
Entity Discovery and Assignment for Opinion Mining
Applications

Xiaowen Ding
Department of Computer Science

University of Illinois at Chicago
851 S. Morgan Street

Chicago, IL 60607-0753

xding@cs.uic.edu

Bing Liu
Department of Computer Science

University of Illinois at Chicago
851 S. Morgan Street

Chicago, IL 60607-0753

liub@cs.uic.edu

Lei Zhang
Department of Computer Science

University of Illinois at Chicago
851 S. Morgan Street

Chicago, IL 60607-0753

lzhang3@cs.uic.edu

ABSTRACT
Opinion mining became an important topic of study in recent
years due to its wide range of applications. There are also many
companies offering opinion mining services. One problem that
has not been studied so far is the assignment of entities that have
been talked about in each sentence. Let us use forum discussions
about products as an example to make the problem concrete. In a
typical discussion post, the author may give opinions on multiple
products and also compare them. The issue is how to detect what
products have been talked about in each sentence. If the sentence
contains the product names, they need to be identified. We call
this problem entity discovery. If the product names are not
explicitly mentioned in the sentence but are implied due to the use
of pronouns and language conventions, we need to infer the
products. We call this problem entity assignment. These problems
are important because without knowing what products each
sentence talks about the opinion mined from the sentence is of
little use. In this paper, we study these problems and propose two
effective methods to solve the problems. Entity discovery is based
on pattern discovery and entity assignment is based on mining of
comparative sentences. Experimental results using a large number
of forum posts demonstrate the effectiveness of the technique. Our
system has also been successfully tested in a commercial setting.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval – Information filtering. I.2.7 [Artificial
Intelligence]: Natural Language Processing – text analysis.

General Terms
Algorithms, Experimentation.

Keywords
Entity Discovery, Sentiment Analysis

1. INTRODUCTION
It is now well recognized that the user-generated content (e.g.,
product reviews, forum discussions and blogs) contains valuable
consumer opinions that can be exploited for many applications.
There are already many companies that provide opinion mining
services. In this paper, we report a system that solves an important

problem in these applications. It identifies what entities (e.g.,
products) each sentence talks about.

Most opinion mining researches are based on product reviews [2,
4, 10, 18, 19, 22] because a review usually focuses on a specific
product or entity and contains little irrelevant information.
However, in forum discussions and blogs, the situation is very
different, where the authors often talk about multiple entities (e.g.,
products), and compare them. This raises two important issues:
(1) how to discover the entities that are talked about in a sentence
and (2) how to assign entities to each sentence because in many
sentences entity names are not explicitly mentioned, but are
implied. We term the first problem entity discovery and the
second problem entity assignment. Without knowing the entities
that a sentence talks about, any opinion mined from the sentence
is of little use. For example, if an algorithm finds that a sentence
expresses a negative opinion about something, but it cannot
determine on what product, then the opinion is meaningless.

The first problem is basically the named entity recognition (NER)
problem. However, traditional NER methods do not work well
because of the ungrammatical nature of the forum posts, over-
capitalization and under capitalization. Over-capitalization means
that the user may capitalize every word in the sentence, and
under-capitalization means that the first letters of many entity
names are not capitalized. These cause serious problems for
existing entity recognition programs as we will see in Section 5.
We propose a technique to solve the problem based on sequential
pattern mining and natural language processing (NLP).

The second problem is similar to pronoun resolution [3, 24] in
NLP, which identifies what each pronoun in a sentence refers to.
Pronoun resolution is still a major challenge. The accuracy of the
current state-of-the-art systems is only about 60-70% on well-
formed sentences such as those in news articles [3, 24]. However,
this accuracy cannot be used for applications. In addition, for the
user-generated content, the problem is harder due to
ungrammatical sentences, and missing or wrong punctuations.

To solve this problem, our proposed method will not rely on
pronoun resolution because our task is also different. Many
sentences do not have pronouns, but we still need to know which
entities these sentences talk about. For example, sentences (3) and
(5) of the discussion post in Example 1 below have no pronoun or
any other reference to resolve. The question is how to discover the
entity that sentences (3) and (5) talk about in Example 1.

Example 1: “(1) I bought Camera-A yesterday. (2) I took some
pictures in the evening in my living room. (3) The images are
very clear. (4) They are definitely better than those from my
old Camera-B. (5) The battery is very good too.”

A simple approach to assigning entities that are talked about in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
KDD’09, June 28– July 1, 2009, Paris, France.
Copyright 2009 ACM 978-1-60558-495-9/09/06...$5.00.

each sentence is the following: The algorithm sequentially
processes each sentence. Whenever an entity name is encountered
in a sentence, it is assumed that the sentence talks about that
entity. It is also assumed that the subsequent sentences talk about
that entity as well until a new entity name appears. Then the new
entity is the one talked about in its sentence. The subsequent
sentences also talk about the new entity, and so on. This simple
strategy works reasonably well in practice. However, it breaks
down when a comparative sentence is encountered.

Let us use this strategy to process the sentences in Example 1.
Clearly, sentences (1) – (3) talk about Camera-A because Camera-
A is encountered in sentence (1). Sentences (2) and (3) contain no
new product. Sentence (4) is a comparative sentence, which also
introduced Camera-B. Now, the above strategy is not applicable
because although sentence (4) only mentions Camera-B, it
actually talks about both cameras. What is more serious is that the
simple strategy also infers that sentence (5) talks about Camera-B,
which is clearly wrong. For us human beings, we can see that
sentence (5) talks about Camera-A. The question is how to solve
the problem using an automated approach. One may say that the
sentence after the comparative sentence should talk about the
product mentioned before. Unfortunately, this is not right either.
For example, we change Example 1 to:

Example 2: “(1) I bought Camera-A yesterday. (2) I took a few
pictures in the evening in my living room. (3) The images were
very clear. (4) They were definitely better than those from my old
Camera-B. (5) The pictures of that camera were blurring for night
shots, but for day shots it was ok”

Example 2 is the same as example 1 except the last sentence.
Obviously, sentence (5) here talks about Camera-B. Then, the
above simple algorithm does not work.

An important finding of this work is that the implicit entity
assignment problem is mainly caused by comparative sentences as
Example 1 shows. Based on our data sets, if we simply infer that
the implicit entity is the previously mentioned entity, 20% of them
are wrong and 98% of these errors are caused by comparisons.

