9b.
In the example we propose here, we are interested in QoS link-state information

concerning only bandwidth and delay. Therefore, each link of the network can
be labeled with a 2-dimensional cost, for example the pair 〈7, 3〉 tells us that the
maximum bandwidth on that specific link is 70Mbps and the maximum delay is
30msec. In general, we could have a cost expressed with a n-dimensional vector,
where n is the number of metrics to be taken in account while computing the best
distribution tree. Since we want to maintain this link state information even in the
and-or graph, we label the corresponding connector with the same tuple of values
(Figure 9).
In the case when a connector represent more than one network link (i.e. a n-

connector with n ≥ 2), its cost is decided by assembling the costs of the these links
with the composition operation ◦, which takes as many n-dimensional vectors as
operands, as the number of links represented by the connector. Naturally, we can
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instantiate this operation for the particular types of costs adopted to express QoS:
for the example given in this Section, the result of ◦ is the minimum bandwidth
and the highest delay, ergo, the worst QoS metric values:

◦(〈b1, d1〉, 〈b2, d2〉, . . . , 〈bn, dn〉) −→ 〈min(b1, b2, . . . , bn),max(d1, d2, . . . , dn)〉

The cost of the connector (n1, n3, n4) in Fig. 9b will be 〈7, 3〉, since the costs of
connectors (n1, n3) and (n1, n4) are respectively 〈7, 2〉 and 〈10, 3〉:

◦(〈7, 2〉, 〈10, 3〉) = 〈7, 3〉

To simplify Fig. 9b, we inserted only the costs for the 1-connectors, but the costs
for the other connectors can be easily computed with the ◦ operation, and are all
reported in Tab. VI.
So far, we are able to translate an entire network with QoS requirements in a

corresponding and-or weighted graph, but still we need some algebraic framework
to model our preferences for the links to use in the best tree. For this reason,
we use the semiring structure (Sec. 2). An exhaustive explanation of the semiring
framework approach for shortest-distance problems is presented in [Mohri 2002].
For example, if we are interested in maximizing the bandwidth of the distribu-

tion tree, we can use the semiring SBandwidth = 〈B ∪ {0,+∞},max,min, 0,+∞〉
(otherwise, we could be interested in minimizing the global bandwidth with 〈B ∪
{0,+∞},max,min,+∞, 0〉. We can use SDelay = 〈D ∪ {0,+∞},min,max,
+∞, 0〉 for the delay, if we need to minimize the maximum delay that can be ex-
perienced on a single link. With this result and the depth of the final tree, we
can compute an upper bound for the end-to-end delay. Elements of B (i.e. the
set of bandwidth values) and D (i.e. the set of delay values) can be obtained by
collecting information about the network configuration, the current traffic state and
technical information about the links. Since the composition of c-semirings is still
a c-semiring [Bistarelli et al. 1997b],

SNetwork = 〈〈B ∪ {0,+∞},D ∪ {0,+∞}〉,+′,×′, 〈0,+∞〉, 〈+∞, 0〉〉

where +′ and ×′ correspond to the vectorization of the + and × operations in the
two c-semirings: given b1, b2 ∈ B ∪ {0,+∞} and d1, d2 ∈ D ∪ {0,+∞},

〈b1, d1〉+
′ 〈b2, d2〉 = 〈max(b1, b2),min(d1, d2)〉

〈b1, d1〉 ×
′ 〈b2, d2〉 = 〈min(b1, b2),max(d1, d2)〉

Clearly, the problem of finding best distribution tree is multi-criteria, since both
bandwidth and delay must be optimized. We consider the criteria as independent
among them, otherwise they can be rephrased to a single criteria. Thus, the mul-
tidimensional costs of the connectors are not elements of a totally ordered set, and
it may be possible to obtain several trees, all of which are not dominated by others,
but which have different incomparable costs.
For each receiver node, the cost of its outgoing 0-connector will be always included

in every tree reaching it. As a remind, a 0-connector has only one input node but no
destination nodes. If we consider a receiver as a plain node, we can set the cost as
the 1 element of the adopted c-semiring (1 is the unit element for ×), since the cost
to reach this node is already completely described by the other connectors of the
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Fig. 9. A network example and the corresponding and-or graph representation.

tree branch ending in this node: practically, we associate the highest possible QoS
values to this 0-connector, in this case infinite bandwidth and null delay. Otherwise
we can imagine a receiver as a more complex subnetwork, and thus we can set the
cost of the 0-connector as the cost needed to finally reach a node in that subnetwork,
in case we do not want, or cannot, show the topology of the subnetwork, e.g. for
security reasons.

