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ABSTRACT 
Opinion mining became an important topic of study in recent 
years due to its wide range of applications. There are also many 
companies offering opinion mining services. One problem that 
has not been studied so far is the assignment of entities that have 
been talked about in each sentence. Let us use forum discussions 
about products as an example to make the problem concrete. In a 
typical discussion post, the author may give opinions on multiple 
products and also compare them. The issue is how to detect what 
products have been talked about in each sentence. If the sentence 
contains the product names, they need to be identified. We call 
this problem entity discovery. If the product names are not 
explicitly mentioned in the sentence but are implied due to the use 
of pronouns and language conventions, we need to infer the 
products. We call this problem entity assignment. These problems 
are important because without knowing what products each 
sentence talks about the opinion mined from the sentence is of 
little use. In this paper, we study these problems and propose two 
effective methods to solve the problems. Entity discovery is based 
on pattern discovery and entity assignment is based on mining of 
comparative sentences. Experimental results using a large number 
of forum posts demonstrate the effectiveness of the technique. Our 
system has also been successfully tested in a commercial setting.  

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval – Information filtering. I.2.7 [Artificial 
Intelligence]: Natural Language Processing – text analysis. 

General Terms 
Algorithms, Experimentation. 

Keywords 
Entity Discovery, Sentiment Analysis  

1. INTRODUCTION 
It is now well recognized that the user-generated content (e.g., 
product reviews, forum discussions and blogs) contains valuable 
consumer opinions that can be exploited for many applications. 
There are already many companies that provide opinion mining 
services. In this paper, we report a system that solves an important 

problem in these applications. It identifies what entities (e.g., 
products) each sentence talks about.  

Most opinion mining researches are based on product reviews [2, 
4, 10, 18, 19, 22] because a review usually focuses on a specific 
product or entity and contains little irrelevant information. 
However, in forum discussions and blogs, the situation is very 
different, where the authors often talk about multiple entities (e.g., 
products), and compare them. This raises two important issues: 
(1) how to discover the entities that are talked about in a sentence 
and (2) how to assign entities to each sentence because in many 
sentences entity names are not explicitly mentioned, but are 
implied. We term the first problem entity discovery and the 
second problem entity assignment. Without knowing the entities 
that a sentence talks about, any opinion mined from the sentence 
is of little use. For example, if an algorithm finds that a sentence 
expresses a negative opinion about something, but it cannot 
determine on what product, then the opinion is meaningless.  

The first problem is basically the named entity recognition (NER) 
problem. However, traditional NER methods do not work well 
because of the ungrammatical nature of the forum posts, over-
capitalization and under capitalization. Over-capitalization means 
that the user may capitalize every word in the sentence, and 
under-capitalization means that the first letters of many entity 
names are not capitalized. These cause serious problems for 
existing entity recognition programs as we will see in Section 5. 
We propose a technique to solve the problem based on sequential 
pattern mining and natural language processing (NLP).  

The second problem is similar to pronoun resolution [3, 24] in 
NLP, which identifies what each pronoun in a sentence refers to. 
Pronoun resolution is still a major challenge. The accuracy of the 
current state-of-the-art systems is only about 60-70% on well-
formed sentences such as those in news articles [3, 24]. However, 
this accuracy cannot be used for applications. In addition, for the 
user-generated content, the problem is harder due to 
ungrammatical sentences, and missing or wrong punctuations.  

To solve this problem, our proposed method will not rely on 
pronoun resolution because our task is also different. Many 
sentences do not have pronouns, but we still need to know which 
entities these sentences talk about. For example, sentences (3) and 
(5) of the discussion post in Example 1 below have no pronoun or 
any other reference to resolve. The question is how to discover the 
entity that sentences (3) and (5) talk about in Example 1.  

Example 1: “(1) I bought Camera-A yesterday. (2) I took some 
pictures in the evening in my living room. (3) The images are 
very clear. (4) They are definitely better than those from my 
old Camera-B. (5) The battery is very good too.”  

A simple approach to assigning entities that are talked about in 
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each sentence is the following: The algorithm sequentially 
processes each sentence. Whenever an entity name is encountered 
in a sentence, it is assumed that the sentence talks about that 
entity. It is also assumed that the subsequent sentences talk about 
that entity as well until a new entity name appears. Then the new 
entity is the one talked about in its sentence. The subsequent 
sentences also talk about the new entity, and so on. This simple 
strategy works reasonably well in practice. However, it breaks 
down when a comparative sentence is encountered.  

Let us use this strategy to process the sentences in Example 1. 
Clearly, sentences (1) – (3) talk about Camera-A because Camera-
A is encountered in sentence (1). Sentences (2) and (3) contain no 
new product. Sentence (4) is a comparative sentence, which also 
introduced Camera-B. Now, the above strategy is not applicable 
because although sentence (4) only mentions Camera-B, it 
actually talks about both cameras. What is more serious is that the 
simple strategy also infers that sentence (5) talks about Camera-B, 
which is clearly wrong. For us human beings, we can see that 
sentence (5) talks about Camera-A. The question is how to solve 
the problem using an automated approach. One may say that the 
sentence after the comparative sentence should talk about the 
product mentioned before. Unfortunately, this is not right either. 
For example, we change Example 1 to:  

Example 2: “(1) I bought Camera-A yesterday. (2) I took a few 
pictures in the evening in my living room. (3) The images were 
very clear. (4) They were definitely better than those from my old 
Camera-B. (5) The pictures of that camera were blurring for night 
shots, but for day shots it was ok”  

Example 2 is the same as example 1 except the last sentence. 
Obviously, sentence (5) here talks about Camera-B. Then, the 
above simple algorithm does not work.  

An important finding of this work is that the implicit entity 
assignment problem is mainly caused by comparative sentences as 
Example 1 shows. Based on our data sets, if we simply infer that 
the implicit entity is the previously mentioned entity, 20% of them 
are wrong and 98% of these errors are caused by comparisons.  