This paper proposes a technique to solve the problem. The method
does not rely on pronouns, which has two advantages. First, there
is no need to solve the difficult problem of pronoun resolution in
NLP. Second, sentences that do not use pronouns can be handled.

Sentiment consistency: To introduce the proposed technique, let
us make an important observation about the two examples above.
The comparative sentences (4) in both examples say that Camera-
A is superior to Camera-B. The next sentence, sentence (5) in
Example 1, expresses a positive sentiment. Intuitively, sentence
(5) in Example 1 should refer to the superior product. Similarly,
sentence (5) in Example 2, which expresses a negative sentiment
in its first clause, should refer to the inferior product. We call this
phenomenon sentiment consistency, which says that consecutive
sentiment expressions should be consistent with each other. It
would be ambiguous if this consistency is not observed in writing.

It turns out that this observation is quite general, which suggests a
novel approach to solving the problem. That is, opinion mining
can be employed. Two tasks are necessary: (1) for a comparative
sentence, we need to identify which entity is superior, and (2) for
the subsequent sentence, we need to determine whether its first
clause (sentence 5 of Example 2) is positive, negative, or neutral.
The opinion mining technique in [4] is adapted to solve the
problem. In the process, we also made two contributions to

opinion mining. First, we discovered that the opinion mining
method can also be adapted to analyze comparative sentences.
Thus, a separate algorithm is not needed although the two types of
sentences look quite different (e.g., sentences (4) and (5) in the
examples). Second, we define a rule specification language to
make the rule-based opinion mining technique in [4] more
convenient. Experimental results based on 753 forums posts from
63 threads with 4385 sentences show that our technique is
effective. Our system has also been successfully tested in a
commercial setting.

2. RELATED WORK
Related works about entity discovery is mainly in the field of
named entity recognition (NER). NER aims to identify entities
such as names of persons, organizations and locations in natural
language text. Most NER methods are based on supervised
learning [21]. Recent strategies also exploit the domain structure
in the training data to improve the performance [10]. [11] studied
extraction of entities and other items from comparative sentences
based on comparative sentence structures. On product extraction,
[6] used hand-crafting rules to extract product entities and
exploited comparative sentences for product comparison analysis.
Our work is more general and not focused on comparative
sentences. Our work is also different from the classic NER as we
are only interested in the product type of entities. [21] gave good
surveys of existing NER and general information extraction
algorithms. Conditional random fields (CRF) [15] have been
shown to perform the best so far. We will show that the proposed
method outperforms CRF dramatically for our task.

Although the problem of assigning entities referred to in sentences
is important in practice for applications, we are not aware of any
focused study of this problem. Related works are mainly in the
area of pronoun resolution or co-reference resolution in NLP.
Pronoun or coreference resolution has been extensively studied in
natural language processing [3, 17, 24]. However, it is still a
major challenge. As discussed in the introduction, our task is in
fact quite different because many sentences do not have pronouns,
but we still need to know which entities they discuss.

Although the objective of the proposed problem is not opinion
mining, some of the opinion mining techniques are applied to
solve the problem. The most widely studied opinion mining topic
is sentiment classification of documents and sentences, i.e.,
classifying them as expressing positive, negative, or neutral
opinions [2, 18, 22]. However, our work needs to study clauses. In
the same sentence, one clause may be positive but another clause
may be negative, e.g., “The photo quality is great, but the battery
sucks”, which contains two opinions.

We have made use of some methods in feature-based opinion
mining [4, 16, 19] in our work. Feature-based opinion mining
means to find opinions expressed on individual product features.
For example, in the above example, “photo quality” and “battery”
are product features. The opinion on “photo quality” is positive
and the opinion on “battery” is negative. Existing techniques
exploit opinion words for the task. Opinion words are words that
express desired or undesired states. Positive words express desired
states, e.g., “great” and “good”. Negative words express undesired
states, e.g., “bad” and “poor”. Identifying opinion words have
been studied in [5, 9, 12, 13, 14]. Several lists have been
compiled. Apart from individual words, there are also many

opinion phrases, e.g., “cost someone an arm and a leg”.

We adapted the method in [4] for our purpose as it can be easily
changed for opinion analysis of each clause. We also made two
contributions to opinion mining. First, [4] hard-codes all opinion
phrases in the system, which is undesirable because any
addition/deletion of phrases will involve changing the program
code. A specification language is then proposed to allow the user
to add/delete phrases without touching the underlying program.
Second, we show that our adapted opinion mining method can be
easily extended to deal with comparative sentences, which is
important for our task of entity assignment.

On the study of comparative sentences, [1, 11] proposed some
methods to study comparative and superlative sentences. However,
they do not determine superior entities expressed in comparative
sentences, which is what we need. [7] studied opinions in
comparative sentences. However, it needs a large volume of
external information, i.e., pros and cons in product reviews. Our
method is much simpler, and we only use the method to solve the
entity assignment problem, which is the focus of this paper.

3. THE PROBLEM
The basic information unit of forums, blogs and discussion boards
consists of a start post and a list of follow-up posts or replies. This
basic information unit is often called a thread. A thread t thus can
be modeled as a sequence of posts, <p1, p2, …, pn>. p1 is the start
post. Each post consists of a sequence of sentences, <s1, s2, …,
sm>. Each sentence si describes something on a subset of entities ε
= {ei…ej| ei,,ej ∈E}, where E is the set of all entities. An entity
can be a person, a product, an organization, an event, etc. If an
entity name is explicitly mentioned in sentence si, we say that the
entity is an explicit entity in si. If the entity is not explicitly
mentioned in si but it is implied, we say that the entity is an
implicit entity. For example, Camera-A in the first sentence below
is an explicit entity. Camera-A is an implicit entity in sentence 2
as it is not explicitly mentioned there, but it is implied.

“Camera-A looks really pretty. The battery lasts very long”.

Most sentences talk about a single entity, i.e., the size of ε is
usually 1. If a sentence involves multiple entities (explicit and/or
implicit), it is usually a comparative sentence, e.g., “Camera-A is
better than Camera-B”. A related type of sentences is the
superlative sentences, e.g., “Camera-A is the best.”

