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ABSTRACT
Reproducing bug symptoms is a prerequisite for perform-
ing automatic bug diagnosis. Do bugs have characteristics
that ease or hinder automatic bug diagnosis? In this pa-
per, we conduct a thorough empirical study of several key
characteristics of bugs that affect reproducibility at the pro-
duction site. We examine randomly selected bug reports
of six server applications and consider their implications on
automatic bug diagnosis tools. Our results are promising.
From the study, we find that nearly 82% of bug symptoms
can be reproduced deterministically by re-running with the
same set of inputs at the production site. We further find
that very few input requests are needed to reproduce most
failures; in fact, just one input request after session estab-
lishment suffices to reproduce the failure in nearly 77% of the
cases. We describe the implications of the results on repro-
ducing software failures and designing automated diagnosis
tools for production runs.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
D.4.5 [Reliability]: Fault-tolerance

General Terms
Reliability, Testing, Verification, Fault-tolerance

Keywords
bug characteristics, network servers, bug reports, bug diag-
nosis, checkpointing
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1. INTRODUCTION

1.1 Motivation
In-field software failures are becoming increasingly com-

mon with the increasing complexity of software. In ad-
dition to causing severe inconvenience to customers, such
faults result in billions of dollars of lost revenue to service
providers [10]. To this end, increasing the reliability of sys-
tems is becoming critically important. In spite of tremen-
dous improvements in software engineering, testing and soft-
ware reliability [34, 29, 30, 22, 31, 24, 33, 16, 27, 14, 13, 12,
7, 26, 36, 38, 40, 21, 15, 11], many software bugs still escape
testing and enter production. As others have noted [36],
performing off-site analysis of production run failures at de-
velopment sites has several limitations: 1) it is difficult to
reproduce failures at the development site due to differences
in the environment, 2) customers have privacy concerns over
what information can be released for off-site diagnosis, and
3) the same bug may generate a different failure at multi-
ple production sites; it is cumbersome for the development
team to investigate every failure that occurs without any
automated feedback regarding the root cause of the failure.

The use of automatic software bug diagnosis techniques
is a promising solution for fixing bugs found in production
code. Automatic bug diagnosis has the potential to iden-
tify root causes of failure (both during development and
production runs), create reduced test cases for filing bug
reports, and automatically repair the software while it is
in production. As an example, Triage [36] uses techniques
based on checkpointing/rollback and re-execution to per-
form in-production bug diagnosis.

One challenge for automated diagnosis tools is that they
generally require mechanisms to roll back and replay pro-
gram inputs repeatedly in order to evaluate different root
causes. Unfortunately, using checkpointing for such roll
back limits the practical usefulness of such tools. First,
checkpointing that is lightweight enough to be used for soft-
ware diagnosis or debugging requires operating system sup-
port [34], which means that such tools cannot work on com-
modity operating systems that lack such support. Multi-
threaded processes also complicate the checkpointing pro-
cedure. In addition, diagnosis cannot be done if the fault
happens before the checkpoint is taken. It would be very
useful if diagnosis tools could simply restart the target pro-
gram and replay a small subset of the inputs to reproduce
and diagnose the failures. Exploring this question requires
an understanding of real-world bug behavior. One perhaps
surprising implication of the present study is that such a



simple approach is likely to work for most bugs in real-world
server programs, as described in Section 7.

There also exist techniques like Delta Debugging [39] to
generate a minimal set of test inputs from some failing test
case. In general, such tools are too slow to be deployed in
a production environment. Again, the knowledge of what
types of inputs and how many inputs are commonly needed
to produce failures can help us to build automated tools
which use heuristics to efficiently select a minimal test case.
However, in order to be widely deployable in production run
environments, bug diagnosis tools must be able to quickly
isolate the inputs that trigger a fault, reduce the inputs to
just those that trigger the fault, and be able to reproduce
the fault with reasonable reliability.

Server applications make these challenges more difficult as
they run for long periods of time, handle large amounts of
data over that time, and perform concurrent processing of
input. Do the failures in server applications lend themselves
to being automatically reproduced? Are there characteris-
tics of server applications that ease or frustrate attempts to
perform automatic bug diagnosis? Are there characteristics
of inputs that ease the procedure to find a minimal test case?
Our study, an empirical examination of real-world bugs in
server applications, aims to answer these questions.

1.2 Goals of The Study
The main goal of this study is to answer and analyze the

following questions, focusing on server software:

1. How many inputs are needed to trigger the symptoms
of a software bug?

2. How long does it take for the symptom to occur after
the first faulty input is used by the application?

3. What kinds of symptoms appear as a manifestation
of bugs? Are these symptoms sufficient for creating
automatic bug diagnosis tools?

4. What fraction of failures are deterministic with respect
to the inputs?

The answers to these questions will have implications for
designing automated diagnosis tools for server applications.
Server applications have several qualities that make them
ideal for such a study. They are widely used and mission
critical for many businesses. They process a large amount
of input data over extended periods of time, making it im-
portant to understand how many server inputs are needed to
trigger failures, and how reliably they do so. They are also
extremely concurrent, making it important to understand
whether bug behavior (both normal errors and concurrent
programming errors) is deterministic with respect to the in-
puts. While these qualities make them challenging, a silver
lining is that their inputs are well-structured due to the na-
ture of the protocols they use to communicate with clients.

We studied the above questions using public bug databases
and committed bug fixes (patches) for six large open-source,
server “infrastructure” programs that are widely used to
build servers and Web server applications: Squid, Apache,
Subversion (SVN), MySQL, the OpenSSH Secure Shell Server
(sshd), and the Tomcat Application Server. Among the sev-
eral servers we considered for this study, we attempted to
include all the stateful servers. We randomly selected and
manually analyzed a total of 266 randomly selected bugs

and 30 specifically selected concurrency bugs in these six
programs to answer these questions1.

1.3 Findings and Contributions
The main findings of our study are as follows. Here, we

define an “input” as a logical request from the client to the
server that needs to be buffered to be able to reproduce a
failure (see Section 3):

1. Nearly 77% of the failures due to software bugs can be
reproduced with just one input request (excluding ses-
sion establishment inputs like login and select database
requests). Among the remaining bugs with clear infor-
mation, only 12 of the failures need more than 3 inputs
to trigger a symptom.

2. Among the 30 cases that require more than one in-
put request to trigger a fault, in a majority of them
(17 cases), all the necessary inputs are likely to occur
within a short duration of time.

3. For most of the failures, the time duration between the
first faulty input and the symptom is small.

4. For the majority of overall bugs (nearly 63%), the fail-
ure symptom is an incorrect output. In two of the
applications (Squid and Tomcat), we find many fewer
incorrect output symptoms compared to other appli-
cations; our analysis leads us to believe that this is
because Squid and Tomcat use many more assertions
and exceptions, respectively.

5. Nearly 82% of all the faults we analyzed were reported
to have deterministic behavior. This is true, even
though Apache, MySQL and Tomcat are extensively
multi-threaded and even for stateful applications.

6. Concurrency bugs (e.g., data races or deadlocks) form
a small fraction (<2%) of all bugs (even in highly
concurrent applications), but they have very different,
more complex characteristics: nearly all are non-deter-
ministic, they usually require more inputs to trigger,
they have more hangs/crashes and fewer incorrect out-
put symptoms, but about 17% of them show different
failure symptoms in different executions for the same
inputs.