5.2 And-or graphs using SCLP

In this Section, we represent an and-or graph with a program in SCLP. Using this
framework, we can easily solve the multi-criteria example concerning the multicast
QoS network in Fig. 9b.
As already proposed in Sec. 4, to represent the connectors in SCLP we can write

clauses like c(ni, [nj , nk]) : −〈10, 3〉, stating that the graph has connector from n0

to nodes nj and nk with a bandwidth cost of 100Mbps and a delay of 30msec.
Other SCLP clauses can properly describe the structure of the tree we desire to
search over the graph.
For the same reasons exposed in Section 4.4, we chose to represent an and-or

graph with a program in CIAO Prolog [Bueno et al. 1997]. As an example, from
the weighted and-or graph problem in Fig. 9b we can build the corresponding CIAO
program of Table VI as follows. First of all, we can describe the connectors of the
graph with facts like

connector(Source Node, [List of Destination Nodes],

[Link Bandwidth, Link Delay])

e.g. the fact connector(n0, [n2, n3, n4], [3, 6]) represents the connector of the
graph (n0, n1, n2, n3, n4) with bandwidth 30Mbps and delay 60msec. The set of
the connector facts is highlighted as Connectors in Table VI. In despite of what
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we declared in Section 5.1, here we choose a different ordering for the nodes in
the connector tuples when we have to write the program clauses: the input node
is again (as in the previous Sections) at the first position of the list representing
the connector in the clause, but in this Section we decide to lexicographically order
the output nodes (i.e. n0 precedes n1, n1 precedes n2 and so on). This decision
is dictated by the resulting simplification in writing the program and the queries,
since the ordering of the nodes can be easily remembered.
The Leaves of Table VI represent the terminations for the Prolog rules, and their

cost is the cost of the associated 0-connector (100 represents ∞ bandwidth).
The Aggregators rules, times in Table VI, mimic the × operation of the c-semiring

proposed in Section 5.1:

SNetwork = 〈〈B ∪ {0,+∞},D ∪ {0,+∞}〉,+′,×′, 〈0,+∞〉, 〈+∞, 0〉〉

where ×′ is equal to 〈min,max〉, and +′ is equal to 〈max,min〉.
At last, the rules 1-2-3-4 of Table VI describe the structure of the trees we want

to find over the graph. Rule 1 represents a tree made of only one leaf node, Rule 2
outlines a tree made of a connector plus a list of sub-trees with root nodes in the
list of the destination nodes of the connector, Rule 3 is the termination for Rule 4,
and Rule 4 is needed to manage the junction of the disjoint sub-trees with roots in
the list [X |Xs]. When we compose connectors and trees (Rule 2 and Rule 4 ), we
use the Aggregators to compose their costs together.
To make the program in Table VI as readable as possible, we omitted two predi-

cates: the sort predicate, needed to order the elements inside the list of destination-
nodes of connectors and trees (otherwise, the query tree(n0, [n6, n7

, n8, n9], [B,D]) and tree(n0, [n9, n7, n8, n6], [B,D]) would produce different results),
and the intersection predicate to check that multiple occurrences of the same node
do not appear in the same list of destination nodes, if reachable with different
connectors (otherwise, for example, the tree n0, [n7, n7, n8, n9] would be a valid
result).
To solve the and-or graph problem it is enough to perform a query in Prolog lan-

guage: for example, if we want to compute the cost of all the trees rooted at n0 and
having as leaves the nodes representing all the receivers (i.e. {n6, n7, n8, n9}), we
have to perform the query tree(n0, [n6, n7, n8, n9], [B,D]), where B and D variables
will be instantiated with the bandwidth and delay costs of the found trees. One of
the outputs of the CIAO program for this query corresponds to the cost of the tree
in Fig. 10, i.e. 〈2, 5〉, since ×′ computes the minimum bandwidth - maximum delay
of the connectors.
A global cost can be given to and trees: recursively, to every subtree of H with

root node ni0 , a cost ci0 is given as follows:

—If ni0 is a leaf, then its cost is the associated constant.