This is a simplified model of the real word. For example, it does
not cover irrelevant sentences, which are usually rare. It does not
cover quotes (from previous posts) in the reply. However, quotes
are easy to handle because they are usually in a different format.

Problem statement: Given a set of threads T in a particular
domain, two tasks are performed in this paper:

1. Entity discovery: discover the set of entities E discussed in the
posts of the threads, and

2. Entity assignment: assign the entities in E that each sentence si
of each post pj in t (∈ T) talks about.

4. ENTITY DISCOVERY
The main idea for entity discovery is to discover linguistic
patterns and then use the patterns to extract entity names.
However, traditional methods need a large number of manually
labeled training examples, and labeling is very time consuming.

For a different domain, the labeling process may need to be
repeated. This section proposes an automated pattern discovery
method for the task, which is thus unsupervised.
The basic idea of the algorithm is that the user starts with a few
seed entities. The system bootstraps from them to find more
entities in a set of documents (or posts). The algorithm is thus
iterative. Sequential pattern mining [8] is employed at each
iteration to find more entities based on already found entities. The
iterative process ends when no new entity names are found.
Pruning methods are also proposed to remove those unlikely
entities. Given a set of seed entities E = {e1, e2, …en}, the
algorithm consists of the following iterative steps:

Step 1 – data preparation for sequential pattern mining: This
step perform two tasks, it first finds all sentences that contain
anyone of the seed entities, e1, e2, …, en in the dataset, and then
generate a sequence for each occurrence of ei for pattern mining.
In order to focus patterns on entities and not generate too many
patterns, we use only a window of 5 words before each entity
name and 5 words after each entity name. Each word of a seed
entity name is replaced with a generic name “ENTITYXYZ”. The
purpose of using this generic word is to ensure that general
patterns about any entities are found. Note that each entity name
may consist of more than one word. The part-of-speech (POS) tag
of each word is also used. In the final sequence each element of
the sequence is a pair, POS tag of the word and the word.
Example 3: We have the following sentence with POS tags

attached. Here n95 is a phone model (an entity).
Hiiiiiiiii/NNP SK/NNP -/: ,/, dont/NN be/VB mad/JJ
everyone/NN doesnt/NN have/VBP a/DT n95/CD phone/NN
fetish/NN ducky/JJ

The window is (n95 has been replaced with ENTITYXYZ):
mad/JJ everyone/NN doesnt/NN have/VBP a/DT
ENTITYXYZ /CD phone/NN fetish/NN ducky/JJ

The resulting sequence is:
<{JJ, mad}{NN, everyone}{NN, doesnt}{VBP, have}{DT,
a}{CD, ENTITYXYZ}{NN, phone}{NN, fetish} {JJ, ducky}>

Step 2 – Sequential pattern mining: Given the set of sequences
generated from step 1, a sequential pattern mining algorithm is
applied to generate sequential patterns [8]. We use 0.01 as the
minimum support. We also require that each pattern must contain
{POStag, ENTITYXYZ} and its length to be greater than or equal
to 2 for obvious reasons. An example pattern is:

<{IN}, {DT}, {NNP, ENTITYXYZ }, {is}>
Here “IN”, “DT”, “NNP” are POS tags which can match any
words with that tag, and “is” is a concrete word which can only
match this particular word.
Step 3 – Pattern matching to extract candidate entities: For
each sentence in the test dataset, the system matches the generated
patterns to extract a set of candidate entities. The patterns are
sorted based on their supports. In order not to generate too many
spurious candidates, the matching process in a sentence terminates
after 5 patterns have been matched. We tried several numbers and
find that 5 is a good number with respect to results and efficiency.
Example 4: We have the follow sentence with POS tags attached:

The/DT misses/VBZ has/VBZ currently/RB got/VBN a/DT
Nokia/NNP 7390/CD at/IN the/DT end/NN of/IN the/DT
day,/VBG all/DT she/PRP does/VBZ is/VBZ text/NN and/CC

make/VB calls,/NN but/CC the/DT reception/NN is/VBZ
terrible,/VBG where/WRB my/PRP$ 6233/CD would/MD
get/VB full/JJ bars/NNS hers/PRP would/MD only/RB
get/VB 1/CD or/CC 2./CD

The pattern, <{DT}, {NNP, ENTITYXYZ}, {CD}>, will match
the sentence segment, a/DT Nokia/NNP 7390/CD, to produce the
candidate entity: “Nokia”. The pattern, <{DT}, {NNP}, {CD,
ENTITYXYZ}, {IN}>, will match the sentence segment, a/DT
Nokia/NNP 7390/CD at/IN, to produce the candidate entity: 7390
Step 4 – Candidate pruning: The above pattern matching may
extract many wrong entities. A pruning method based on POS
check is proposed. It remedies some errors made by the POS
tagger system. Since an entity is always associated with a POS tag
in our patterns, this method checks in the dataset to see whether
the POS tag is the most frequent one for this candidate. If it is not,
the candidate entity is eliminated (a possible POS tagging error).
Example 5: Given the sentence:

You/PRP can/MD also/RB be/VB sure/JJ it/PRP will/MD
work/VB with/IN all/PDT the/DT Sony/NNP Ericsson/NNP
walkman/NN phone/NN accessories/CD

The pattern, <{IN}{DT}{CD, ENTITYXYZ}>, matches the
sentence segment:

with/IN all/PDT the/DT Sony/NNP Ericsson/NNP
walkman/NN phone/NN accessories/CD

to produce the candidate entity: accessories, which is incorrect.
But when the algorithm goes over the sentences in the dataset
again, it found that “accessories” appear as “NNS” more often
than as “CD”. This candidate is deleted.
The algorithm so far is generic and applicable to any domain
because no assumption was made. The step below is more
applicable to manufactured products (which are our main area of
applications), which have brands and models. It should not be
used for non-manufactured products. This step makes the
assumption that a model name has a digit in it. In the experimental
section we will show their results separately.
Step 5 – Pruning using brand and model relation and
syntactic patterns. For most manufactured products, brands and
models often appear together, e.g., “Moto Razr V3”. Here we
need to use the above digit assumption. Thus, based on the entities
that were found so far (step 4), this step tries to prune entities by
using the pattern <Brand Model>. The first task is to discover
relationships from the entities discovered so far. This is simple as
the example below shows.
Example 6: We have the following sentence:

As/RB far/RB as/IN I/PRP heard/VBD Nokia/NNP N95/CD
seems/VBZ to/TO be/VB the/DT leader/NN in/IN this/DT
sense./CD

In this sentence, if both “Nokia” and “N95” are in the entity list,
“Nokia” is considered as <Brand>, and “N95” is considered a
<Model>.
Then using some syntactic patterns can help find competing
brands and models. The syntactic patterns exploit conjunctions
and comparisons in sentences.
We use C to denote a discovered entity and CN as a competitor.
The following eight patterns are used:

C and CN CN and C
C or CN CN or C
C vs CN CN vs C
C more than CN CN more than C

The second task is to remove those entities discover in step 4 that
never appear together with a <Band> or a <Model>, or never
appear with a candidate in the syntactic patterns.