Our results have several implications for automated bug
diagnosis tools:

1. Most bug failures can be automatically reproduced by
replaying just the last input. Furthermore, most fail-
ures, including both single and multi-input failures, are
triggered within a short time after receiving the first
faulty input. Therefore, tools can optimize their search
for inputs that reproduce the failure by first trying a
small number of the most recent inputs received be-
fore the failure was detected. Systems can buffer only
a small suffix of the inputs for each server instance.

2. In cases where multiple inputs are needed to trigger
a fault, the symptoms are not only triggered quickly
but the required inputs are also likely to be clustered
together in the input stream, allowing an automated
tool to optimize the search for the inputs.

1A detailed spreadsheet with all these bugs can be found at
http://sva.cs.illinois.edu/ICSE2010/bug statistics.xls



3. New techniques are needed to detect the internal data
corruptions that cause incorrect outputs as they are
the most common symptom. Inserting more assertions
or exceptions manually or automatically appears to be
a promising approach.

4. Isolating fault-triggering inputs for concurrency bugs
and reproducing failures of such bugs reliably is sig-
nificantly harder than for other bugs, but tools can
exploit the fact that there are fewer incorrect output
errors and many more hangs/crashes (i.e., failure de-
tection is somewhat easier).

Based on these results, we also propose a new low-cost
technique to reproduce failures during production and devel-
opment. Automated bug diagnosis tools can buffer a suffix
of the input requests to the server and upon failure, restart
the server and replay the suffix of inputs to attempt to repro-
duce the failure. A few preliminary experiments suggest this
approach may be able to reproduce server failures without
checkpointing the server state.

The rest of the paper is organized as follows. Section 2
describes our methodology for choosing server applications
and the bugs to study and the key limitations of the work.
Section 3 presents our terminology. Section 4 details our
primary analysis and classification of the bugs. Section 5
further analyzes the bugs which require multiple inputs to
trigger them. Section 6 focuses on the characteristics of
concurrency bugs. Section 7 describes the implications our
results have on automated bug diagnosis tools. We describe
related work in Section 8. We conclude and describe future
work in Section 9.

2. METHODOLOGY
In this section, we describe our methodology for selecting

the applications and the bugs we study in this paper; we
also discuss the limitations of our study. A summary of the
applications and software bugs is in Table 1.

2.1 Application Selection
Our study focuses on widely used, large server applica-

tions. We aimed our study at open-source applications that
provide both a publicly-accessible bug database and access
to the server’s source code. When possible, we opted to
study servers implementing stateful protocols (i.e., protocols
requiring the server to maintain application-specific protocol
state during an application-defined session) as these servers
are the most likely to require more inputs for failure repro-
duction. Finally, we needed applications with a sufficient
number of production bugs to study.

We considered many widely used Linux servers e.g., those
implementing the IMAP, SMTP, FTP, DNS, LDAP, and NIS
protocols, and selected six server applications. We found
that only a few maintain significant state, and we deliber-
ately included the stateful servers in our study. Three out
of six servers in our study (Squid, MySQL, Tomcat), or the
applications run on top of Tomcat, maintain significant state
that affects reported server bugs. All six servers use TCP
as the transport-level protocol for client communication.

Apache web server: The Apache web server communi-
cates with clients via the stateless HTTP protocol [18] and
via HTTP over SSL for authenticated and encrypted com-
munication. While HTTP is stateless, Apache does main-
tain some information on the threads and processes it uses

to handle requests. Apache can also maintain in-memory
and on-disk state for caching recently served web pages.

Squid HTTP proxy server: The Squid web proxy
server also communicates with clients via HTTP and HTTP
over SSL. Like Apache, Squid can cache recently accessed
web pages in memory and on disk. Squid’s rate throttling
features [4] must also maintain some global state.

MySQL database server: MySQL uses a custom pro-
tocol for client communication [2]. For each session, the
server must maintain state about the authentication sta-
tus and credentials of the client, temporary tables, prepared
statements, and various parameters like query cache size and
SQL modes. MySQL also supports clustering and replica-
tion, which can maintain a lot of global state.

Tomcat Servlet Container: Tomcat uses the HTTP
protocol (optionally over SSL) for client communication.
It maintains internal state about which web applications
are loaded and provides facilities with which web applica-
tions can maintain session state across individual HTTP
requests [8]. Tomcat bug reports are often generated by
developers of applications running on Tomcat. Such appli-
cations can maintain arbitrary amounts of state, e.g., for
e-commerce. This state will affect the behavior and repro-
ducibility of failures due to Tomcat bugs. Tomcat also sup-
ports clustering and session replication, which maintains a
lot of global state.

OpenSSH secure shell server: The OpenSSH server
communicates via the stateful SSH protocol [37]. This pro-
tocol provides sessions which maintain one or more virtual
channels over which programs on the client can communi-
cate with programs on the server [37]. For each client con-
nection, the server must maintain a small amount of state
information about each SSH session as well as the state of
each virtual channel maintained by the session.

Subversion version control server: SVN can use HTTP
or a custom, stateful SVN protocol [5] tunneled through
SSH. For this study, we restricted ourselves to the stand-
alone server using the SVN protocol. The SVN server main-
tains a small amount of per-session state [5].

2.2 Bug Selection
We selected bugs to analyze for each server as follows.
First, for each application, we selected a recent major ver-

sion of the software that had been in development and pro-
duction use for at least a year. We expect these versions to
have a more diverse bug sample. In a few cases, a single
version of the software did not provide a sufficiently sized
sample, so we used multiple versions of the software.

Second, we then selected the set of repaired bugs by using
filters provided by the program’s Bugzilla database. For
all programs except MySQL, we searched for bug reports
with a status field of either RESOLVED, VERIFIED, or
CLOSED, a resolution field of FIXED, and whose severity
was anything other than TRIVIAL or ENHANCEMENT.
Since the filters for MySQL are non-standard, we had to
adapt our selection criteria to search for bug reports marked
FIXED or PATCH APPROVED/QUEUED and with any
severity other than FEATURE REQUEST. Fixed bugs will
have the most complete and accurate information, but may
be biased towards easier-to-fix bugs (see section 2.3).

Third, we randomly selected a subset of bugs from the
bug list generated in the previous step for each server using
a seeded rand() function. We skipped this step for sshd and



Application Description #LOC Years in #total bugs #bugs
Production after sampling Selected

Squid 3.0.x caching web proxy 93K 5 170 40
Apache 2.0.x web server 283K 5.7 65 52
OpenSSH sshd 3.6-3.x, 4.x secure shell server 27K 5.25 61 54
SVN 1.0.0 - 1.6.0 version control server 587K 5 16 12
MySQL 4.x database server 1,028K 5.7 90 55
Tomcat 5 servlet container and web server 274K 5 70 53
Total 2,292K 472 266

Table 1: Set of Server Applications and Software bugs.

SVN since they had fewer bugs. The detailed information
about the number of random bugs selected after this step is
shown in the fifth column of Table 1.

Finally, we removed the bugs in development versions of
code from the randomly selected bug list. Since our main
goal was in-production bug diagnosis, we only focused on
bugs in the externally released versions of code. Squid had
many development bugs, so we had to select a much larger
random sample compared to other servers. Then, we man-
ually removed trivial bugs like build errors, documentation
errors, and feature requests. After this final manual filter-
ing, we were left with 266 bugs from 472 bugs in the earlier
step. The last column of Table 1 shows the details for each
server.