This paper proposes a technique to solve the problem. The method 
does not rely on pronouns, which has two advantages. First, there 
is no need to solve the difficult problem of pronoun resolution in 
NLP. Second, sentences that do not use pronouns can be handled.  

Sentiment consistency: To introduce the proposed technique, let 
us make an important observation about the two examples above. 
The comparative sentences (4) in both examples say that Camera-
A is superior to Camera-B. The next sentence, sentence (5) in 
Example 1, expresses a positive sentiment. Intuitively, sentence 
(5) in Example 1 should refer to the superior product. Similarly, 
sentence (5) in Example 2, which expresses a negative sentiment 
in its first clause, should refer to the inferior product. We call this 
phenomenon sentiment consistency, which says that consecutive 
sentiment expressions should be consistent with each other. It 
would be ambiguous if this consistency is not observed in writing. 

It turns out that this observation is quite general, which suggests a 
novel approach to solving the problem. That is, opinion mining 
can be employed. Two tasks are necessary: (1) for a comparative 
sentence, we need to identify which entity is superior, and (2) for 
the subsequent sentence, we need to determine whether its first 
clause (sentence 5 of Example 2) is positive, negative, or neutral. 
The opinion mining technique in [4] is adapted to solve the 
problem. In the process, we also made two contributions to 

opinion mining. First, we discovered that the opinion mining 
method can also be adapted to analyze comparative sentences. 
Thus, a separate algorithm is not needed although the two types of 
sentences look quite different (e.g., sentences (4) and (5) in the 
examples). Second, we define a rule specification language to 
make the rule-based opinion mining technique in [4] more 
convenient. Experimental results based on 753 forums posts from 
63 threads with 4385 sentences show that our technique is 
effective. Our system has also been successfully tested in a 
commercial setting.  

2. RELATED WORK 
Related works about entity discovery is mainly in the field of 
named entity recognition (NER). NER aims to identify entities 
such as names of persons, organizations and locations in natural 
language text. Most NER methods are based on supervised 
learning [21]. Recent strategies also exploit the domain structure 
in the training data to improve the performance [10]. [11] studied 
extraction of entities and other items from comparative sentences 
based on comparative sentence structures. On product extraction, 
[6] used hand-crafting rules to extract product entities and 
exploited comparative sentences for product comparison analysis. 
Our work is more general and not focused on comparative 
sentences. Our work is also different from the classic NER as we 
are only interested in the product type of entities. [21] gave good 
surveys of existing NER and general information extraction 
algorithms. Conditional random fields (CRF) [15] have been 
shown to perform the best so far. We will show that the proposed 
method outperforms CRF dramatically for our task.  

Although the problem of assigning entities referred to in sentences 
is important in practice for applications, we are not aware of any 
focused study of this problem. Related works are mainly in the 
area of pronoun resolution or co-reference resolution in NLP.  
Pronoun or coreference resolution has been extensively studied in 
natural language processing [3, 17, 24]. However, it is still a 
major challenge. As discussed in the introduction, our task is in 
fact quite different because many sentences do not have pronouns, 
but we still need to know which entities they discuss.  

Although the objective of the proposed problem is not opinion 
mining, some of the opinion mining techniques are applied to 
solve the problem. The most widely studied opinion mining topic 
is sentiment classification of documents and sentences, i.e., 
classifying them as expressing positive, negative, or neutral 
opinions [2, 18, 22]. However, our work needs to study clauses. In 
the same sentence, one clause may be positive but another clause 
may be negative, e.g., “The photo quality is great, but the battery 
sucks”, which contains two opinions.  

We have made use of some methods in feature-based opinion 
mining [4, 16, 19] in our work. Feature-based opinion mining 
means to find opinions expressed on individual product features. 
For example, in the above example, “photo quality” and “battery” 
are product features. The opinion on “photo quality” is positive 
and the opinion on “battery” is negative. Existing techniques 
exploit opinion words for the task. Opinion words are words that 
express desired or undesired states. Positive words express desired 
states, e.g., “great” and “good”. Negative words express undesired 
states, e.g., “bad” and “poor”. Identifying opinion words have 
been studied in [5, 9, 12, 13, 14]. Several lists have been 
compiled. Apart from individual words, there are also many 



opinion phrases, e.g., “cost someone an arm and a leg”.  

We adapted the method in [4] for our purpose as it can be easily 
changed for opinion analysis of each clause. We also made two 
contributions to opinion mining. First, [4] hard-codes all opinion 
phrases in the system, which is undesirable because any 
addition/deletion of phrases will involve changing the program 
code. A specification language is then proposed to allow the user 
to add/delete phrases without touching the underlying program. 
Second, we show that our adapted opinion mining method can be 
easily extended to deal with comparative sentences, which is 
important for our task of entity assignment.  

On the study of comparative sentences, [1, 11] proposed some 
methods to study comparative and superlative sentences. However, 
they do not determine superior entities expressed in comparative 
sentences, which is what we need. [7] studied opinions in 
comparative sentences. However, it needs a large volume of 
external information, i.e., pros and cons in product reviews. Our 
method is much simpler, and we only use the method to solve the 
entity assignment problem, which is the focus of this paper.  

3. THE PROBLEM 
The basic information unit of forums, blogs and discussion boards 
consists of a start post and a list of follow-up posts or replies. This 
basic information unit is often called a thread. A thread t thus can 
be modeled as a sequence of posts, <p1, p2, …, pn>. p1 is the start 
post. Each post consists of a sequence of sentences, <s1, s2, …, 
sm>. Each sentence si describes something on a subset of entities ε 
= {ei…ej| ei,,ej ∈E}, where E is the set of all entities. An entity 
can be a person, a product, an organization, an event, etc. If an 
entity name is explicitly mentioned in sentence si, we say that the 
entity is an explicit entity in si. If the entity is not explicitly 
mentioned in si but it is implied, we say that the entity is an 
implicit entity. For example, Camera-A in the first sentence below 
is an explicit entity. Camera-A is an implicit entity in sentence 2 
as it is not explicitly mentioned there, but it is implied.  

“Camera-A looks really pretty. The battery lasts very long”.  