5. ENTITY ASSIGNMENT
We now present the entity assignment algorithm, which depends
on opinion mining of comparative sentences. Below we first
introduce the concepts of comparatives and superlatives and then
discuss their impacts on the problem. Based on the discussion, the
algorithm is naturally derived.

5.1 Comparatives and Superlatives
Comparative and superlative sentences are instrumental to our
task. We define them here based on [11].

5.1.1 Comparative Sentences
Comparative sentences express similarity and differences of more
than one entity. There are three main types of comparatives,

1) Non-equal gradable: “greater or less than” that expresses a
total ordering of some entities with regard to some shared
features or attributes. For example, the sentence, “Camera-X’s
battery life is longer than that of Camera-Y”, orders Camera-
X and Camera-Y based on their shared feature “battery life”.

2) Equative: “equal to” that states two entities as equal with
respect to some features. For example, the sentence, “Camera-
X and Camera-Y are of the same size”, expresses that the two
cameras are equal in term of their shared feature “size”.

3) Non-gradable: Comparing two or more entities, but do not
grade them. For example, the sentence, “Camera-X and
Camera-Y have different shapes”, expresses a comparison of
the shapes of the two cameras but does not grade them.

5.1.2 Superlative Sentences
A superlative sentence expresses a relation of the type “greater or
less than all others”, i.e., it ranks one entity over all other entities.
For example, the sentence, “Camera-X’s battery life is the
longest”, expresses a superlative relation.

5.2 Sentiment Consistency
Intuitively, in a post, if the author starts with a particular entity,
he/she will continue with the entity. If he/she wants to introduce a
new entity e, he/she has to state the name of the entity explicitly in
a sentence s0, which can be (1) a normal, (2) a comparative or (3)
a superlative sentence. The question is what happens to the next
sentence s1 if s1 is a normal sentence and does not mention any
entity, or s1 is a comparative sentence and it does not mention e.

For (1), when s0 is a normal sentence, if s1 is a normal sentence, it
should talk about e. If s1 is a comparative sentence, it should
compare e with a new entity, which should be explicitly
mentioned. For (2), when s0 is a comparative sentence, if s1 is a
normal sentence, there are a few cases:

s0 is non-equal gradable: If s1 has no entity name and it expresses
a positive (respectively negative) sentiment, it should talk about
the superior (or inferior) entity to satisfy sentiment consistency.

s0 is equative: In this case, it is unclear which entity is referred to
in s1. We assume that it is the previous entity before s0.

s0 is non-gradable: In this case, it is also unclear which entity is
referred to in s1. It is assumed to be the previous entity talked
about before s0.

For (3), when s0 is a superlative sentence, if s1 is a normal
sentence, it refers to the superlative entity in s0. For both (2) and
(3), if s1 is a comparative sentence, the entities in s1 are taken.

5.3 The Algorithm
Based on the above discussion, a natural algorithm emerges,
which is given in Figure 1. It follows the simple method given in
Section 1 but with special handlings to comparative sentences as
discussed above. The input is a post, and the output is a set of
entities discussed in each sentence. Note that the algorithm is
simplified for presentation clarity. In our implemented system, the
start post and quotes in replies are also considered as entities may
be inherited from them. Comparative sentences here cover
superlative sentences that contain more than one entity. For a
superlative sentence with only a single entity, it is treated as a
normal sentence. The notations used in the algorithm are:

si.Entity: It stores the names of the entities discussed in sentence
si, which can be explicit or implicit.

si.superiorEntity: It stores the set of superior entities in the
comparative sentence si. Note that we use a set here because
the sentence may compare two sets of entities, e.g., “Camera-
A is better than Camera-B and Camera-C.” However, in
practice, each set mostly contains only a single entity.

si.inferiorEntity: It stores the set of inferior entities in the
comparative sentence si.

opinion(): It is the opinion mining function that analyzes a non-
comparative sentence.

compOpinion(): It is the opinion mining function that finds
superior and inferior entities from a comparative sentence.

for each sentence si in sequence in a post do
1 If si is not a comparative sentence then
2 if si contains an explicit entity then
3 si.Entity ← the explicit entity of the sentence si
4 else // si does not contain an explicit entity
5 if si-1 is not a comparative sentence then
6 si.Entity ← si-1.Entity
7 elseif a superior entity and an inferior entity were

discovered in si-1 then
8 opinion(si); // opinion mining
9 if si’s first clause is a positive clause then
10 si.Entity ← si-1.superiorEntity
11 elseif si’s first clause is a negative clause then
12 si.Entity ← si-1.inferiorEntity
13 else si.Entity ← si-1.superiorEntity
14 else si.Entity ← sf.Entity, entities of the last sentence

that is not a comparative sentence
15 else // si is a comparative sentence
16 if no entity is mentioned in si then
17 si.Entity ← si-1.Entity
18 else si.Entity ← {si-1.Entity} ∪ {entities in si};
19 〈si.inferiorEntity, si.superiorEntity〉 ← compOpinion(si)

Figure 1: The overall algorithm for entity assignment.

6. OPINION MINING
We now present the opinion mining method used in the algorithm
(i.e., opinion(si)), which is based on the method in [4].
Interestingly, we will also show in Section 6.3 that comparative
sentences can be analyzed in a similar way (i.e., compOpinion()).

The main idea of the approach is to use opinion indicators to
decide the orientations of opinions expressed on entity features.
Orientations of opinions mean whether the opinions are positive,
negative or neutral. There are three main opinion indicators that
are used in opinion mining, i.e., opinion words and phrases,
negations, and but-clauses. They are discussed below.