After creating the list of bugs, we analyzed each bug re-
port and its test cases, available patches, and any other ex-
ternal information associated with it. We classified each
bug’s characteristics by first examining the information in
the bug report and then by inspecting the patches and other
external information if more information was needed to make
a decision. We also used available patches to confirm our
analysis of the bug reports. Based on the analysis, we clas-
sified each bug based upon the observable failure symptoms
the bug caused, the reproducibility of the observable symp-
toms, and the maximal number of inputs needed to trigger
the observable symptoms. For some bugs, we could not clas-
sify the bug for some characteristics due to limited informa-
tion in the bug report. We report, for each characteristic,
the number of such ”unclassifiable” bugs by placing them in
a separate classification as described in Section 4.

2.3 Limitations
Our methodology’s limitations should be considered when

using or interpreting our results. Like other empirical stud-
ies, our results are limited by the kinds of applications and
software bugs we used.

Our study examines a subset of server applications. Our
results may not apply to other types of software or to net-
work servers with different architectures e.g., peer-to-peer
software. Also, all the servers except one are written in C
and/or C++ (Tomcat is written in Java); results may differ
for similar servers written in other programming languages.

There is also some potential bug selection bias in our
study. First, some samples omit bugs that cause security
flaws because their projects e.g., Apache [1] and sshd [3], do
not record such bugs in their public bug databases. Second,
our study omits unfixed bugs from the samples as their bug
reports may contain inaccurate information. Since it is pos-
sible that unfixed bugs have different properties, it has the
potential to introduce bias. Third, the bug samples in our
study exclude unreported bugs. We believe this is acceptable
because unreported bugs (in a mature server) are likely to
be much less frequent than reported bugs. Nevertheless, it
is possible that bugs whose failures are difficult to reproduce
(which may include non-deterministic bugs and multi-input
bugs) are less likely to be reported. Our results are, there-

fore, only representative of reported bugs. On the positive
side, our study does not exhibit the bug feature and commit
feature biases as described by Bird et. al. [6] as we sampled
all fixed bugs in the bug database instead of sampling the
subset of fixed bugs which are linked with the source code
bug fixes or other bug fix information.

Finally, our study relies upon the accuracy and complete-
ness of the bug reports and the materials connected to them.
Also, as we have analyzed a large number of bug reports
manually, there may be some human error in the results.

3. DEFINITIONS AND TERMINOLOGY
Here we define several terms as they are used in the con-

text of our work. First, an input request to a server is a
logical input from the client to the server (we identify logi-
cal inputs at the application level as reported in the bug re-
ports); examples include a login/authentication request for
establishing a session in SSH/MySQL, any command from
an SSH or SVN client, an HTTP request, or a MySQL query.
Each request may internally involve more than one commu-
nication between the client and server and may span several
network packets.

We chose logical inputs because bug reports describe test
cases as a set of application-level inputs. Translating inputs
from bug reports into low-level network protocol messages
would have made the study too tedious and error-prone.

Messages coming from sources other than the client e.g.,
the file system, back-end databases, DNS queries, are not
considered to be input requests. These inputs are responses
to requests that the server made on behalf of a client i.e.,
client input is driving these other inputs. Since there is
a causal relationship between client inputs and these other
inputs, replaying the client inputs will cause the server to
perform the same requests.

We also exclude inputs that do not trigger the fault per se
but are used, instead, to recreate a persistent environment
in which the failure can be reproduced. Examples of such
inputs are SVN checkout and SQL table creation commands
(unless they are part of the faulty input set). In production
systems, the environment is almost always present before
the fault is triggered; these inputs are only in the bug report
so that a similar environment can be manufactured at the
developer’s site for off-line diagnosis.

We define symptoms of bugs as any incorrect program be-
havior which is externally visible or detectable. For example,
an incorrect output, segmentation fault, program crash, pro-
gram hang, or assertion violation is a symptom. We use the
term incorrect output to describe a symptom in which the
server completes an operation but the external output of the
program differs from the correct behavior. In our analysis,
we say that an incorrect output symptom is detected when
incorrect output is externally visible to the user or client.
Though detecting incorrect outputs can be challenging, the
internal data corruption that causes them can be detected
through manually or automatically inserted assertions [17,



Application Memory Error Crash Other Crash Assertion violation Hang Incorrect Output Unclear
Squid 6 (15.00%) 5 (12.50%) 11 (27.50%) 0 (0.00%) 18 (45.00%) 0 (0.00%)
Apache 6 (11.54%) 2 (3.85%) 1 (1.92%) 2 (3.85%) 38 (73.08%) 3 (5.77%)
sshd 0 (0.00%) 5 (9.26%) 0 (0.00%) 3 (5.56%) 44 (81.48%) 2 (3.70%)
SVN 1 (8.33%) 2 (16.67%) 1 (8.33%) 1 (8.33%) 7 (58.33%) 0(0.00%)
MySQL 7 (12.73%) 8 (14.55%) 0 (0.00%) 3 (5.45%) 35 (63.64%) 2(3.64%)
Tomcat 10 (18.87%) 0 (0.00%) 12 (22.64%) 3 (5.66%) 25 (47.17%) 3 (5.66%)

Total 30 (11.28%) 22 (8.27%) 25 (9.40%) 12 (4.51%) 167 (62.78%) 10(3.76%)

Table 2: Classification of Bug Symptoms.

32, 13]. Detecting bugs is not a subject of this study; we
simply treat incorrect outputs as a symptom.

A failure due to a software bug is observed to be deter-
ministic if the fault triggers the same symptom each time
the application is run with the same set of input requests in
the same order, on a fixed architecture/OS platform and a
fixed server configuration. Otherwise, the failure due to a
bug is non-deterministic. The architecture, OS platform and
server configuration are the user-controllable parts of the en-
vironment. This definition is reasonable because our goal is
reproducibility at the end-user’s site, where these parts of
the environment and software configuration are fixed. A
failure due to a bug is timing dependent, if the timing of the
input requests in addition to their order determines whether
a symptom is triggered and if so, which symptom. This is a
special case of a non-deterministic software bug that is in-
put timing dependent. As an example of our terminology,
one of the failures in Squid (an assertion violation) occurred
when a client sent an input request to the server and then
disconnected from the server before the response for the re-
quest was written back. This is a timing-dependent bug as
the symptom’s occurrence depends upon when the discon-
nect request is sent to the server. The timing of the inputs
matters and is under the client’s control. In contrast, for
a concurrency bug like a data race, the occurrence of the
symptom depends upon timing issues that are beyond the
client’s control (e.g., thread scheduling); we classify such
failures as non-deterministic, not as timing dependent .

Note that our study is conservative with respect to the
definition of non-determinism. We classify a bug as non-
deterministic if, according to the bug report, the symp-
tom(s) could not be reproduced consistently for any reason
(e.g., the same inputs may not be available or parts of the
environment might have changed). It is possible that such
bugs are deterministic, but we conservatively assume that
they are not. Also, our definition of determinism is overly
restrictive. We believe that many of the deterministic bugs
in our study are actually deterministic across different envi-
ronments and configurations as, in many cases, failures are
reproduced by developers on different systems from the one
where the bugs are first detected. But because bug reports
often lack sufficient information about the bug’s behavior
across different environments, we chose to define determin-
istic to mean reproducibility in a fixed environment.