—If ni0 is the input node of a connector (ni0 , ni1 , . . . , nik), then its cost is ci0 =
fr(ci1 , . . . , cik) where fr is the function cost associated with the connector, and
ci1 , . . . , cik are the costs of the subtrees rooted at nodes ni1 , . . . , nik .

The final cost of the tree obtained with the CIAO program is equivalent to the
one that can be computed by using ×′ to define the fr cost function. Starting from
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Table VI. The CIAO program representing all the AND trees over the weighted and-or graph
problem in Fig. 9b.

the ni
0 source node and the connector (ni

0, n
i
1) with cost 〈10, 1〉, the total cost of

the tree cn0
is

c0 = fr(c1) = 〈10, 1〉 ×′ c1

Clearly, this framework can be used to solve the unicast problem as well, if the
asked query include only one destination node, e.g. tree(n0, [n6], [B,D]).

5.3 Modality-based Steiner Tree Problems

In this Section, as we provide in Sec. 4.3 for plain paths, we improve the tree search
by including the possibility of considering some modalities associated with the use
of the hyperarcs.
Even in this case the justification is easy, since sometimes it may be useful to
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Fig. 10. One of the multicast distribution tree that can be found with the program in Table VI.

associate with each hyperarc also the information about the modality to be used to
traverse that specific hyperarc. In this Section, we show an example using only two
of the three modalities of Sec. 4.3: wired link with no encryption service (w), and
wireless link with no encryption service (l). Other classes could collect slices of day
time in which network links are preferred to be used (e.g. to better support the
peaks of traffic), or label special conditions of use, e.g. to support “night back-up”
or “black-out” events.
In Fig. 11 we show an example on how to pass from a network to a corresponding

hypergraph with modalities (from Fig. 11a to Fig. 11b): the modality associated
with a connector is found by using the union operator (i.e. ∪) on the sets of
modalities associated with each of the links represented by that connector. In the
example of Fig. 11, 0-connector have emptyset as label, since in this case we do
not need any further information to finally reach a receiver; however, in general 0-
connector labels may contain the same modalities as the other n-connector labels,
e.g. when they represent the internal structure of a sub network, as (n9) in Fig. 9b.
For example, if the connection from n0 to n1 is wired, and the connection from n0

to n2 is wireless, the connector (n0, n1, n2) will be labelled with the {w, l} modality
set. Thus, connectors are now represented in the following way:

connector(Source Node, [List of Destination Nodes],

[Link Bandwidth, Link Delay], [List of Modalities])

The query for the tree search must now be performed by including also the set
of modalities that the tree connectors need to support: if the set of modalities
associated with a connector is a subset of the modalities asked in the query, then
that connector can be used to build the tree. This can be accomplished by using, for
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Fig. 11. a) A network with modalities associated to the links, and b) the corresponding hyper-
graph.

example, the CIAO difference predicate between the two lists (sets) of modalities,
or the sublist property.
For example, when asking for tree(n0, [n3, n4], [B,D], [w]), the (n0, n1, n2) con-

nector cannot be used because its label is {w, l} and we do not want to use wireless
links. To include also that specific connector in the search, we have to ask the query
tree(n0, [n3, n4], [B,D], [w, l]). clearly, the final 0-connectors are always included in
trees because they have an emptyset label.