6.1 Opinion Indicators
Opinion words and phrases: In most cases, opinions in
sentences are expressed with opinion words, e.g., “great”,
“good”, “bad”, and “poor”. Researchers have compiled sets of
such words. Such lists are collectively called the opinion lexicon.
In this work, we obtained the list from [4] with some additions.
Apart from individual words, there are opinion phrases and
idioms, e.g., “cost someone an arm and a leg”. Furthermore, some
phrases may involve opinion words, but the whole phrases have
no opinion or their opinions depend on contexts. For example, the
phrase “a good deal of” does not have an opinion although it has
the positive opinion word “great”. Such phrases are called non-
opinion phrases involving sentiment words.

While most adjectives/adverbs have explicit positive or negative
orientations, there are also many words whose orientations depend
on contexts in which they appear. For example, the word “long”
in the following two sentences has completely different
orientations, one positive and one negative: “The battery of this
camera lasts long” and “This program takes a long time to run.”
A method will be described in Section 6.3 to deal with this.

Negations: opinion words and phrases form the basis of opinions
in a sentence. Negations reverse their orientations. Apart from
“not”, many other words and phrases can be used to express
negations. Furthermore, “not” may not express negation in some
cases, e.g., in “not only … but also”. Such phrases are called non-
negations involving negation words.

But-clauses: “but” means contrary. For example, the sentence,
“The picture quality is great, but not the battery life” expresses a
positive opinion on “picture quality” but a negative opinion on
“battery life”. The following rule states the effect of “but”:

The orientation before “but” is opposite to that after “but”.

Apart from the word “but”, many other words and phrases behave
similarly, e.g., “though” and “except that”. Similar to opinions
and negations, not every “but” changes opinion direction. For
example, “but” in the pattern “not only … but also” does not.
Such phrases are called non-but phrases involving “but”.

6.2 Specification for Opinion Indicators
With a large number of indicators, one can hard-code them in a
system, which is, however, very undesirable because whenever a
new word or phrase is encountered the program needs to be
changed, which is time consuming. In [4], all phrases are hard-
coded in the system. In this work, we propose a specification
language to enable the user to specify indicators, which are (1)
opinion words and phrases, (2) negation words and phrases, (3)
but-like words and phrases, (4) non-opinion phrases involving
sentiment words, (5) non-negation phrases involving negation
words, and (6) non-but phrases involving but-like words. The
system then automatically uses the indicators for opinion mining
(Section 6.3). All the opinion indicators are compiled manually.

Two types of specifications are used: one for individual words and
one for phrases. The reason for the separation is that individual

words express their default meanings, but their meanings may be
changed by phrases, i.e., overwriting the defaults to express the
indicators (4), (5) and (6).

Specification of Individual Words: The grammar of the language
for expressing individual words, which include opinion words,
negation words and but-like words, is given below:

<rule> := <item> "=>" <action>
<item> := <word> | <word> "[" <type> "]"
<word> := [a-z]+
<type> := JJ | RB | NN | VB | …
<action> := Po | Ne | Neu | Ng | But

The specification consists of a set of rules, i.e., each indicator
word is represented as a rule. Each rule consists of two parts, an
item on the left and an action on the right. The <item> is either an
individual word or a word attached with a type, which may be
anyone of the part-of-speech (POS) tags. <action> may be anyone
of the five symbols, Po (positive), Ne (negative), Neu (neutral),
Ng (negation) and But (but-like word). For example, if we want to
express that “like” expresses a positive opinion when it is a verb,
we can use:

like[VB] => Pos
Given a sentence, the system applies each rule by matching the
word together with its type in the sentence and then associates the
action symbol to the matched word.

Specification for Phrases: The grammar is given below.

<rule> := <pattern> "=>" <action>
<pattern> := <exp> "+" <target> "+" <exp>
 | <exp> "+" <target> | <target> "+" <exp>
<exp> := <element> | <exp> "+" <element>
 | <exp> "+" <distance> "+" <exp>
 | <exp> "+" <distance>
 | <distance> "+" <exp>
 | !<num> "+" !<item> "+" <exp>
 | <exp> "+" !<num> "+" !<item>
 |<exp> "+" !<num> "+" !<item> "+" <exp>
<element> := <item> | item "/" element
<item> := <indicator> | <word>
<indicator> := <indicatorSym>
 | <indicatorSym> "[" <type> "]"
<target> := <indicator> "[T]" | <word> "[T]"
<indicatorSym> := Po | Ne | Neu | Ng | But
<word> := [a-z]+ | [a-z]+ "[" <type> "]"
<distance> := <num> | <num> - <num>
<num> := 0 | [1-9][0-9]*
<action> := <outcome>| !<outcome>
<outcome> := PO | NE | NEU | NG | BUT
<type> := JJ | RB | NN | VB | …

The specification again consists of a set of rules. Each rule has
two parts, a pattern on the left and an action on the right. Each
pattern has a target word, indicated by [T], to which the action is
applied. The idea is that the left-hand-side of the rule is first
matched in the sentence and then the action of the rule is applied
to the target in the sentence. See an example in Section 5.3.

Some main concepts used in the grammar are:

IndicatorSym: These are indicator symbols, Po, Ne, Neu, Ng and
But, from individual indicator words discussed above. A “type”
may also be attached, specifying the POS tag of the word.

Word: It can be any word with an optional type.
Distance: It indicates the number of words (or gap) that can
appear between two non-adjacent items in the phrase. “-” means
from “num” to “num” (num is an integer number).
Target: It is the core item of the phrase, indicating which word
the rule is applied to.

Some additional notes about the grammar: “+” is the separator, “/”
means “or” and “!num + !<item>” means that within <num>
words gap, <item> does not appear.

The action on the right states that the action symbol should be
associated with the target. The action symbol can be any of the
outcomes or their negations, i.e., PO (positive), NE (negative),
NEU (neutral), NG (negation), and BUT (but-like). “!” means
‘not’. These action symbols cannot appear on left-hand-side,
which prevents looping.