4. CLASSIFICATION OF SOFTWARE BUGS
We now present the results of our analysis of the se-

lected server application bugs. We classify the software bugs
based on three characteristics: observed symptoms (Sec-
tion 4.1), reproducibility (Section 4.2) and the number of
inputs needed to trigger the symptom (Section 4.3). Finally,
we analyze the characteristics of a few important subclasses
of bugs in (Section 4.4).

4.1 Bug Symptoms
We analyzed the bug reports in detail to determine the

symptoms observed for each bug when the failure triggering
input requests are sent to the server. For a small number
of bugs, two symptoms were possible depending upon which
inputs were used to trigger it; for these bugs, we chose to
analyze the symptom that was given in the original bug re-
port. The observed symptoms are memory error (segmenta-
tion fault, NULL pointer exception, and memory leak), pro-
gram crash, assertion violation, program hang, and incorrect
output. A program crash in this context is an abnormal
server termination that is either not caused by a segmen-
tation fault, NULL pointer exception, or memory leak or
for which no cause is given in the bug report. We made
this distinction because segmentation faults, Java NULL
pointer exceptions, and memory leaks all have a memory
error as the root cause while other termination errors may
have other root causes. Assertion violation symptoms in-
clude explicit C/C++ checks and Java exceptions other than
NULL pointer exceptions.

Table 2 shows the results. Each column shows the number
of bugs that result in the corresponding symptom for each
application. The last column shows the number of cases in
which the bug report did not clearly identify the symptom;
there were only 10 such cases out of 266 bugs. The number
in parentheses shows the fraction of the cases resulting in
the symptom as a percentage of the total number of bugs.

The results in Table 2 indicate that most of the bugs
(nearly 63%) result in incorrect output. Incorrect outputs
can be caused by memory errors (e.g., buffer overflows, dan-
gling pointers), integer overflow errors, off-by-one errors in
loops, logical errors, etc. The results also show that Squid
and Tomcat have many more assertion violations (28% and
23%, respectively), but a lower percentage of incorrect out-
put errors compared to the other servers. We suspect this
is because Squid has many more assertions in its code than
the other servers and because Tomcat uses Java exceptions.

Implications:

These results lead to two important conclusions:

1. New techniques are needed to efficiently detect the
data corruption that causes incorrect output errors at
run-time so that future diagnosis tools will be able to
detect and diagnose the majority of software errors.

2. The results from Squid and Tomcat suggest that adding
assertions or automatically generated program invari-
ants may help detect incorrect output errors.

4.2 Bug Reproducibility
We did a similar analysis to determine the reproducibil-

ity of failures due to server bugs; Table 3 summarizes our
results. We classified bugs as either deterministic, timing
dependent, or non-deterministic. This property is useful, as



Application Deterministic Timing-dependent Non-deterministic Unclear from bug report
Squid 28 (70.00%) 3 (7.50%) 7 (17.50%) 2 (5.00%)
Apache 41 (78.85%) 0 (0.00%) 4 (7.69%) 7 (13.46%)
sshd 49 (90.74%) 1 (1.85%) 2 (3.70%) 2 (3.70%)
SVN 11 (91.67%) 0 (0.00%) 1 (8.33%) 0 (0.00%)
MySQL 46 (83.64%) 2 (3.64%) 4 (7.27%) 3 (5.45%)
Tomcat 43 (81.13%) 3 (5.66%) 4 (7.55%) 3 (5.66%)

Total 218 (81.95%) 9 (3.38%) 22 (8.27%) 17 (6.39%)

Table 3: Symptom Reproducibility Characteristics.

Application # 0-input # 1-input # 2-input # 3-input # >3-input Unclear Max #inputs
Squid 8 (20.00%) 20 (50.00%) 1 (2.50%) 2 (5.00%) 2 (5.00%) 7 (17.50%) 3
Apache 3 (5.77%) 38 (73.08%) 1 (1.92%) 0 (0.00%) 2 (3.85%) 8 (15.38%) 2
sshd 4 (7.41%) 28 (51.85%) 14 (25.93%) 2 (3.70%) 2 (3.70%) 4 (7.41%) 12
SVN 0 (0.00%) 0 (0.00%) 9 (75.00%) 3 (25.00%) 0 (0.00%) 0 (0.00%) 3
MySQL 2 (3.64%) 0 (0.00%) 0 (0.00%) 40 (72.73%) 8 (14.55%) 5 (9.09%) 9
Tomcat 6 (11.32%) 34 (64.15%) 2 (3.77%) 1 (1.89%) 4 (7.55%) 6 (11.32%) 3

Total 23 (8.65%) 120 (45.11%) 27 (10.15%) 48 (18.05%) 18 (6.77%) 30 (11.28%) 12 (max)

Table 4: Maximal Number of Inputs Needed to Trigger a Symptom.

it will determine whether diagnosis tools can reliably repro-
duce the failure symptoms. In some bug reports, the failure
could not be reproduced or was very difficult to reproduce
(as it occurred infrequently). We conservatively classified
such bugs as non-deterministic. Some bug reports contained
no information at all about reproducing the failure; these
are counted separately in the last column of Table 3. The
numbers in parentheses in Table 3 are the corresponding
fractions as a percentage of the total number of bugs.

The results are encouraging. More than 82% of the bugs
demonstrate deterministic behavior; these results agree with
Chandra and Chen’s results that nearly 80% of bugs are
actually environment-independent [9]. A few bugs (nearly
3%) exhibit timing dependence. Only 8% of the bugs exhibit
other non-deterministic behavior.

It should be noted that, in practice, automatic diagnosis
tools will normally replay a subset of inputs. While deter-
ministic bugs trigger the same symptom each time when
run with the same input sequence, they may also depend
upon global state such as memory layout. If using a sub-
set of inputs creates a different global state, then the bug
may not trigger the symptom again even though the same
root cause is triggered. Section 7 discusses this issue more.

Implications:

The above results indicate that:

1. Because most bugs are deterministic, bug diagnosis
tools should be able to reproduce them by replaying
inputs.

2. A small percentage of bugs are either timing dependent
or non-deterministic. Bug diagnosis tools will need to
incorporate new techniques (such as time-stamping in-
puts or controlling thread scheduling) in order to re-
produce failures due to these bugs via input replaying.

4.3 Number of Failure Triggering Inputs
We now analyze and classify the software bugs based on

the number of inputs needed to trigger the failure symptom.
As mentioned in Section 2, we count each logical input as
one input request. We determined the maximal set of in-
puts needed to trigger the symptom by examining each bug
report and the other related external web resources linked
to it. When more than one set of inputs could trigger a

Appl # ≤1-input #>1-input Unclear Max
#ips

Squid 28 (70.00%) 5 (12.50%) 7 (17.50%) 3
Apache 41 (78.85%) 3 (5.77%) 8 (15.38%) 2
sshd 46 (85.19%) 4 (7.41%) 4 (7.41%) 11
SVN 9 (75.00%) 3 (25.00%) 0 (0.00%) 2
MySQL 42 (76.36%) 8 (14.55%) 5 (9.09%) 5
Tomcat 40 (75.47%) 7 (13.21%) 6 (11.32%) 3

Total 206 (77.44%) 30 (11.28%) 30 (11.28%) 11 (max)

Table 5: Maximal Number of Inputs Needed to Trigger

a Symptom Excluding Session Setup Inputs.

symptom, we used the largest set to compute the maximal
number of inputs. We did not count changes to server con-
figuration files or command line options as inputs. Table 4
shows the results of this analysis. The second, third, fourth,
fifth, and sixth columns in Table 4 show the number of cases
in which 0, 1, 2, 3, and more than 3 inputs are needed to
trigger the corresponding symptom. The zero input column
includes cases such as when the server experiences a failure
after start-up but before it processes client input requests.
There were a few bugs for which it was clear from the bug
report that more than one input was needed to trigger the
failure, but the exact number of inputs could not be deter-
mined as they were difficult to reproduce. We have counted
them as requiring more than 3 inputs and included them in
the sixth column. The seventh column, as in the previous
section, shows the number of bugs for which the bug report
contained too little information to determine whether one
or more inputs are needed to reproduce the symptom. The
last column shows the maximum number of inputs needed
to trigger a failure due to any of the bugs we studied for
that application. We used only the bugs for which we know
the exact number of inputs to trigger a failure to compute
the maximum number of inputs. As before, the numbers in
parentheses in the table are the corresponding fractions as
a percentage of the total number of bugs.