5.4 Reducing the complexity

As shown in Section 5.1, the representation of the f-star of node in the multicast
model can be composed by a total of O(2n) connectors, thus in the worst case it
is exponential in the number of graph nodes. This drawback, which is vigorously
perceived in strongly connected networks, and together with considering a real
case network linking hundreds of nodes, would heavily impact on the time-response
performance during a practical application of our model. Therefore, it is necessary
to elaborate some improvements to reduce the complexity of the tree search, for
example by visiting as few branches of the SCLP tree as possible (thus, restricting
the solution space to be explored).
In logic programming, the basic idea behind tabling (or memoing) is that the

calls to tabled predicates are stored in a searchable structure together with their
proven instances: subsequent identical calls can use the stored answers without
repeating the computation. This collection of tabled subgoals paired with their
answers, generally referred to as call table and answer table respectively, is consulted
whenever a new call, C, to a tabled predicate is issued. If C is similar to a tabled
subgoal S, then the set of answers, A, associated with S may be used to satisfy
C. In such instances, C is resolved against the answers in A, and hence we refer
to C as a consumer of A (or S ). If there is no such S, then C is entered into
the call table and is resolved against program clauses. As each answer is derived
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during this process, it is inserted into the answer table entry associated with C if it
contains information not already in A. Furthermore, left recursion need not lead to
non-termination because identical subgoals are not evaluated, and thus the possible
infinite loops are avoided.

The same considerations stand also for tabling with constraints, apart from the
fact that a subgoal call is associated with a set of constraints, and an answer to a
set of answer constraints. The basic idea is to try to avoid recomputing a subgoal
G if has been called in similar environment, i.e. the constraint set related to G.
Moreover, some general operations on constraints, as call abstraction, projection
and entailment checking, are needed to properly manage the tabling and control
the growth of the tables (a critical aspect for this technique). These operation
are usually executed in the given order: call abstraction avoids the duplication of
information in the tables by restricting to a small set of call instantiation patterns.
The projection of the answer on the non-local variables of the call is used because
local variables are meaningless outside of the call; moreover, projection can be
used to obtain a finite number of answers by discarding the constraints on local
and unreachable variables. Entailment is the last step, since some of the answers
computed for a predicate could be redundant and so need not to be saved: if the
store already contains a more general answer, the new obtained answer can be
immediately forgotten.

Tabling improves the computability power of Prolog systems and for this reason
many programming frameworks have been extended in this direction. Due to the
power of this extension, many efforts have been made to include it also in CLP, thus
leading to the Tabled Constraint Logic Programming (TCLP) framework. In [Cui
and Warren 2000] the authors present a TCLP framework for constraint solvers
written using attributed variables; however, when programming with attributed
variables, the user have to take care of of many implementation issues such as con-
straint store representation and scheduling strategies. A more recent work [Schri-
jvers and Warren 2004] explains how to port Constraint Handling Rules (CHR) to
XSB (acronym of eXtended Stony Brook), and in particular its focus is on technical
issues related to the integration of CHR with tabled resolution. CHR is a high-
level natural formalism to specify constraint solvers and propagation algorithm.
This could be the promising framework where to solve QoS routing problems, since
soft constraints have already been successfully ported to the CHR system [Bistarelli
et al. 2002]. As far as we know, all these TCLP systems are difficult to use at the
present moment, due to the attributed variables choice, or due to the lack of an
implementation.

One more consideration that can be taken into account while trying to reduce
the complexity, is that large networks, as Internet, are already partitioned into
different Autonomous System (AS), or however, into subnetworks. An AS is a
collection of networks and routers under the control of one entity (or sometimes
more) that presents a common routing policy to the Internet. AS can be classified
by observing the types of traffic traversing them. A multihomed AS maintains
connections to more than one other AS; however, it would not allow traffic from
one AS to pass through on its way to another AS. A stub AS is only connected
to a single AS. A transit AS provides connections through itself to the networks
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Fig. 12. A network subdivided in Autonomous Systems; each AS can store in its border routers
a table with the goals related to that specific AS.

connected to it. Considering Fig. 12, network AS1 can use the transit AS3 to
connect to network AS2. An AS number (or ASN) uniquely identifies each AS on
the internet (i.e. AS1, AS2 and AS3 ).