Some remarks about the language are: The ordering of rules is
significant. When the first rule for a target word is matched and
applied, the rest will not be tried. Choosing the right target is also
important in the situation where a phrase overwrites the default
meaning of a word. The target should be the word in question. For
example, the rule “great => Po” specifies that “great” is positive.
However, the phrase “a great deal of” overwrites the orientation
of “great” because “a great deal of” has no opinion. In this case,
the rule should be “a great[T] + deal + of => NEU” as the opinion
of “great” is nullified by the phrase. If we use “a great deal[T] of
=> NEU”, “great” will still be treated as positive.

6.3 Opinion Mining
We now describe opinion mining. We use the following running
example sentence to show the working of each step:

“The picture quality of this camera is not good, reaction is
too slow, but the battery life is long.”

Step 1 – Part-of-speech tagging: The tags are used for matching
<type>’s in the rules.
Step 2 – Applying indicator word rules: All opinion words,
negation words and but-like words in the sentence are discovered
in this step. For our example, after this step, we obtain

The picture quality is not[Ng] good[Po], reaction is too
slow[Neu], but[But] the battery life is long[Neu].

All the bold attachments are added in this step. The POS tags are
omitted to improve readability.
Step 3 - Applying phrase rules: This step identifies all phrases in
the sentence and performs the actions specified in the rules. After
this step, our running example sentence becomes:

The picture quality is not[Ng] good[Po], reaction is too
slow[NE], but[But] the battery life is long[Neu].

The orientation of “slow” is revised to negative ([NE]) due to the
rule: “too + Neu[JJ][T] => NE”.
Step 4 - Handling negations: A negation in a sentence reverses
the orientation of an opinion. For neutral, it is turned to negative.
After negation handling, our running example sentence becomes
(“good” is now turned to negative from positive):

The picture quality is not[Ng] good[Negative], reaction is too
slow[NE], but[But] the battery life is long[Neu].

Step 5 - Aggregating opinions: This step first finds but-symbols,

which indicate opinion changes. The opinions on the two sides of
a but-symbol are opposite to each other.

Opinion aggregation: All opinion indicators in the first clause of
the sentence are aggregated to arrive at the final opinion. The
algorithm simply sums up all indicators. A positive (or negative)
indicator is assigned 1 (or -1). If the final sum is greater than 0,
then the clause is positive. If the sum is less than 0, then the clause
is negative and neutral otherwise.

Handling context-dependent opinions: For those sentences that
the above process cannot determine their orientations, the
algorithm checks if it can detect context dependent opinions as in
[9], which uses several rules. Only the conjunction rule is used in
this work (the others are inaccurate). For example, in “The battery
life is long”, it is unclear whether “long” means positive or
negative. The method tries to see whether any other person said
that “long” is positive (or negative). If another person wrote “this
camera takes great pictures and has a long battery life”. From
this sentence, we can infer that “long” is positive for “battery life”
because it is conjoined with the positive word “great”. This is the
conjunction rule, which says that a sentence only expresses one
opinion, unless there is a but-like word changing the direction.

6.4 Opinion Mining of Comparisons
As we mentioned earlier, the opinion mining method above can be
adapted to find superior and inferior entities in comparative
sentences. This is due to the fact that positive and negative
opinion words have their corresponding comparative and
superlative forms indicating superior and inferior states
respectively. For example, the positive opinion word, “good”, has
its comparative and superlative forms, “better” and “best”, which
indicate superior (and inferior) entities.

In English, comparatives and superlatives are special forms of
adjectives and adverbs. In general, comparatives are formed by
adding the suffix “-er” and superlatives are formed by adding the
suffix “–est” to the base (or original) adjectives and adverbs.
Adjectives and adverbs with two syllables or more and not ending
in y do not form comparatives or superlatives this way. Instead,
“more”, “most”, “less” and “least” are used before such words,
e.g., “more interesting” and “most awful”. These two types are
called regular comparatives and superlatives. English also has
irregular comparatives and superlatives that do not follow the
above rules. These are, “more”, “most”, “less”, “least”, “better”,
“best”, “worse”, “worst”, “further/farther” and “furthest/farthest”.

In order to use the opinion mining method mentioned above to
find superior and/or inferior entities, we first convert those
opinion adjectives and adverbs to their comparative and
superlative forms, which is done automatically by using English
grammar rules and WordNet. Due to space limitations, we will not
discuss the conversion in detail here as it is fairly straightforward.
We then regard the comparatives and superlatives as positive and
negative as their base forms respectively. For irregular
comparatives, “better” and “best” are treated as positive, and
“worse” and “worst” are treated as negative. “more”, “most”,
“less”, and “least” require special handling. They are considered
together with opinion words using the following 4 rules:

more/most + Pos → Positive
more/most + Neg → Negative
less/least + Pos → Negative
less/least + Neg → Positive

Rule 1 says that “more/most” and a positive (Pos) opinion word
together mean positive, e.g., “more beautiful”. Other rules have
similar meanings.
Non-standard words: Apart from the above comparatives and
superlatives, many other words can also express comparisons,
e.g., “win”, “prefer”, “superior” and “inferior”. For example, the
sentence, “In term of battery life, Camera-X is superior to
Camera-Y”, expresses a comparison indicating that Camera-X is
preferred with regard to “battery life”. These words are treated as
positive or negative based on their meanings.
Identify comparative and superlative sentences: Before we can
identify superior entities from comparative sentences, we need to
identify such sentences. [11] proposed a pattern mining approach
to identifying comparative and superlative sentences. In this work,
we did not focus on this task. Only several heuristic rules are
designed to identify such sentences, which perform quite well.
Clearly, comparative and superlative sentences are signaled by
various keywords. We use a list of 67 keywords (obtained from
[11]), which includes 4 part-of-speech tags, i.e., JJR (comparative
adjective), RBR (comparative adverb), JJS (superlative adjective)
and RBS (superlative adverb). Our heuristics rules are as follows
(if a sentence matches anyone of the rules, it is considered a
comparative or a superlative sentence):

a). pronoun + compkey + prodname,
b). prodname + compkey + pronoun,
c). prodname + compkey + prodname
d). pronoun + superkey
e). prodname + superkey
f). as + JJ + as (except “as long as” and “as far as”)

where compkey is a comparative keyword, prodname is a product
name and superkey is a superlative keyword.
Discover superior entities: Finally, as mentioned earlier, the
above opinion mining method can be used to discover superior
entities. Since a gradable comparative sentence typically has
entities on the two sides of the comparative keyword, i.e.,
“Camera-X is better than Camera-Y”. Based on opinion mining, if
the sentence is positive, then the entities before the comparative
keyword is superior and otherwise they are inferior (with the
negation considered). Superlative sentences can be handled in a
similar way. Note that equative and non-gradable comparisons do
not express preferences.