Our results show that most failures can be triggered using
a very small number of inputs. Some symptoms can be trig-
gered with zero inputs. Squid had a few such cases (nearly
20%). For example, when run with a certain combination of
options or with a particular configuration, Squid failed after
starting execution but before processing any client inputs.
The majority of failures in Squid, Apache, and Tomcat can
be triggered with just a single input request, in the case of



sshd and SVN, using just two input requests, for MySQL,
using three input requests. All of the 2 input request failures
in sshd and SVN require one input for authentication and
session establishment and another final input to trigger the
symptom. All of the 3 input request failures in MySQL re-
quire two inputs for authentication and database selection,
providing a session and execution context in which the final
input could trigger the symptom. Table 5 lists the number
of failures that can be triggered with no more than one in-
put request excluding session establishment inputs. If we
exclude the session setup inputs, then nearly 77% of the
bugs in all applications need just a single input request to
trigger the symptom; in all such cases, we have observed
that it is always the last input in the corresponding ses-
sion/connection which triggers the symptom. Among the
remaining cases, nearly 11% of the bugs needed more than
one input to trigger the symptom, and the remaining 11%
of bugs do not have any clear information about the number
of inputs in their bug reports.

Furthermore, considering all the bugs for which we could
determine the exact number of inputs, all of the failures for
Apache, Squid, SVN and Tomcat can be reproduced using
at most 2, 3, 2, and 3 input requests (excluding session es-
tablishment inputs), respectively; only two failures in sshd

and one in MySQL required more than 3 non-login input
requests. In fact, very few bug failures (12 bugs across all
server bugs excluding the unclear cases) needed more than
three non-login input requests to reproduce the symptom.

Another result (not listed in the tables) is that, for most
of the bug reports we studied, the symptom occurs immedi-
ately after the last faulty input is processed. In fact, the only
exceptions were hangs and time-outs; for these, the time be-
tween the last faulty input and when the symptom can be
observed is time-dependent but usually small. This suggests
that the error propagation chain for these bugs is usually
short and that a symptom can usually be detected imme-
diately after the server processes the faulty inputs. These
results agree with previous work [20] that found that error
propagation chains in the Linux kernel are short in practice.

Implications:

These results have several implications for automatic bug
diagnosis tools:

1. Virtually all failures can be triggered by replaying a
small number of inputs.

2. Most of the failures can be simply reproduced by first
connecting to the server, creating a session if neces-
sary (through authentication and/or a database select
request), and replaying a single input.

3. For most of the bugs, the last input request from the
session/connection which triggers the fault can be used
to reproduce the symptom.

4. Except for bugs which cause a hang or time-out, the
failure symptom for a set of faulty inputs will occur
immediately after the last faulty input is processed.

4.4 Analysis
Interestingly, when we consider only the subset of non-

deterministic or multi-input bugs, many characteristics are
very different from the overall bug characteristics. For ex-
ample, among the 22 non-deterministic bugs, a majority of

them (45%) are multi-input bugs and only 40% were single
input bugs (remaining cases were unclear). Also, only 23%
of the 22 non-deterministic bugs result in incorrect output,
most of the failures result in catastrophic failures like crash,
segmentation fault, assertion violation and hangs. This im-
plies that majority of non-deterministic bugs need multiple
inputs to trigger a failure and many fewer of them result in
incorrect outputs as compared to the overall bugs. Of the
30 multi-input bugs, only 40% are deterministic, 27% are
timing-dependent, and 33% are non-deterministic. This im-
plies that many fewer multi-input bugs show deterministic
behavior compared to the overall bugs.

5. MULTIPLE INPUT BUG ANALYSIS
Bugs that require multiple inputs to trigger a symptom are

harder to reproduce and diagnose because the faulty inputs
may be interspersed with non-faulty inputs, and the com-
bination of inputs to explore can be large. We did a more
detailed study of multi-input bugs to see if there are patterns
that can be exploited to reduce the input stream to just the
faulty inputs. Specifically, we wanted to see whether the set
of inputs for triggering a multi-input failure were likely to be
clustered together within an input stream or occur within a
short time duration, which can help automatic tools to de-
tect the symptom-triggering inputs more easily. Otherwise,
automatic tools will need to use more complex algorithms
to track down the faulty inputs.

There were 30 multi-input bugs (5 from Squid, 3 from
Apache, 4 from sshd, 3 from SVN, 8 from MySQL, and 7
from Tomcat). For servers like Apache, Squid and Tomcat,
any bug in Table 4 with more than one input is considered a
multi-input bug. For sshd, SVN, and MySQL, we considered
a multi-input bug to be any bug requiring more than two,
two and three inputs, respectively, to trigger the symptom.
Our rationale is that all of these two and three-input bugs
require one and two inputs, respectively, for establishing a
session e.g., authentication and/or database selection, and a
final, single input for triggering the failure. These bugs are,
in essence, single-input bugs with additional session estab-
lishment inputs that occur in a known location within the
input stream and can be easily buffered for each session.

We classified each bug into one of three categories: CLUS-
TERED, LIKELY CLUSTERED and ARBITRARY. A bug
is classified as CLUSTERED if the input requests must oc-
cur within some bound; this bound is often short. For this
category, the faulty inputs are always going to be clustered
within the input stream within a short period of time (less
than a few minutes). We classify a bug as LIKELY CLUS-
TERED when we know that the faulty input requests are
likely to occur within a short duration for most real-world
inputs, but there is no bound. For these cases, there are
reasonable cases in which the inputs may not be clustered.
Inputs are classified as ARBITRARY if there is nothing to
indicate that they must be or usually will be clustered within
an input stream in real-world usage. This does not mean
that the inputs will not be clustered; it simply means that
there is no reason to expect that they are likely to be clus-
tered for a single given input stream.

Table 6 shows our detailed analysis results. The second
column shows the bug’s ID from the bug database, the third
column reports the number of inputs needed to trigger the
symptom, and the fourth column succinctly describes the
steps needed to trigger the symptom. The fifth column ex-



Appl BugID #Ip Steps to trigger the bug Conclusion CLASS
Squid 1862 3 Send a POST request with an incomplete body,

kill the origin server, and send the remaining
body of the request.

All the events will happen within the time a com-
plete request is processed, hence will most likely
occur within a short time duration.