As shown in Fig. 12, in each AS (or subnetwork in general) we can find a table
with the QoS routing goals concerning the destinations (routers and hosts) within
its bounds, by using tabling techniques. At this point, these tables helps to find the
routes that span multiple ASs and the search procedure is considerably speeded up:
the routes internal to each AS can be composed together by simply using the links
connecting the border routers. For example, consider when a sender in AS1 needs
to start a multicast communication towards some receivers in AS2 and AS3 : the
routers inside AS1 can use Table 1 to find the routes from the source to the border
routers of AS1 (i.e. it can communicate with other ASs). Then, the border routers
in AS2 and AS3 respectively use Table 2 and Table 3 to find the second and final
part of the route towards the receivers inside their AS. The procedure of finding
such a goal table for a single AS is much less time consuming than finding it for
the whole not-partitioned network. Clearly, the fundamental premise to obtain a
substantial benefit from this technique is to have strongly-connected subnetworks
and few “bridges” among them.
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6. A LAST REFINEMENT ON SEMIRINGS FOR PARTIALLY-ORDERED PROB-

LEMS

As seen in Sections 4.2 and 5.1, the costs on the connectors can be represented
by vectors of costs, representing the QoS metric values of the network links. But
since we can have a partial order, two such pairs may possibly be incomparable,
and this may lead to a strange situation while computing the semantics of a given
goal. Considering the example in Section 4.2 and the related program in Table III,
if we want to compute the cost and delay of the best path from p to v, by giving
the query :- p., the answer in this case is the value 〈7, 7〉. While the semiring
value obtained in totally ordered SCLP programs represents the cost of one of
the shortest paths, here it is possible that there are no routes with this cost: the
obtained semiring value is in fact the greatest lower bound (w.r.t. both cost and
delay) of the costs of all the paths from p to v. This behavior comes from the fact
that, if different refutations for the same goal have different semiring values, the
SCLP framework combines them via the + operator of the semiring (which, in the
case of our example, is the min′ operator of Section 4.2). If the semiring is partially
ordered, it may be that a+ b is different from both a and b. On the contrary, if we
have a total order a+ b is always either a or b.
This problem of course is not satisfactory, because usually one does not want

to find the greatest lower bound of the costs of all paths from the given node to
the destination node, but rather prefers to have one of the non-dominated paths.
To solve this problem, we can add variables to the SCLP program, as we did
in the previous section, and also change the semiring. In fact, we now need a
semiring which allows us to associate with the source node the set of the costs
of all non-dominated path from there to the destination node. In other words,
starting from the semiring S = 〈A,+,×, 0, 1〉 (which, we recall, in the example of
Sec. 4.2 is 〈N2,min′,+′, 〈+∞,+∞〉, 〈0, 0〉〉), we now have to work with the semiring
PH(S) = 〈PH(A),⊎,×∗, ∅, A〉, where:

—PH(A) is the Hoare Power Domain [Smyth 1978] of A, that is, PH(A) = {S ⊆
A | x ∈ S, y ≤S x implies y ∈ S}. In words, PH(A) is the set of all subsets of A
which are downward closed under the ordering ≤S. It is easy to show that such
sets are isomorphic to those containing just the non-dominated values. Thus in
the following we will use this more compact representation for efficiency purposes.
In this compact representation, each element of PH(A) will represent the costs
of all non-dominated paths from a node to the destination node;

—the top element of the semiring is the set A (its compact form is {1}, which in
our example is {〈0, 0〉});

—the bottom element is the empty set;

—the additive operation ⊎ is the formal union [Smyth 1978] that takes two sets
and obtains their union;

—the multiplicative operation ×∗ takes two sets and produces another set obtained
by multiplying (using the multiplicative operation × of the original semiring, in
our case +’) each element of the first set with each element of the second one;

—the partial order of this semiring is as follows: a ≤PH(S) b iff a ⊎ b = b, that is
for each element of a, there is an element in b which dominates it (in the partial
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order ≤S of the original semiring).

From the theoretical results in [Smyth 1978], adapted to consider c-semirings, we
can prove that PH(S) and its more compact form are indeed isomorphic. Moreover,
we can also prove that given a c-semiring S, the structure PH(S) is a c-semiring
as well.