7. EMPIRICAL EVALUATION
This section evaluates the proposed techniques for the two tasks,
entity discovery and entity assignment. Below, we first describe
our datasets and then present the experimental results.

7.1 Experimental Data Collections
The experiment data collections are crawled from two forums,
HowardForums and AVSforums. HowardForums is a message
board dedicated to mobile phones while AVSforum is a message
board dedicated to Home Theater and the products used. Our data
from AVSforum are discussions about Plasma and LCD TVs,
Projectors and DVD players. Table 1 shows the characteristics of
the two data sets. Altogether, we downloaded 64 threads, which
contain 753 individual posts with 1072 comparative and
superlative sentences. The total number of sentences is 4385. All
the sentences and product names were annotated by two graduate
students based on consensus.

7.2 Experimental Results
We now present the experimental results for both tasks.
Table 1: Characteristics of the two data sets (comparative
sentences including superlative sentences)

Data sets No. of
threads

No. of
posts

No. of
Product

No. of
comparatives

Total no. of
sentences

Howard 31 446 171 664 2589
AVS 33 307 180 408 1796
Total 64 753 351 1072 4385

7.2.1 Entity Discovery
The results of entity discovery are given first. Our method is
called EI. It is compared with the NET system [26] from
University of Illinois at Urbana Champion, and the Conditional
Random Fields method (CRF) [15]. NET is a Named Entity
Tagger, which can be used in our case as product names are
named entities. The CRF system that we use is from Sunita
Sarawagi [25]. Table 2 shows the results.

Note that the NET system does not need training. The training
data for CRF is the data obtained from step 2 of our algorithm.
Recall that the data from step 2 is automatically generated. The
entities in those sentences are regarded as positive data and all the
other words in the sentences are regarded as negative data. The
test data is the whole set for all the systems. Using the whole set
as the test data is reasonable because our system does not use any
manually labeled training data. Only a set of seed entities is
supplied. The training data is automatically generated.

In Table 2, we also compare EI when the first 3 steps (EI (1-3)),
the first 4 steps (EI (1-4)) and all 5 steps are used (EI (1-5)).
Using the first 3 steps basically means that the system only uses
pattern mining for extraction. Pruning is step 4 was quite
effective. As expected EI(1-4) produces high recalls but low
precisions. However, EI(1-4)’s F scores are already dramatically
higher than those of CRF and NET. For NET, we only used its
results for organization entities. For other types of entities, the
results are much worse. From Table 2, we also see that the
additional step of EI improve the result further (EI(1-5)).
Compared to EI(1-4), the precision increases dramatically with a
small drop in recall, but the overall F scores are much higher. In
practice, step 5 (which makes the digit assumption) is not needed
because the high recall is the key. As the resulting entity list is not

long, the user can filter out those non-entities fairly easily.
Recall that our system uses some seeds to start the process. The
question is how the number of seeds affects the final results. We
performed a set of experiments by varying the number of seeds to
see their effects. Figure 3 gives the results of 5, 10, 15 and 20
seeds. Clearly, when the number of seeds is small the precision is
higher, but the recall is very low. With more seeds, we get more
balanced results. If more seeds are selected, although the results
are slightly better, it defeats the purpose of method which requires
little user knowledge. Our experimental results reported in Table 2
are based on 15 seeds. All results are the averages of 10 random
runs with randomly selected seeds.

Figure 3: Results of different seeds for entity discovery (Average
of the two datasets)

7.2.2 Entity Assignment
Table 3 gives the experimental results for entity assignment,
which includes the results of two baseline methods. We use ED to
denote the proposed technique. Two sets of experiments were
conducted. The first set is denoted by “Next Sentences” in Table
3. “Next Sentences” means that only the comparative sentences
and their subsequent sentences are considered. This set of
experiments thus shows how effective the ED technique is in its
intended task. The second set of experiments is denoted by “All
Sentences”, which considers all sentences. It shows how the ED
method affects the overall implicit entity assignment task.
Column 1 (baseline1-next sentences): Baseline1 works as follows:

If a sentence does not mention any product name, we simply
take the last product of the previous sentence. Note that the
product of the previous sentence may be inherited from its
previous sentence and so on. The accuracy measure is used
here because we want to gauge how accurate the assignments
of products to sentences are.

Column 2 (baseline2-next sentences): In the Baseline2 method, if
a sentence does not mention a product name, it simply takes

Table 2: Results of entity discovery
Datasets CRF NET EI (1-3) EI (1-4) EI (1-5)

Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec.
Howard 0.40 0.91 0.48 0.35 0.87 0.48 0.86 0.58 0.81 0.83

F = 0.56 F = 0.40 F = 0.62 F = 0.69 F = 0.82
AVS 0.37 0.89 0.42 0.29 0.84 0.47 0.84 0.59 0.77 0.80

F = 0.52 F = 0.34 F = 0.60 F = 0.69 F = 0.78

Table 3: Experimental results for entity assignment

Data sets

Next Sentences (Accuracy) All Sentences (Accuracy) Comp Ident.
Baseline1 Baseline2 ED (k-com) ED (unk-com) Baseline1 Baseline2 ED (k-com) ED (unk-com) Prec. Recall F

HowardForums 82.4% 83.3% 93.4% 90.3% 80.3% 82.1% 88.2% 86.7% 85.2% 84.2% 84.7%
AVSforrum 79.6% 80.9% 91.2% 89.6% 76.7% 77.9% 87.2% 85.0% 82.2% 84.9% 83.5%

Average 81.0% 82.1% 92.3% 89.9% 78.5% 80.0% 87.7% 85.9% 83.7% 84.6% 84.1%
Col# 1 2 3 4 5 6 7 8 9 10 11

the first product of the previous sentence.
Discussion: We observe that Baseline2 is always more
accurate than Baseline1 because in most cases, the first
product is the superior product in a comparative sentence and
the next sentence also tends to talk about that product. 98% of
the errors are caused by comparative sentences.