Most sentences talk about a single entity, i.e., the size of ε is 
usually 1. If a sentence involves multiple entities (explicit and/or 
implicit), it is usually a comparative sentence, e.g., “Camera-A is 
better than Camera-B”. A related type of sentences is the 
superlative sentences, e.g., “Camera-A is the best.”  

This is a simplified model of the real word. For example, it does 
not cover irrelevant sentences, which are usually rare. It does not 
cover quotes (from previous posts) in the reply. However, quotes 
are easy to handle because they are usually in a different format.  

Problem statement: Given a set of threads T in a particular 
domain, two tasks are performed in this paper: 

1. Entity discovery: discover the set of entities E discussed in the 
posts of the threads, and  

2. Entity assignment: assign the entities in E that each sentence si 
of each post pj in t (∈ T) talks about.  

4. ENTITY DISCOVERY 
The main idea for entity discovery is to discover linguistic 
patterns and then use the patterns to extract entity names. 
However, traditional methods need a large number of manually 
labeled training examples, and labeling is very time consuming. 

For a different domain, the labeling process may need to be 
repeated. This section proposes an automated pattern discovery 
method for the task, which is thus unsupervised.  
The basic idea of the algorithm is that the user starts with a few 
seed entities. The system bootstraps from them to find more 
entities in a set of documents (or posts). The algorithm is thus 
iterative. Sequential pattern mining [8] is employed at each 
iteration to find more entities based on already found entities. The 
iterative process ends when no new entity names are found. 
Pruning methods are also proposed to remove those unlikely 
entities. Given a set of seed entities E = {e1, e2, …en}, the 
algorithm consists of the following iterative steps:  

Step 1 – data preparation for sequential pattern mining: This 
step perform two tasks, it first finds all sentences that contain 
anyone of the seed entities, e1, e2, …, en in the dataset, and then 
generate a sequence for each occurrence of ei for pattern mining. 
In order to focus patterns on entities and not generate too many 
patterns, we use only a window of 5 words before each entity 
name and 5 words after each entity name. Each word of a seed 
entity name is replaced with a generic name “ENTITYXYZ”. The 
purpose of using this generic word is to ensure that general 
patterns about any entities are found. Note that each entity name 
may consist of more than one word. The part-of-speech (POS) tag 
of each word is also used. In the final sequence each element of 
the sequence is a pair, POS tag of the word and the word.  
Example 3: We have the following sentence with POS tags 

attached. Here n95 is a phone model (an entity).  
Hiiiiiiiii/NNP SK/NNP -/: ,/, dont/NN be/VB mad/JJ 
everyone/NN doesnt/NN have/VBP a/DT n95/CD phone/NN 
fetish/NN ducky/JJ 

The window is (n95 has been replaced with ENTITYXYZ):  
mad/JJ everyone/NN doesnt/NN have/VBP a/DT 
ENTITYXYZ /CD phone/NN fetish/NN ducky/JJ 

The resulting sequence is: 
<{JJ, mad}{NN, everyone}{NN, doesnt}{VBP, have}{DT, 
a}{CD, ENTITYXYZ}{NN, phone}{NN, fetish} {JJ, ducky}> 

Step 2 – Sequential pattern mining: Given the set of sequences 
generated from step 1, a sequential pattern mining algorithm is 
applied to generate sequential patterns [8]. We use 0.01 as the 
minimum support. We also require that each pattern must contain 
{POStag, ENTITYXYZ} and its length to be greater than or equal 
to 2 for obvious reasons. An example pattern is: 

<{IN}, {DT}, {NNP, ENTITYXYZ }, {is}>   
Here “IN”, “DT”, “NNP” are POS tags which can match any 
words with that tag, and “is” is a concrete word which can only 
match this particular word. 
Step 3 – Pattern matching to extract candidate entities: For 
each sentence in the test dataset, the system matches the generated 
patterns to extract a set of candidate entities. The patterns are 
sorted based on their supports. In order not to generate too many 
spurious candidates, the matching process in a sentence terminates 
after 5 patterns have been matched. We tried several numbers and 
find that 5 is a good number with respect to results and efficiency. 
Example 4: We have the follow sentence with POS tags attached: 

The/DT misses/VBZ has/VBZ currently/RB got/VBN a/DT 
Nokia/NNP 7390/CD at/IN the/DT end/NN of/IN the/DT 
day,/VBG all/DT she/PRP does/VBZ is/VBZ text/NN and/CC 



make/VB calls,/NN but/CC the/DT reception/NN is/VBZ 
terrible,/VBG where/WRB my/PRP$ 6233/CD would/MD 
get/VB full/JJ bars/NNS hers/PRP would/MD only/RB 
get/VB 1/CD or/CC 2./CD  

The pattern, <{DT}, {NNP, ENTITYXYZ}, {CD}>, will match 
the sentence segment, a/DT Nokia/NNP 7390/CD, to produce the 
candidate entity: “Nokia”. The pattern, <{DT}, {NNP}, {CD, 
ENTITYXYZ}, {IN}>, will match the sentence segment, a/DT 
Nokia/NNP 7390/CD at/IN, to produce the candidate entity: 7390 
Step 4 – Candidate pruning: The above pattern matching may 
extract many wrong entities. A pruning method based on POS 
check is proposed. It remedies some errors made by the POS 
tagger system. Since an entity is always associated with a POS tag 
in our patterns, this method checks in the dataset to see whether 
the POS tag is the most frequent one for this candidate. If it is not, 
the candidate entity is eliminated (a possible POS tagging error).  
Example 5: Given the sentence:  

You/PRP can/MD also/RB be/VB sure/JJ it/PRP will/MD 
work/VB with/IN all/PDT the/DT Sony/NNP Ericsson/NNP 
walkman/NN phone/NN accessories/CD 