Theorem 6.1. Given a c-semiring S = 〈A,+,×, 0, 1〉, the structure PH(S) =
〈PH(A),⊎,×∗, ∅, A〉 obtained using the Power domain of Hoare operator is a c-
semiring.

The proof easily follows from the properties of the × operator in the c-semiring
S and from the properties (commutativity, associativity, and idempotence) of the
formal union ⊎ in PH(S).
Note that in this theorem we do not need any assumption over the c-semiring

S. Thus the construction of PH(S) can be done for any c-semiring S. Notice also
that, if S is totally ordered, the c-semiring PH(S) does not give any additional
information w.r.t. S. In fact, if we consider together the empty set (with the
meaning that there are no paths) and the set containing only the bottom of A
(with the meaning that there exists a path whose cost is 0), it is possible to build
an isomorphism between S and PH(S) by mapping each element p (a set) of PH(A)
onto the element a of A such that a ∈ p and a dominates all elements in the set p.
The only change we need to make to the program with variables, in order to work

with this new semiring, is that costs now have to be represented as singleton sets.
For example, clause cpq :- < 2, 4 >. will become cpq :- {< 2, 4 >}.
Still considering the example in Sec. 4.2, Let us now see what happens in our

example if we move to this new semiring. First we give a goal like :- p(X).. As
the answer, we get a set of pairs, representing the costs of all non-dominated paths
from p to v. All these costs are non-comparable in the partial order, thus the user
is requested to make a choice. However, this choice could identify a single cost or
also a set of them. In this second case, it means that the user does not want to
commit to a single path from the beginning and rather prefers to maintain some
alternatives. The choice of one cost of a specific non-dominated path will thus be
delayed until later. If instead the user wants to commit to one specific cost at
the beginning, say 〈c1, c2〉, he/she then proceeds to find a path which costs exactly
〈c1, c2〉. By comparing the answers for all goals of the form p(a), where a represents
one of the arcs out of p, we can see which arc can start a path with cost 〈c1, c2〉. In
fact, such an arc will be labeled 〈c1a, c2a〉 and will lead to a node with an associated
set of costs 〈c3, c4〉 such that 〈c3, c4〉 ×〈c1a, c2a〉 = 〈c1, c2〉. Suppose it is the arc
from p to q, which has cost 〈7, 3〉. Now we do the same with goals of the form
q(a), to see which is the next arc to follow. However, we now have to look for the
presence of a pair 〈c3, c4〉 such that 〈c3, c4〉 ×〈7, 3〉 = 〈c1, c2〉.
Notice that each time we look for the next arc, we choose just one alternative

and we disregard the others. If we used a fixpoint (or any bottom-up) semantics to
compute the answer of the initial goal :- p(X)., then all the other answers we need
for this method have been already computed, thus the method does not require any
additional computational effort to find a non-dominated path.
Notice also that the sets of costs associated with each node are non-dominated.
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Thus the size of these sets in the worst case is the size of the maximal ”horizontal
slice” of the partial order: if we can have at most N non-dominated element in the
partial order, then each of such sets will have size at most N. Of course in the worst
case N could be the size of the whole semiring (when the partial order is completely
”flat”).
Most classical methods to handle multi-criteria SP problems find the shortest

paths by considering each criteria separately, while our method deals with all cri-
teria at once. This allows to obtain optimal solutions which are not generated by
looking at each single criteria. In fact, some optimal solutions could be non-optimal
in each of the single criteria, but still are incomparable in the overall ordering. Thus
we offer the user a greater set of non-comparable optimal solutions. For example,
by using a cost-delay multi-criteria scenario, the optimal solution w.r.t. cost could
be 10 euro (with a delay of 100msec), while the optimal solution w.r.t. delay could
be 10msec (with a cost of 100 euro). By considering both criteria together, we
could also obtain the solution with 20 euro and 20msec!
Note that the considerations on partially-ordered problems of this Section clearly