Column 3 (ED (k-com) – next sentences): It gives the result of
each data set using the proposed ED method assuming that the
comparative and superlative sentences are known. k-com
denotes this assumption.

Column 4 (ED (unk-com) – next sentences): It gives the result of
each data set using the proposed ED technique assuming that
the comparative and superlative sentences are unknown. unk-
com denotes this fact. This is the realistic situation, in which
the system has to detect comparative and superlative sentences
automatically using the method in Section 6.4.
Discussion: We observe that ED outperforms the two baseline
methods dramatically, i.e., on average from the best accuracy
of the baselines, 82.1%, to the accuracy of the realistic
situation of not knowing the comparatives, 89.9%. Knowing
the comparative sentences (k-com) only performs slightly
better as compared to not knowing them (unk-com). Note that
the accuracy here means the total number of sentences that
have been correctly assigned products compared to the total
number of sentences that need such assignments.

Columns 5-8 (all sentences): These results correspond to those in
columns 1-4 except that all sentences are used in the
experiments. In this case, the algorithm assigns products to
every sentence rather than only to the sentence after each
comparative and superlative sentence.
Discussion: Again, we see major improvements, i.e., on
average from the best of the baselines, 80.0%, to the realistic
situation of not knowing the comparatives, 85.9%. In this
case, ED improves slightly less because comparative
sentences are only a small proportion of all sentences. The
results are lower than columns 1-4 since due to propagation if
the discovery in one sentence is wrong, we will get the
implicit entity in the next sentence wrong and so on.

Columns 9-11: They give the precision, recall and F-score of each
data set on the task of identifying comparative and superlative
sentences. The average result (F = 84.1%) is better than that
given in [11], i.e., the average F = 79%.

In summary, the experimental results clearly demonstrated the
effectiveness of the ED method.

8. CONCLUSION
This paper presented a practical system that deals with two related
problems in applications of opinion mining, i.e., mining entities
discussed in a set of posts and assigning entities to each sentence.
These are so important that without solving them, any opinion
discovered from the user-generated content is of limited use. We
proposed a pattern-based method to deal with the first problem.
To solve the second problem, we first showed that the problem is
mainly caused by comparative sentences. We then showed that the
problem can be dealt with to a large extent by opinion mining on
both the comparative sentences and the subsequent sentences. In
the process, we also advanced the state-of-the–art of opinion
mining, especially in the analysis of comparative sentences. Our
experimental results show that the proposed techniques are
effective. In our future work, we will further improve the accuracy
of the system.

9. REFERENCES
[1] Bos, J., and Nissim, M. An Empirical Approach to the

Interpretation of Superlatives. EMNLP’06, 2006.
[2] Dave, D., Lawrence, A., and Pennock, D. Mining the Peanut

Gallery: Opinion Extraction and Semantic Classification of
Product Reviews. WWW’03, 2003.

[3] Denis, P., and Baldridge, J, A Ranking Approach to Pronoun
Resolution, IJCAI’07, 2007.

[4] Ding, X., Liu, B., and Yu, P. A Holistic Lexicon-Based
Approach to Opinion Mining, WSDM’08, 2008.

[5] Esuli, A., and Sebastiani, F. Determining Term Subjectivity
and Term Orientation for Opinion Mining, EACL’06, 2006.

[6] Feldman R., Fresko M., Goldenberg J., Netzer O., and Ungar
L.: Extracting Product Comparisons from Discussion Boards,
ICDM 2007

[7] Ganapathibhotla M., and Liu B. Mining opinions in
comparative sentences, Coling-2008.

[8] Han, J., and Kamber M. Data Mining: Concepts and
Techniques, 2006

[9] Hatzivassiloglou, V., and McKeown, K. Predicting the
Semantic Orientation of Adjectives. ACL-EACL’97, 1997.

[10] Hu. M, and Liu, B. Mining and summarizing customer
reviews. KDD-2004.

[11] Jiang, J., and Zhai C. Exploiting Domain Structure for
Named Entity Recognition, HLT-NAACL 2006

[12] Jindal, N., and Liu, B. Mining Comparative Sentences and
Relations. AAAI’06, 2006.

[13] Kaji, N., and Kitsuregawa, M. Building Lexicon for
Sentiment Analysis from Massive Collection of HTML
Documents. EMNLP’07, 2007.

[14] Kanayama, H., and Nasukawa, T. Fully automatic lexicon
expansion for domain-oriented sentiment analysis.
EMNLP’06, 2006.

[15] Kim, S., and Hovy, E. Determining the Sentiment of
Opinions. COLING’04, 2004.

[16] Lafferty J., McCallum A., and Pereira F.: Conditional
Random Fields: Probabilistic Models for Segmenting and
Labeling Sequence Data, ICML 2001

[17] Mei, Q., Ling, X., Wondra, W., Su, H., and Zhai, C. Topic
Sentiment Mixture: Modeling Facets and Opinions in
Weblogs. WWW’07, 2007.

[18] Ng, V. Supervised ranking for pronoun resolution: Some
recent improvements. AAAI’05, 2005.

[19] Pang, B., Lee, L., and Vaithyanathan, S. Thumbs up?
Sentiment Classification Using Machine Learning
Techniques. EMNLP’02, 2002.

[20] Popescu, A.-M., and Etzioni, O. Extracting Product Features
and Opinions from Reviews. EMNLP’05, 2005.

[21] Riloff, E., and Wiebe, J. Learning extraction patterns for
subjective expressions. EMNLP’03, 2003.

[22] Sarawagi, S. Information Extraction (Survey). Forthcoming.
[23] Turney, P. Thumbs Up or Thumbs Down? Semantic

Orientation Applied to Unsupervised Classification of
Reviews. ACL’02, 2002.

[24] Wiebe, J., and Riloff, E. Creating Subjective and Objective
sentence classifiers from unannotated texts. CICLing, 2005.

[25] Yang, X, Su, J., and Tan, C.L. Improving Pronoun
Resolution Using Statistics-Based Semantic Compatibility
Information, ACL’05, 2005.

[26] http://crf.sourceforge.net/
[27] http://l2r.cs.uiuc.edu/~cogcomp/asoftware.php?skey=NE