The pattern, <{IN}{DT}{CD, ENTITYXYZ}>, matches the 
sentence segment: 

with/IN all/PDT the/DT Sony/NNP Ericsson/NNP 
walkman/NN phone/NN accessories/CD  

to produce the candidate entity: accessories, which is incorrect.  
But when the algorithm goes over the sentences in the dataset 
again, it found that “accessories” appear as “NNS” more often 
than as “CD”. This candidate is deleted.  
The algorithm so far is generic and applicable to any domain 
because no assumption was made. The step below is more 
applicable to manufactured products (which are our main area of 
applications), which have brands and models. It should not be 
used for non-manufactured products. This step makes the 
assumption that a model name has a digit in it. In the experimental 
section we will show their results separately.  
Step 5 – Pruning using brand and model relation and 
syntactic patterns. For most manufactured products, brands and 
models often appear together, e.g., “Moto Razr V3”. Here we 
need to use the above digit assumption. Thus, based on the entities 
that were found so far (step 4), this step tries to prune entities by 
using the pattern <Brand Model>. The first task is to discover 
relationships from the entities discovered so far. This is simple as 
the example below shows.  
Example 6: We have the following sentence:  

As/RB far/RB as/IN I/PRP heard/VBD Nokia/NNP N95/CD 
seems/VBZ to/TO be/VB the/DT leader/NN in/IN this/DT 
sense./CD 

In this sentence, if both “Nokia” and “N95” are in the entity list, 
“Nokia” is considered as <Brand>, and “N95” is considered a 
<Model>. 
Then using some syntactic patterns can help find competing 
brands and models. The syntactic patterns exploit conjunctions 
and comparisons in sentences.  
We use C to denote a discovered entity and CN as a competitor. 
The following eight patterns are used:  
 

C and CN CN and C 
C or CN CN or C 
C vs CN  CN vs C 
C more than CN  CN more than C 

The second task is to remove those entities discover in step 4 that 
never appear together with a <Band> or a <Model>, or never 
appear with a candidate in the syntactic patterns.  

5. ENTITY ASSIGNMENT 
We now present the entity assignment algorithm, which depends 
on opinion mining of comparative sentences. Below we first 
introduce the concepts of comparatives and superlatives and then 
discuss their impacts on the problem. Based on the discussion, the 
algorithm is naturally derived.  

5.1 Comparatives and Superlatives 
Comparative and superlative sentences are instrumental to our 
task. We define them here based on [11].  

5.1.1 Comparative Sentences 
Comparative sentences express similarity and differences of more 
than one entity. There are three main types of comparatives,  

1)  Non-equal gradable: “greater or less than” that expresses a 
total ordering of some entities with regard to some shared 
features or attributes. For example, the sentence, “Camera-X’s 
battery life is longer than that of Camera-Y”, orders Camera-
X and Camera-Y based on their shared feature “battery life”.  

2)  Equative: “equal to” that states two entities as equal with 
respect to some features. For example, the sentence, “Camera-
X and Camera-Y are of the same size”, expresses that the two 
cameras are equal in term of their shared feature “size”.  

3)  Non-gradable: Comparing two or more entities, but do not 
grade them. For example, the sentence, “Camera-X and 
Camera-Y have different shapes”, expresses a comparison of 
the shapes of the two cameras but does not grade them.  

5.1.2 Superlative Sentences 
A superlative sentence expresses a relation of the type “greater or 
less than all others”, i.e., it ranks one entity over all other entities. 
For example, the sentence, “Camera-X’s battery life is the 
longest”, expresses a superlative relation.  

5.2 Sentiment Consistency 
Intuitively, in a post, if the author starts with a particular entity, 
he/she will continue with the entity. If he/she wants to introduce a 
new entity e, he/she has to state the name of the entity explicitly in 
a sentence s0, which can be (1) a normal, (2) a comparative or (3) 
a superlative sentence. The question is what happens to the next 
sentence s1 if s1 is a normal sentence and does not mention any 
entity, or s1 is a comparative sentence and it does not mention e.   

For (1), when s0 is a normal sentence, if s1 is a normal sentence, it 
should talk about e. If s1 is a comparative sentence, it should 
compare e with a new entity, which should be explicitly 
mentioned. For (2), when s0 is a comparative sentence, if s1 is a 
normal sentence, there are a few cases:  

s0 is non-equal gradable: If s1 has no entity name and it expresses 
a positive (respectively negative) sentiment, it should talk about 
the superior (or inferior) entity to satisfy sentiment consistency.   

s0 is equative: In this case, it is unclear which entity is referred to 
in s1. We assume that it is the previous entity before s0.  



s0 is non-gradable: In this case, it is also unclear which entity is 
referred to in s1. It is assumed to be the previous entity talked 
about before s0.  

For (3), when s0 is a superlative sentence, if s1 is a normal 
sentence, it refers to the superlative entity in s0. For both (2) and 
(3), if s1 is a comparative sentence, the entities in s1 are taken.  

5.3 The Algorithm 
Based on the above discussion, a natural algorithm emerges, 
which is given in Figure 1. It follows the simple method given in 
Section 1 but with special handlings to comparative sentences as 
discussed above. The input is a post, and the output is a set of 
entities discussed in each sentence. Note that the algorithm is 
simplified for presentation clarity. In our implemented system, the 
start post and quotes in replies are also considered as entities may 
be inherited from them. Comparative sentences here cover 
superlative sentences that contain more than one entity. For a 
superlative sentence with only a single entity, it is treated as a 
normal sentence. The notations used in the algorithm are: 

si.Entity: It stores the names of the entities discussed in sentence 
si, which can be explicit or implicit.  

si.superiorEntity: It stores the set of superior entities in the 
comparative sentence si. Note that we use a set here because 
the sentence may compare two sets of entities, e.g., “Camera-
A is better than Camera-B and Camera-C.” However, in 
practice, each set mostly contains only a single entity.  

si.inferiorEntity: It stores the set of inferior entities in the 
comparative sentence si.  

opinion(): It is the opinion mining function that analyzes a non-
comparative sentence. 

compOpinion(): It is the opinion mining function that finds 
superior and inferior entities from a comparative sentence. 