CLUSTERED

Squid 2276 >1 Send many NTLM authenticator requests. The requests can be far apart. ARBITRARY
Squid 500 3 Start downloading a file. Then start download-

ing the same file concurrently. Abort download-
ing the first file.

As the requests happen concurrently, they will
occur within the duration of first download.

CLUSTERED

Squid 2096 2 Send a first request to a web page. Then, send
a Second request to same webpage at nearly the
same time.

Both the inputs will occur within a very short
duration, before the completion of first request.

CLUSTERED

Squid 1984 >1 Send a lot of requests for a long time. No men-
tion of any particular inputs causing the crash.

The requests can be far apart spread over a long
period of time.

ARBITRARY

Apache 17274 2 First, try to authenticate with LDAP server with
wrong login-password. Then try to authenticate
again with same login.

Incorrect and correct logins will most likely hap-
pen within a short duration.

LIKELY
CLUSTERED

Apache 33748 >1 Need a random number of inputs to cause the
crash.

The requests can be spread over a long period of
time.

ARBITRARY

Apache 34618 >1 Send requests which open a connection to LDAP
server. First two requests work, but the third
may crash server. Sometimes more such connec-
tions are needed for crash.

When many requests are needed, they may not
occur within a short duration.

ARBITRARY

sshd 1156 3 First, login to a shell. Run any command, e.g.
sleep 1; Then, Ctrl+c while the command is
running.

Last two commands can happen within a short
duration for short running commands.

LIKELY
CLUSTERED

sshd 1264 12 Execute 11 commands through a library function
cmd() which internally opens a new channel and
closes it after executing the command.

All the commands will be sent consecutively and
will most likely occur within a short duration.

LIKELY
CLUSTERED

sshd 1432 3 Three successive failed login attempt. All the three requests can occur consecutively
(e.g. when someone doesn’t remember the pass-
word).

LIKELY
CLUSTERED

sshd 948 5 The bug is triggered by a denied ssh connection
blocked by tcp wrappers. The bug occurs after
5th blocked connection.

Five blocked connections can happen over a long
period of time.

ARBITRARY

SVN 1626 3 First, login to server. Run any svn command,
e.g. svn commit; Then, Ctrl+c while the com-
mand is running.

Last two commands will occur within a short
duration, before the svn command completes.

CLUSTERED

SVN 2288 3 First, login to server. Then, run svn lock
test.txt; followed by svn commit test.txt;,
when there is no write access on root.

As in many cases, users commits after small
changes, the last two commands will be within a
short duration in such cases.

LIKELY
CLUSTERED

SVN 2700 3 First, login to server. Then, run svn lock

test.txt; followed by svn commit test.txt;.
As in many cases, users commits after small
changes, the last two commands will be within a
short duration in such cases.

LIKELY
CLUSTERED

MySQL 1890 >1 Execute a series of INSERT queries in main
thread, Execute some SELECT, UPDATE and
DELETE queries on the same table in back-
ground thread.

According to the report, error occurs always af-
ter some queries execute concurrently, likely to
be close together.

LIKELY
CLUSTERED

MySQL 5034 5 prepare stmt1 from "select 1 into @arg15";

execute stmt1; execute stmt1;.
The execute stmt can occur far apart. ARBITRARY

MySQL 8510 4 set sql_mode = ONLY_FULL_GROUP_BY; then se-

lect round(sum(a)), count(*) from foo group
by a;.

In cases, when sql mode is not set in the config
file, it can be set long before running group by
based queries.

ARBITRARY

MySQL 27164 5 Create InnoDB table; Immediately create My-
ISAM table containing a POINT column; Insert
into the table with the POINT column.

In most cases, insert queries will be immediate
after table creation.

LIKELY
CLUSTERED

MySQL 4271 5 prepare stmt1 from <explain complex select>;

execute stmt1; execute stmt1;.
The execute stmt can occur far apart. ARBITRARY

MySQL 3415 6 In first thread LOAD DATA INFILE ’file’ into

mytable;, in second thread INSERT INTO mytable2
VALUES(2).

As both requests are processed concurrently,
they should occur within a short duration.

CLUSTERED

MySQL 15302 4 load data from master; execute any command. As the requests are executed consecutively, they
should occur within a short duration.

CLUSTERED

MySQL 186 9 In Master create temporary table t(a int);
reset master;, in SLAVE stop slave;reset
slave;start slave;.

reset master can occur after a long time of create. ARBITRARY

Tomcat 37150 >1 When there is more than 1 simultaneous connec-
tion, run a long request like big dir listing.

As the requests are processed concurrently with
other connections, they should occur within a
short duration.

LIKELY
CLUSTERED

Tomcat 27104 >1 Few inputs with clustering and session replica-
tion needed to trigger exception.

The inputs can occur independently. ARBITRARY

Tomcat 37896 >1 When requests are being processed, kill one of
the replication servers, all the web servers will
fill up the max threads.

All the inputs will occur within socket time-
out period, after which the threads will be un-
blocked.

CLUSTERED

Tomcat 26171 3 Start session through webpage, restart webapp,
reload webpage in that session.

The two requests can occur far apart. ARBITRARY

Tomcat 42497 2 Request a static file, get a 200 response with
ETag. Request the same file again, getting a
304 response without ETag.

The two requests can occur far apart. ARBITRARY

Tomcat 40844 2 Authenticate two users simultaneously with
HTTP DIGEST.

The two requests will occur within a short dura-
tion.

CLUSTERED

Tomcat 45453 >1 Send requests to make JDBCRealm cache Pre-
paredStatement and preparedRoles. Run two re-
quests allowing two threads to call getRoles si-
multaneously.

First set of requests can occur far apart. ARBITRARY

Table 6: Analysis of Multiple-Input Software Bugs.



plains why we classified the bug as we did, and the last
column shows the classification we assigned to the bug.

We classified 8 of the 30 bugs as CLUSTERED and 9 bugs
as LIKELY CLUSTERED. We deemed 13 of the bugs as AR-
BITRARY. The faulty inputs for the first two categories can
be isolated relatively easily. Even for ARBITRARY cases,
it should be noted that server applications normally run on
multiple installations. To perform a successful diagnosis, we
do not need to reproduce the failure at every possible instal-
lation; it is sufficient to reproduce it on a single installation.
Thus, it is enough for the automated tools to work if the
faulty inputs will cluster in at least one instance.

For designing bug diagnosis tools that replay input, the
important factor is the time between the first faulty in-
put and the symptom; this delay determines the minimum
amount of information a replay tool must record in order to
be able to catch all of the faulty inputs. Since we have deter-
mined that most faulty inputs are clustered together within
an input stream, we know that the time between the first
faulty input and the last faulty input is small, and since the
symptom will occur shortly after the last faulty input (as de-
scribed in Section 4.3), we can conclude that the time period
between the first faulty input and the symptom is also small.

Implications:

There are two important implications of our results:

1. Most multi-input bugs (except for those in which the
symptom is a hang or time-out) will trigger the symp-
tom shortly after the first input. This means that a
replay tool only needs to record a small suffix of the
input stream to reproduce the failure.

2. The locality of multiple faulty inputs within an input
stream makes it easier to create a reduced test case.

6. STUDY OF CONCURRENCY BUGS
Surprisingly, we found only three concurrency bugs out of

160 bugs in the 3 multi-threaded servers (Apache, MySQL
and Tomcat) we studied in Section 4. This strongly in-
dicates that there are relatively few concurrency bugs in
servers relative to the total number of reported bugs (simi-
lar observations can be drawn from the data in [28]). One
possible reason is that servers generally process each request
relatively independently, producing fewer inter-thread inter-
actions than other multi-threaded programs with more in-
tricate sharing behavior.