state for the multicast tree example in Section 5.1 as well. In this case, PH(S) =
〈PH(A),⊎,×∗, ∅, A〉 uses the semiring for bandwidth-delay multi criteria: S = 〈〈B∪
{0,+∞},D∪ {0,+∞}〉,+′,×′, 〈0,+∞〉, 〈+∞, 0〉〉, where B is the set of bandwidth
values, D is the set of delay values, +′ is 〈max,min〉 and×′ is 〈min,max〉. Therefore,
×∗ uses 〈min,max〉 (×′) to compose two sets, and ⊎ the ordering ≤S defined by
〈max,min〉 (+′).
Finally, this method is applicable not only to the multi-criteria case, but to any

partial order, giving us a general way to find a non-dominated path in a partially-
ordered SP problem. It is important to notice here the flexibility of the semiring
approach, which allows us to use the same syntax and computational engine, but
on a different semiring, to compute different objects.

7. CONCLUSIONS

We have described a method to represent and solve the unicast/multicast QoS rout-
ing problem with the combination of graph/hypergraph and SCLP programming:
i) the best path found in this way corresponds to the best unicast route distributing
(for example) multimedia content from the source to the only receiver; ii) the same
considerations are also valid for the best tree found over an and-or graph, since it
corresponds to the best multicast distribution tree towards all the receivers. The
best path/tree optimizes objectives regarding QoS performance, e.g. minimizing the
global bandwidth consumption or reducing the delay, and can satisfy constraints
on these metric values at the same time. The structure of a c-semiring defines
the algebraic framework to model the costs of the links, and the SCLP framework
describes and solves the SCSP problem in a declarative fashion. Since several dis-
tinct criteria must be all optimized (the costs of the arcs may include multiple QoS
metric values), the best route problem belongs to the multi-criteria problem class,
i.e. it can result in a partially-ordered problem. Moreover we have seen also how
to deal with modality-based problems, relating them to preferences connected to
policy routing rules. Therefore, the model proposed in this paper can be used to
reason upon (and solve!) CBR, that is, in general, a NP-Complete problem. Note
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also that, even if the paper is focused on routing problems, the same framework
can be generally adopted with every problem related to MCOP or ST.
For what about regarding the related works, in [de Nicola et al. 2003] and [Hirsch

and Tuosto 2005] the authors adopt a hypergraph model in joint with semirings too,
but the minimal path between two nodes (thus, not over an entire tree) is computed
via a graphical calculous instead of SCLP. At the moment, all these frameworks
are not comparable from the computational performance point of view, since we
have not yet collected a reasonable amount of timing results (for large networks
in particular), and, so far the systems in [de Nicola et al. 2003] and [Hirsch and
Tuosto 2005] have not yet been implemented.
In the future, we plan to enrich this framework by using Soft Concurrent Con-

straint Programming (SCCP) [Bistarelli et al. 2006] to handle the interactions
among the routing devices and the receivers, and, consequently, we would like
to introduce new “soft” operations (e.g. a retract of a constraint) to enable the
release of the resources reserved by the receivers of the communication, introducing
a non-monotonic evolution of the constraint store (which is not allowed in classical
SCCP).
A second step should consist in further expanding the SCCP framework with

some simple primitives which allows to specify timing constraints. According to
our opinion, time critical aspects are essential to the management of QoS, and, in
general, when modelling the possible interactions among distributed or concurrent
systems. These entities must continuously react to the inputs coming from the
environment and act in an appropriate manner.
A further extension to our QoS framework could be the introduction of proba-

bilistic metrics as the weight of the graph-links: we could consider this value as
the probability of packet loss on that connection, or the probability of a connection
existence between two nodes in the network. In this case, the global probability
of existence of a path between two nodes p and v depends on the probability of
all the possible different paths connecting p and v in the graph. The problem is
represented by the composition of the different probabilities of these paths, which
cannot be easily modelled with a semiring.
Future research could address also the remodelling of the best tree due to the

continuous network-state changes, including the requests of multicast group mem-
bers to dynamically join in and leave from the communication, or the updates of
the QoS metric values on the links, since a network must be efficiently used to
transport multiple flows at the same time.
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