for each sentence si in sequence in a post do  
1 If si is not a comparative sentence then 
2 if si contains an explicit entity then 
3 si.Entity ← the explicit entity of the sentence si 
4  else    // si does not contain an explicit entity 
5 if si-1 is not a comparative sentence then  
6 si.Entity ← si-1.Entity 
7 elseif a superior entity and an inferior entity were 

discovered in si-1 then 
8 opinion(si);  // opinion mining 
9 if si’s first clause is a positive clause then 
10 si.Entity ← si-1.superiorEntity 
11 elseif si’s first clause is a negative clause then 
12 si.Entity ← si-1.inferiorEntity 
13 else si.Entity ← si-1.superiorEntity 
14 else si.Entity ← sf.Entity, entities of the last sentence 

that is not a comparative sentence 
15  else  // si is a comparative sentence 
16  if no entity is mentioned in si then 
17  si.Entity ← si-1.Entity 
18  else si.Entity ← {si-1.Entity} ∪ {entities in si}; 
19    〈si.inferiorEntity, si.superiorEntity〉 ← compOpinion(si)  

Figure 1: The overall algorithm for entity assignment. 

6. OPINION MINING 
We now present the opinion mining method used in the algorithm 
(i.e., opinion(si)), which is based on the method in [4]. 
Interestingly, we will also show in Section 6.3 that comparative 
sentences can be analyzed in a similar way (i.e., compOpinion()).  

The main idea of the approach is to use opinion indicators to 
decide the orientations of opinions expressed on entity features. 
Orientations of opinions mean whether the opinions are positive, 
negative or neutral. There are three main opinion indicators that 
are used in opinion mining, i.e., opinion words and phrases, 
negations, and but-clauses. They are discussed below.  

6.1 Opinion Indicators 
Opinion words and phrases: In most cases, opinions in 
sentences are expressed with opinion words, e.g., “great”, 
“good”, “bad”, and “poor”. Researchers have compiled sets of 
such words. Such lists are collectively called the opinion lexicon. 
In this work, we obtained the list from [4] with some additions. 
Apart from individual words, there are opinion phrases and 
idioms, e.g., “cost someone an arm and a leg”. Furthermore, some 
phrases may involve opinion words, but the whole phrases have 
no opinion or their opinions depend on contexts. For example, the 
phrase “a good deal of” does not have an opinion although it has 
the positive opinion word “great”. Such phrases are called non-
opinion phrases involving sentiment words. 

While most adjectives/adverbs have explicit positive or negative 
orientations, there are also many words whose orientations depend 
on contexts in which they appear. For example, the word “long” 
in the following two sentences has completely different 
orientations, one positive and one negative: “The battery of this 
camera lasts long” and “This program takes a long time to run.” 
A method will be described in Section 6.3 to deal with this.  

Negations: opinion words and phrases form the basis of opinions 
in a sentence. Negations reverse their orientations. Apart from 
“not”, many other words and phrases can be used to express 
negations. Furthermore, “not” may not express negation in some 
cases, e.g., in “not only … but also”. Such phrases are called non-
negations involving negation words.  

But-clauses: “but” means contrary. For example, the sentence, 
“The picture quality is great, but not the battery life” expresses a 
positive opinion on “picture quality” but a negative opinion on 
“battery life”. The following rule states the effect of “but”:  

The orientation before “but” is opposite to that after “but”.  

Apart from the word “but”, many other words and phrases behave 
similarly, e.g., “though” and “except that”. Similar to opinions 
and negations, not every “but” changes opinion direction. For 
example, “but” in the pattern “not only … but also” does not. 
Such phrases are called non-but phrases involving “but”.  

6.2 Specification for Opinion Indicators 
With a large number of indicators, one can hard-code them in a 
system, which is, however, very undesirable because whenever a 
new word or phrase is encountered the program needs to be 
changed, which is time consuming. In [4], all phrases are hard-
coded in the system. In this work, we propose a specification 
language to enable the user to specify indicators, which are (1) 
opinion words and phrases, (2) negation words and phrases, (3) 
but-like words and phrases, (4) non-opinion phrases involving 
sentiment words, (5) non-negation phrases involving negation 
words, and (6) non-but phrases involving but-like words. The 
system then automatically uses the indicators for opinion mining 
(Section 6.3). All the opinion indicators are compiled manually.  

Two types of specifications are used: one for individual words and 
one for phrases. The reason for the separation is that individual 



words express their default meanings, but their meanings may be 
changed by phrases, i.e., overwriting the defaults to express the 
indicators (4), (5) and (6).  

Specification of Individual Words: The grammar of the language 
for expressing individual words, which include opinion words, 
negation words and but-like words, is given below: 

<rule>        := <item> "=>" <action> 
<item>       := <word> | <word> "[" <type> "]" 
<word>      := [a-z]+  
<type>       := JJ | RB | NN | VB | … 
<action>    := Po | Ne | Neu | Ng | But 

The specification consists of a set of rules, i.e., each indicator 
word is represented as a rule. Each rule consists of two parts, an 
item on the left and an action on the right. The <item> is either an 
individual word or a word attached with a type, which may be 
anyone of the part-of-speech (POS) tags. <action> may be anyone 
of the five symbols, Po (positive), Ne (negative), Neu (neutral), 
Ng (negation) and But (but-like word). For example, if we want to 
express that “like” expresses a positive opinion when it is a verb, 
we can use: 

like[VB] => Pos  
Given a sentence, the system applies each rule by matching the 
word together with its type in the sentence and then associates the 
action symbol to the matched word.  

Specification for Phrases: The grammar is given below.  