Nevertheless, concurrency bugs do occur and may have
different characteristics from other bugs as they usually in-
volve multiple threads and may be difficult to reproduce.
We therefore manually selected and analyzed a set of con-
currency bugs to determine if they show behavior similar to
that of the bugs in Section 4. We now present the results
of our analysis of these bugs. As before, we classified the
concurrency bugs based on three characteristics: observed
symptoms, reproducibility, and the number of inputs needed
to trigger the symptom.

We selected 30 concurrency bugs from Apache, MySQL
and Tomcat by searching the bug databases based on a set
of keywords like ’race(s),’ ’atomic,’ ’concurrency,’ ’deadlock,’
’lock(s),’ and ’mutex(s)’ in a manner similar to Lu et al. [28].
The other servers have few concurrency bugs. Out of these
30, 23 were data race bugs and 5 were deadlock bugs (it was
not clearly reported for two of the bugs).

Appl. Deterministic Timing-
dependent

Non-
deterministic

Apache 0 (0.00%) 0 (0.00%) 9 (100.00%)
MySQL 2 (18.18%) 2 (18.18%) 7 (63.64%)
Tomcat 0 (0.00%) 0 (0.00%) 10 (100.00%)
Total 2 (6.67%) 2 (6.67%) 26 (86.67%)

Table 8: Symptom Reproducibility Characteristics of

Concurrency Bugs.

Table 7 shows the results of classification based on symp-
toms. Each column shows the number of bugs for the corre-
sponding symptom or combination of symptoms. We include
combinations of symptoms because some of these concur-
rency bugs were reported to produce different, yet specific,
symptoms in different executions for the same input (e.g., a
segmentation fault in some executions and an incorrect out-
put in others). There are some interesting differences be-
tween concurrency and non-concurrency bugs. First, as ex-
pected, a much higher fraction of bugs produce hangs; most
of them are due to deadlocks. Second, five (17%) of the con-
currency bugs produced different, yet specific, symptoms in
different executions, as noted above. Third, there are much
fewer incorrect outputs with concurrency bugs (20% overall,
but 45% in MySQL). It appears that a higher fraction of con-
currency bugs produce catastrophic symptoms like crashes
or hangs, which can cause service interruption. This obser-
vation is similar to that reported by Lu et. al. [28].

Table 8 shows our results from classifying bugs as deter-
ministic, timing-dependent, or non-deterministic. Most of
the bugs (87% overall, and 100% in Apache and Tomcat)
show non-deterministic behavior. This underscores the dif-
ficulty of reproducing the symptoms of concurrency bugs.

Table 9 shows the results of classifying bugs based on the
number of inputs required to reproduce the bug (note that
the columns differ from Table 4). For some cases, it was
not clear from the bug reports exactly how many inputs
were needed (for example, bug reports mention that they
need to run some test cases in stress mode with multiple
threads repeatedly for a few minutes to trigger a symptom).
We have conservatively classified these cases as requiring
more than eight inputs. The fifth and sixth columns are
identical in purpose to those of Table 4. We used only the
bugs for which we know the exact number of inputs to trig-
ger them to compute the maximum number of inputs. As
before, the numbers in brackets in the table are the corre-
sponding fractions as a percentage of the total number of
bugs. There are several differences with our earlier results
for non-concurrency bugs. First, all the studied concur-
rency bugs need multiple non-login inputs (>2) to trigger a
symptom (as a comparison, very few non-concurrency bugs
needed multiple non-login inputs for reproduction). Some
cases need significantly more inputs, but none of the bugs
in Apache and MySQL (for which bug report mentions ex-
act number of fault-triggering inputs) needed more than 20
inputs. Second, many bugs needed executions with multiple
threads and multiple client connections for some time to re-
liably trigger the symptoms. (For most of the bugs, though,
the bug reports mention that the symptoms can possibly be
triggered using 2 or 3 threads and client connections.)



Application Seg Fault Crash Assert. Hang Incorrect Seg Fault/ Seg Fault/ Crash/ Crash/
Violation Output Incorrect Assert. Incorrect Hang

Output Violation Output
Apache 1 (11.11%) 0 (0.00%) 0 (0.00%) 4 (44.44%) 1 (11.11%) 1 (11.11%) 1 (11.11%) 1 (11.11%) 0 (0.00%)
MySQL 1 (9.09%) 0 (0.00%) 0 (0.00%) 4 (36.36%) 5 (45.45%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 1 (9.09%)
Tomcat 1 (10.00%) 1 (10.00%) 6 (60.00%) 1 (10.00%) 0 (0.00%) 1 (10.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
Total 3 (10.00%) 1 (3.33%) 6 (20.00%) 9 (30.00%) 6 (20.00%) 2 (6.67%) 1 (3.33%) 1 (3.33%) 1 (3.33%)

Table 7: Classification of Bug Symptoms of Concurrency Bugs.

Application # 0-2 input # 3-8 input # >8-input Unclear Max #inputs
Apache 0 (0.00%) 0 (0.00%) 6 (66.67%) 3 (33.33%) 20
MySQL 0 (0.00%) 3 (27.27%) 5 (45.45%) 3 (27.27%) 16
Tomcat 0 (0.00%) 0 (0.00%) 6 (60.00%) 4 (40.00%) 15000
Total 0 (0.00%) 3 (10.00%) 17 (56.67%) 10 (33.33%) 15000 (max)

Table 9: Maximal Number of Inputs Needed to Trigger a Symptom for Concurrency Bugs.

6.1 Implications
These results have several implications for automatic bug

diagnosis tools for concurrency bugs.

1. As most of the concurrency bugs are non-deterministic
and produce different symptoms, bug diagnosis tools
will need to develop new techniques to reliably repro-
duce the symptoms.

2. A somewhat larger suffix of inputs will be needed to
trigger the symptoms compared to non-concurrency
bugs.

3. For most of the concurrency bugs, we will also need to
use inputs from multiple different client connections.
This can significantly complicate the process of repro-
ducing the symptom and minimizing test cases.

Finally, note that our methodology successfully identified
both non-deterministic behavior and also the need for mul-
tiple inputs in these 30 bugs. The same methodology found
a very low occurrence of both these behaviors among overall
reported bugs, as described in the previous section. This is
an important validation of those (perhaps surprising) results
for overall reported server bugs in Section 4.

7. IMPLICATIONS FOR DESIGNING AU-
TOMATED BUG DIAGNOSIS TOOLS

Bug diagnosis often involves one or more of the following
steps: recording inputs that may lead up to a fault, reducing
a small triggering input from the recorded inputs when a
fault does occur, and using the inputs to somehow determine
the cause of the bug.

New bug diagnosis tools may be able to exploit the bug
characteristics we have found to improve their efficiency. We
provide potential ways of using our results below.

7.1 Recording Server Input
Tools that automatically create reduced test cases for bugs

need an recorded input that triggers the bug. However,
recording all of the inputs to a server program is infeasible.
Servers process vast amounts of inputs over long periods of
time; a way to prioritize which inputs to save and which
inputs to discard are needed.