<rule>           :=  <pattern> "=>" <action> 
<pattern>      :=  <exp> "+" <target> "+" <exp>  
              | <exp> "+" <target> | <target> "+" <exp> 
<exp>           := <element> | <exp> "+" <element> 
    | <exp> "+" <distance> "+" <exp>  
                   | <exp> "+" <distance>  
                   | <distance> "+" <exp> 
   | !<num> "+" !<item> "+" <exp> 
   | <exp> "+" !<num> "+" !<item> 
   |<exp> "+" !<num> "+" !<item> "+" <exp> 
<element>  := <item> | item "/" element 
<item>          :=  <indicator> | <word> 
<indicator>   :=  <indicatorSym>   
                        | <indicatorSym> "[" <type> "]" 
<target>      :=  <indicator> "[T]" | <word> "[T]" 
<indicatorSym> := Po | Ne | Neu | Ng | But 
<word> :=  [a-z]+ | [a-z]+ "[" <type> "]" 
<distance> :=  <num> | <num> - <num>  
<num>    :=  0 | [1-9][0-9]* 
<action>       :=  <outcome>| !<outcome> 
<outcome>    :=  PO | NE | NEU | NG | BUT 
<type>         := JJ | RB | NN | VB | … 

The specification again consists of a set of rules. Each rule has 
two parts, a pattern on the left and an action on the right. Each 
pattern has a target word, indicated by [T], to which the action is 
applied. The idea is that the left-hand-side of the rule is first 
matched in the sentence and then the action of the rule is applied 
to the target in the sentence. See an example in Section 5.3.  

Some main concepts used in the grammar are:  

IndicatorSym: These are indicator symbols, Po, Ne, Neu, Ng and 
But, from individual indicator words discussed above. A “type” 
may also be attached, specifying the POS tag of the word.  

Word: It can be any word with an optional type. 
Distance: It indicates the number of words (or gap) that can 
appear between two non-adjacent items in the phrase. “-” means 
from “num” to “num” (num is an integer number).  
Target: It is the core item of the phrase, indicating which word 
the rule is applied to.   

Some additional notes about the grammar: “+” is the separator, “/” 
means “or” and “!num + !<item>” means that within <num> 
words gap, <item> does not appear.  

The action on the right states that the action symbol should be 
associated with the target. The action symbol can be any of the 
outcomes or their negations, i.e., PO (positive), NE (negative), 
NEU (neutral), NG (negation), and BUT (but-like). “!” means 
‘not’. These action symbols cannot appear on left-hand-side, 
which prevents looping.  

Some remarks about the language are: The ordering of rules is 
significant. When the first rule for a target word is matched and 
applied, the rest will not be tried. Choosing the right target is also 
important in the situation where a phrase overwrites the default 
meaning of a word. The target should be the word in question. For 
example, the rule “great => Po” specifies that “great” is positive. 
However, the phrase “a great deal of” overwrites the orientation 
of “great” because “a great deal of” has no opinion. In this case, 
the rule should be “a great[T] + deal + of => NEU” as the opinion 
of “great” is nullified by the phrase. If we use “a great deal[T] of 
=> NEU”, “great” will still be treated as positive.   

6.3 Opinion Mining 
We now describe opinion mining. We use the following running 
example sentence to show the working of each step:  

“The picture quality of this camera is not good, reaction is 
too slow, but the battery life is long.” 

Step 1 – Part-of-speech tagging: The tags are used for matching 
<type>’s in the rules.  
Step 2 – Applying indicator word rules: All opinion words, 
negation words and but-like words in the sentence are discovered 
in this step. For our example, after this step, we obtain 

The picture quality is not[Ng] good[Po], reaction is too 
slow[Neu], but[But] the battery life is long[Neu]. 

All the bold attachments are added in this step. The POS tags are 
omitted to improve readability.  
Step 3 - Applying phrase rules: This step identifies all phrases in 
the sentence and performs the actions specified in the rules. After 
this step, our running example sentence becomes:  

The picture quality is not[Ng] good[Po], reaction is too 
slow[NE], but[But] the battery life is long[Neu]. 

The orientation of “slow” is revised to negative ([NE]) due to the 
rule: “too + Neu[JJ][T] => NE”. 
Step 4 - Handling negations: A negation in a sentence reverses 
the orientation of an opinion. For neutral, it is turned to negative. 
After negation handling, our running example sentence becomes 
(“good” is now turned to negative from positive): 

The picture quality is not[Ng] good[Negative], reaction is too 
slow[NE], but[But] the battery life is long[Neu]. 

Step 5 - Aggregating opinions: This step first finds but-symbols, 



which indicate opinion changes. The opinions on the two sides of 
a but-symbol are opposite to each other.  

Opinion aggregation: All opinion indicators in the first clause of 
the sentence are aggregated to arrive at the final opinion. The 
algorithm simply sums up all indicators. A positive (or negative) 
indicator is assigned 1 (or -1). If the final sum is greater than 0, 
then the clause is positive. If the sum is less than 0, then the clause 
is negative and neutral otherwise.  

Handling context-dependent opinions: For those sentences that 
the above process cannot determine their orientations, the 
algorithm checks if it can detect context dependent opinions as in 
[9], which uses several rules. Only the conjunction rule is used in 
this work (the others are inaccurate). For example, in “The battery 
life is long”, it is unclear whether “long” means positive or 
negative. The method tries to see whether any other person said 
that “long” is positive (or negative). If another person wrote “this 
camera takes great pictures and has a long battery life”. From 
this sentence, we can infer that “long” is positive for “battery life” 
because it is conjoined with the positive word “great”. This is the 
conjunction rule, which says that a sentence only expresses one 
opinion, unless there is a but-like word changing the direction. 

6.4 Opinion Mining of Comparisons 
As we mentioned earlier, the opinion mining method above can be 
adapted to find superior and inferior entities in comparative 
sentences. This is due to the fact that positive and negative 
opinion words have their corresponding comparative and 
superlative forms indicating superior and inferior states 
respectively. For example, the positive opinion word, “good”, has 
its comparative and superlative forms, “better” and “best”, which 
indicate superior (and inferior) entities.  

In English, comparatives and superlatives are special forms of 
adjectives and adverbs. In general, comparatives are formed by 
adding the suffix “-er” and superlatives are formed by adding the 
suffix “–est” to the base (or original) adjectives and adverbs. 
Adjectives and adverbs with two syllables or more and not ending 
in y do not form comparatives or superlatives this way. Instead, 
“more”, “most”, “less” and “least” are used before such words, 
e.g., “more interesting” and “most awful”. These two types are 
called regular comparatives and superlatives. English also has 
irregular comparatives and superlatives that do not follow the 
above rules. These are, “more”, “most”, “less”, “least”, “better”, 
“best”, “worse”, “worst”, “further/farther” and “furthest/farthest”.  

In order to use the opinion mining method mentioned above to 
find superior and/or inferior entities, we first convert those 
opinion adjectives and adverbs to their comparative and 
superlative forms, which is done automatically by using English 
grammar rules and WordNet. Due to space limitations, we will not 
discuss the conversion in detail here as it is fairly straightforward. 
We then regard the comparatives and superlatives as positive and 
negative as their base forms respectively. For irregular 
comparatives, “better” and “best” are treated as positive, and 
“worse” and “worst” are treated as negative. “more”, “most”, 
“less”, and “least” require special handling. They are considered 
together with opinion words using the following 4 rules:  

more/most + Pos → Positive  
more/most + Neg → Negative  
less/least + Pos → Negative  
less/least + Neg → Positive  

Rule 1 says that “more/most” and a positive (Pos) opinion word 
together mean positive, e.g., “more beautiful”. Other rules have 
similar meanings. 
Non-standard words: Apart from the above comparatives and 
superlatives, many other words can also express comparisons, 
e.g., “win”, “prefer”, “superior” and “inferior”. For example, the 
sentence, “In term of battery life, Camera-X is superior to 
Camera-Y”, expresses a comparison indicating that Camera-X is 
preferred with regard to “battery life”. These words are treated as 
positive or negative based on their meanings.  
Identify comparative and superlative sentences: Before we can 
identify superior entities from comparative sentences, we need to 
identify such sentences. [11] proposed a pattern mining approach 
to identifying comparative and superlative sentences. In this work, 
we did not focus on this task. Only several heuristic rules are 
designed to identify such sentences, which perform quite well.  
Clearly, comparative and superlative sentences are signaled by 
various keywords. We use a list of 67 keywords (obtained from 
[11]), which includes 4 part-of-speech tags, i.e., JJR (comparative 
adjective), RBR (comparative adverb), JJS (superlative adjective) 
and RBS (superlative adverb). Our heuristics rules are as follows 
(if a sentence matches anyone of the rules, it is considered a 
comparative or a superlative sentence): 

a). pronoun + compkey + prodname,  
b). prodname + compkey + pronoun,  
c). prodname + compkey + prodname 
d). pronoun + superkey 
e). prodname + superkey 
f). as + JJ + as (except “as long as” and “as far as”) 

where compkey is a comparative keyword, prodname is a product 
name and superkey is a superlative keyword.  
Discover superior entities: Finally, as mentioned earlier, the 
above opinion mining method can be used to discover superior 
entities. Since a gradable comparative sentence typically has 
entities on the two sides of the comparative keyword, i.e., 
“Camera-X is better than Camera-Y”. Based on opinion mining, if 
the sentence is positive, then the entities before the comparative 
keyword is superior and otherwise they are inferior (with the 
negation considered). Superlative sentences can be handled in a 
similar way. Note that equative and non-gradable comparisons do 
not express preferences.  

7. EMPIRICAL EVALUATION 
This section evaluates the proposed techniques for the two tasks, 
entity discovery and entity assignment. Below, we first describe 
our datasets and then present the experimental results.  

7.1 Experimental Data Collections 
The experiment data collections are crawled from two forums, 
HowardForums and AVSforums. HowardForums is a message 
board dedicated to mobile phones while AVSforum is a message 
board dedicated to Home Theater and the products used. Our data 
from AVSforum are discussions about Plasma and LCD TVs, 
Projectors and DVD players. Table 1 shows the characteristics of 
the two data sets. Altogether, we downloaded 64 threads, which 
contain 753 individual posts with 1072 comparative and 
superlative sentences. The total number of sentences is 4385. All 
the sentences and product names were annotated by two graduate 
students based on consensus.  



7.2 Experimental Results 
We now present the experimental results for both tasks.  
Table 1: Characteristics of the two data sets (comparative 
sentences including superlative sentences)  

Data sets No. of 
threads 

No. of 
posts 

No. of 
Product 

No. of 
comparatives 

Total no. of 
sentences 

Howard 31 446 171 664 2589 
AVS 33 307 180 408 1796 
Total 64 753 351 1072 4385 

7.2.1 Entity Discovery 
The results of entity discovery are given first. Our method is 
called EI. It is compared with the NET system [26] from 
University of Illinois at Urbana Champion, and the Conditional 
Random Fields method (CRF) [15]. NET is a Named Entity 
Tagger, which can be used in our case as product names are 
named entities. The CRF system that we use is from Sunita 
Sarawagi [25]. Table 2 shows the results.  
 
Note that the NET system does not need training. The training 
data for CRF is the data obtained from step 2 of our algorithm. 
Recall that the data from step 2 is automatically generated. The 
entities in those sentences are regarded as positive data and all the 
other words in the sentences are regarded as negative data. The 
test data is the whole set for all the systems. Using the whole set 
as the test data is reasonable because our system does not use any 
manually labeled training data. Only a set of seed entities is 
supplied. The training data is automatically generated.  

In Table 2, we also compare EI when the first 3 steps (EI (1-3)), 
the first 4 steps (EI (1-4)) and all 5 steps are used (EI (1-5)). 
Using the first 3 steps basically means that the system only uses 
pattern mining for extraction. Pruning is step 4 was quite 
effective. As expected EI(1-4) produces high recalls but low 
precisions. However, EI(1-4)’s F scores are already dramatically 
higher than those of CRF and NET. For NET, we only used its 
results for organization entities. For other types of entities, the 
results are much worse. From Table 2, we also see that the 
additional step of EI improve the result further (EI(1-5)). 
Compared to EI(1-4), the precision increases dramatically with a 
small drop in recall, but the overall F scores are much higher. In 
practice, step 5 (which makes the digit assumption) is not needed 
because the high recall is the key. As the resulting entity list is not 

long, the user can filter out those non-entities fairly easily.  
Recall that our system uses some seeds to start the process. The 
question is how the number of seeds affects the final results. We 
performed a set of experiments by varying the number of seeds to 
see their effects. Figure 3 gives the results of 5, 10, 15 and 20 
seeds. Clearly, when the number of seeds is small the precision is 
higher, but the recall is very low. With more seeds, we get more 
balanced results. If more seeds are selected, although the results 
are slightly better, it defeats the purpose of method which requires 
little user knowledge. Our experimental results reported in Table 2 
are based on 15 seeds. All results are the averages of 10 random 
runs with randomly selected seeds.  