Our results indicate that most bugs can be triggered with
a single input, that some protocols require an authentica-
tion step before playing that single input, and that the in-
puts needed for reproducing a multiple-input bug are often

clustered close together within the input stream. Addition-
ally, we observed (like previous work [20]) that the symptom
is often triggered immediately after the faulty inputs have
been processed. Also, as discussed in Section 5, we found
that the time duration from first faulty input to symptom
is usually short for most bugs.

The implication is that an automatic bug diagnosis tool
should be able to catch most bugs without recording the en-
tire input stream. Rather, it should suffice to record a prefix
of the per-session input (to replay session establishment and
authentication, if necessary) and a suffix of the input (which
will most likely contain all of the inputs needed to trigger
the symptom).

However, Bug reports often try to reproduce a failure us-
ing a subset of the inputs containing all the failure-triggering
inputs instead of the complete input stream. One concern
is that the ability for a set of inputs to trigger a symptom
may depend upon global state in the server that was affected
by processing earlier inputs. For example, one set of inputs
may cause the server to allocate memory in such a way that
a buffer overflow triggers a segmentation fault while a subset
of those inputs generate an incorrect output symptom due to
a different heap layout. While a simple test case exists, how
do we know that it can be reduced from a larger test case?
In other words, can a suffix of inputs which contains all the
failure-triggering inputs reliably trigger the same symptom
that was triggered by the original input stream? We hypoth-
esize that most deterministic bugs will generate identical
symptoms even when earlier non-faulty inputs are removed
from the input stream. Such bugs have a small number of
failure triggering inputs and appear to have small error prop-
agation chains. Moreover, Servers generally process each re-
quest relatively independently. Given this, we believe failure
behavior of these server bugs is less likely to be affected by
differences in global state.

We did a preliminary experiment to see if the global state
of the server often affects whether a set of faulty inputs
triggers a symptom. We selected four real bugs from four
server applications: a stack buffer overflow bug due to an
integer overflow (sshd), a NULL pointer dereference bug
(Apache), and two heap buffer overflow bugs (Squid and
NullHTTPD). For each bug, we created an input stream of
99 good inputs and appended to it the faulty input. We then
proceeded to feed the input stream into the server, recorded
whether the same symptom as reported in the bug report
occurred, removed 10 good inputs from the input stream,
and re-ran the experiment. We repeated this process until
we had reduced the input stream to just 10 faulty inputs.



For all of the bugs we tested, the same symptom occurred
after the faulty input was received regardless of the number
of good inputs that preceded it. This suggests that the abil-
ity to reproduce a bug by replaying a suffix of the inputs to
the server does not greatly depend upon global server state.

7.2 Automated Test Case Reduction
Our results may also help develop heuristics for guiding

automatic test case reduction. For example, the ddmin
minimizing delta debugging algorithm by Zeller and Hilde-
brandt [39] considers all test inputs as equally likely to trig-
ger a symptom. However, our results indicate that most
server bugs are single-input bugs, or require a small number
of inputs that are clustered close together. As stated in Sec-
tion 5, for most of the bugs, we find the time duration from
first faulty input to symptom is usually short. Therefore,
it may be possible to improve the efficiency of test case re-
duction algorithms by first systematically testing each small
suffix of the recorded input stream to see if any of those
inputs trigger the symptom before applying a more general
algorithm like ddmin. For most of the bugs, this procedure
is likely to be faster than ddmin. Also, some of the tools can
possibly take benefit of the fact that very few inputs (usually
≤ 3) are needed to trigger the symptom by first searching
small subsets before trying more complex algorithms.

7.3 Automated Bug Diagnosis Tools
The results of our study may also help improve tools such

as Triage [36] that use checkpointing and replay to automat-
ically diagnose bugs during production runs. Triage period-
ically checkpoints a program during normal execution [36].
When it detects an error, Triage instruments the code with
additional detectors that help determine the bug’s root cause
and re-executes the program from the last checkpoint [36].

Our results have several implications for tools like Triage.
First, a system like Triage can reduce the input stream to a
much smaller set of inputs (as described previously), speed-
ing up the bug diagnosis process by not replaying irrelevant
inputs. Second, our results indicate that symptoms can be
triggered by restarting the server and replaying a small num-
ber of inputs i.e., without checkpointing server state. This
alleviates the need for checkpointing, However, techniques
like checkpointing may not be practical due to various rea-
sons. First, complexity of taking checkpoints (which needs
specialized support from application and/or operating sys-
tem [36, 34]) is a major issue. Second, multi-threaded pro-
cess also complicates the checkpointing procedure further.
Second, they can impose additional overhead on normal pro-
gram executions. In addition, diagnosis cannot be done if
the fault happens before the checkpoint is taken. Using a
restart-replay mechanism will enable us to build a much sim-
pler and much powerful automatic bug diagnosis tool.

8. RELATED WORK
Several previous bug characteristic studies have examined

the bug reports of both open-source and proprietary soft-
ware. Gray [19] studied the maintenance reports of customer
systems to study trends in system outages; his results show
that software is the dominant factor in system outages. Lee
and Iyer [23] studied the root causes and error propagation
behavior of bugs in the Tandem GUARDIAN90 system and
concluded that consistency checks detected slightly more
than half of the bugs in software and prevented error propa-

gation for 31% of the bugs [23]. Sullivan and Chillarege [35]
studied the root causes and triggers for bugs and determined
that most bugs were caused by memory errors. More recent
work by Li et. al. [25] aimed to update the results of Sul-
livan and Chillarege by studying the Mozilla web browser
and the Apache web server; they found that memory errors
were not the dominate cause of errors in these applications.
Furthermore, they found that incorrect program behavior
was the most common bug symptom [25]; our study con-
firms this result. Lu et. al. [28] studied many characteris-
tics of concurrency bugs in open-source software; they found,
among other things, that most concurrency bugs can be re-
liably triggered by controlling the schedule of four or fewer
memory accesses. Chandra and Chen [9] studied the bug re-
ports of several versions of Apache, GNOME, and MySQL to
determine whether application-agnostic recovery techniques
could recover from the majority of bugs detected in pro-
duction runs. Our study confirms their finding that most
bugs are deterministic [9]. As far as we know, no other bug
study has examined the number of inputs needed to repro-
duce bugs or aimed to answer questions about the feasibility
of creating automatic diagnosis tools that replay inputs.

9. CONCLUSIONS AND FUTURE WORK
In this paper, we reported the results of an empirical study

of bugs found in open-source servers. Our results show that
most server bugs are deterministic and that failures due to
most bugs (77%) can be reproduced by replaying a single in-
put request (after session establishment if needed). Even for
the remaining multi-input bugs, the set of inputs needed for
reproducing failures is usually small and are often clustered
together within the input stream. For most of the bugs, the
time duration between first faulty input and the symptom is
small. Our results also showed that many bugs produce in-
correct outputs, indicating that better detectors are needed
to flag errors in production runs. Most of the concurrency
bugs, though, need multiple inputs to reproduce a symptom.
Finally, we discuss how the results can be used by automated
tools for doing in-production bug diagnosis. One of the key
implications of the study is that most of the failures may be
reproduced without checkpointing server state.

In future work, we intend to investigate ways of creating
light-weight error detectors that can reduce the number of
bugs that trigger incorrect outputs. Based on the results
of this study, we also plan to build a tool capable of repro-
ducing failures during in-production runs, reducing test case
inputs and automatically diagnosing root causes of failures
using a repeated restart-replay mechanism.
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