 
Figure 3: Results of different seeds for entity discovery (Average 
of the two datasets) 

7.2.2 Entity Assignment 
Table 3 gives the experimental results for entity assignment, 
which includes the results of two baseline methods. We use ED to 
denote the proposed technique. Two sets of experiments were 
conducted. The first set is denoted by “Next Sentences” in Table 
3. “Next Sentences” means that only the comparative sentences 
and their subsequent sentences are considered. This set of 
experiments thus shows how effective the ED technique is in its 
intended task. The second set of experiments is denoted by “All 
Sentences”, which considers all sentences. It shows how the ED 
method affects the overall implicit entity assignment task.  
Column 1 (baseline1-next sentences): Baseline1 works as follows: 

If a sentence does not mention any product name, we simply 
take the last product of the previous sentence. Note that the 
product of the previous sentence may be inherited from its 
previous sentence and so on. The accuracy measure is used 
here because we want to gauge how accurate the assignments 
of products to sentences are.  

Column 2 (baseline2-next sentences): In the Baseline2 method, if 
a sentence does not mention a product name, it simply takes 

Table 2: Results of entity discovery 
Datasets CRF NET EI (1-3) EI (1-4) EI (1-5) 

Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. 
Howard 0.40 0.91 0.48 0.35 0.87 0.48 0.86 0.58 0.81 0.83 

F = 0.56 F = 0.40 F = 0.62 F = 0.69 F = 0.82 
AVS 0.37 0.89 0.42 0.29 0.84 0.47 0.84 0.59 0.77 0.80 

F = 0.52 F =  0.34 F = 0.60 F = 0.69 F = 0.78 

Table 3: Experimental results for entity assignment 
 
Data sets 

Next Sentences (Accuracy) All Sentences (Accuracy) Comp Ident. 
Baseline1 Baseline2 ED (k-com) ED (unk-com) Baseline1 Baseline2 ED (k-com) ED (unk-com) Prec. Recall F 

HowardForums 82.4% 83.3% 93.4% 90.3% 80.3% 82.1% 88.2% 86.7% 85.2% 84.2% 84.7%
AVSforrum 79.6% 80.9% 91.2% 89.6% 76.7% 77.9% 87.2% 85.0% 82.2% 84.9% 83.5%

Average 81.0% 82.1% 92.3% 89.9% 78.5% 80.0% 87.7% 85.9% 83.7% 84.6% 84.1%
Col# 1 2 3 4 5 6 7 8 9 10 11 

 



the first product of the previous sentence.  
Discussion: We observe that Baseline2 is always more 
accurate than Baseline1 because in most cases, the first 
product is the superior product in a comparative sentence and 
the next sentence also tends to talk about that product. 98% of 
the errors are caused by comparative sentences. 

Column 3 (ED (k-com) – next sentences): It gives the result of 
each data set using the proposed ED method assuming that the 
comparative and superlative sentences are known. k-com 
denotes this assumption. 

Column 4 (ED (unk-com) – next sentences): It gives the result of 
each data set using the proposed ED technique assuming that 
the comparative and superlative sentences are unknown. unk-
com denotes this fact. This is the realistic situation, in which 
the system has to detect comparative and superlative sentences 
automatically using the method in Section 6.4.  
Discussion: We observe that ED outperforms the two baseline 
methods dramatically, i.e., on average from the best accuracy 
of the baselines, 82.1%, to the accuracy of the realistic 
situation of not knowing the comparatives, 89.9%. Knowing 
the comparative sentences (k-com) only performs slightly 
better as compared to not knowing them (unk-com). Note that 
the accuracy here means the total number of sentences that 
have been correctly assigned products compared to the total 
number of sentences that need such assignments.  

Columns 5-8 (all sentences): These results correspond to those in 
columns 1-4 except that all sentences are used in the 
experiments. In this case, the algorithm assigns products to 
every sentence rather than only to the sentence after each 
comparative and superlative sentence.  
Discussion: Again, we see major improvements, i.e., on 
average from the best of the baselines, 80.0%, to the realistic 
situation of not knowing the comparatives, 85.9%. In this 
case, ED improves slightly less because comparative 
sentences are only a small proportion of all sentences. The 
results are lower than columns 1-4 since due to propagation if 
the discovery in one sentence is wrong, we will get the 
implicit entity in the next sentence wrong and so on. 

Columns 9-11: They give the precision, recall and F-score of each 
data set on the task of identifying comparative and superlative 
sentences. The average result (F = 84.1%) is better than that 
given in [11], i.e., the average F = 79%.   

In summary, the experimental results clearly demonstrated the 
effectiveness of the ED method.  

8. CONCLUSION 
This paper presented a practical system that deals with two related 
problems in applications of opinion mining, i.e., mining entities 
discussed in a set of posts and assigning entities to each sentence. 
These are so important that without solving them, any opinion 
discovered from the user-generated content is of limited use. We 
proposed a pattern-based method to deal with the first problem. 
To solve the second problem, we first showed that the problem is 
mainly caused by comparative sentences. We then showed that the 
problem can be dealt with to a large extent by opinion mining on 
both the comparative sentences and the subsequent sentences. In 
the process, we also advanced the state-of-the–art of opinion 
mining, especially in the analysis of comparative sentences. Our 
experimental results show that the proposed techniques are 
effective. In our future work, we will further improve the accuracy 
of the system.   
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