
Finding Informative Commonalities in Concept Collections

Simona Colucci
Politecnico di Bari

Via Orabona 4
70125, Bari, Italy

s.colucci@poliba.it

Eugenio Di Sciascio
Politecnico di Bari

Via Orabona 4
70125, Bari, Italy

disciascio@poliba.it

Francesco M. Donini
Università della Tuscia

Via San Carlo 32
01100, Viterbo, Italy
donini@unitus.it

Eufemia Tinelli
Università di Bari
Via Orabona 4

70125, Bari, Italy
tinelli@di.uniba.it

ABSTRACT
The problem of finding commonalities characterizes several
Knowledge Management scenarios involving collection of re-
sources. The automatic extraction of shared features in a
collection of resource descriptions formalized in accordance
with a logic language has been in fact widely investigated in
the past. In particular, with reference to Description Logics
concept descriptions, Least Common Subsumers have been
specifically introduced.

Nevertheless, such studies focused on identifying features
shared by the whole collection. The paper proposes in-
stead novel reasoning services in Description Logics, aimed
at identifying commonalities in a significant portion of the
collection, rather than in the collection as a whole.

In particular, common subsumers adding informative con-
tent to the one provided by the Least Common Subsumer
are here investigated.

The new services are useful in all scenarios where features
are not required to be fully shared, like the one motivat-
ing our research: Core Competence extraction in knowledge
intensive companies.

Categories and Subject Descriptors
I.2.4 [Knowledge Representation Formalisms and Meth-
ods]: Representation Languages; H.3.3 [Information Search
and Retrieval]: Clustering

General Terms
Algorithms, Management

Keywords
Description Logics, Non-standard Inferences, Informative Com-
mon Subsumers

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’08, October 26–30, 2008, Napa Valley, California, USA.
Copyright 2008 ACM 978-1-59593-991-3/08/10 ...$5.00.

1. INTRODUCTION
Every scenario characterized by the presence of a collec-

tion of resources faces the problem of finding common fea-
tures in the collection, regardless of the nature of involved
resources. If collected elements are described according to a
formal language conveying semantics, the process of identi-
fying such commonalities can be automatically performed.
In particular, Description Logics [1] offer inference services
specifically aimed at identifying concept collection common-
alities. Least Common Subsumers(LCS) have in fact been
defined [9] — originally for the DL underlying Classic [8]—
with the specific purpose of determining the most specific
concept description subsuming all of the elements of a given
collection.

Usefulness of LCSs has been shown in several different ap-
plication fields. As an example, in the bottom-up construc-
tion of knowledge bases [3], the knowledge engineer may de-
fine several typical objects of the domain, which are then
generalized through the computation of their LCS. Such
an approach overcomes the drawbacks of classical top-down
techniques, in which the general concept descriptions are
defined first.

Inductive learning algorithms also employ LCS computa-
tion to find a least general concept consistent with a set of
positive example, used as basis for learning [10].

The measure of concept similarity in specific information
retrieval [20] represents one more application of LCS.

Noteworthy, all above introduced application scenarios
share the need of individuating features which are common
to all of the elements in a given collection.

In other applications, instead, the issue is determining
commonalities of a significant portion of the collection rather
than of the collection as a whole. The problem reverts then
to finding a concept subsuming a significant number, or per-
centage, of elements in the collection. In an organizational
scenario, for example, a crucial strategical issue consists in
determining the know-how specializing the company. Such a
knowledge takes the name ”Core Competence” [15] in knowl-
edge management literature and represents the fields of ex-
cellence for a company, e.g., the competence to invest on
in long term strategy. If employee profiles and organization
knowledge are formalized in a collection of concept descrip-
tions, the management could extract company Core Compe-
tence by searching for features shared by a significant num-

807

ber of employees. The degree of significance may be chosen
by the management on the basis of organizational needs.

In order to perform such extraction process in a Knowl-
edge Representation framework, we need to define concepts
which are LCS of k elements in a collection of n descriptions,
with k < n. We give the name k-Common Subsumers to
such concepts.

As the LCS of the whole collection is by definition a k-
Common Subsumer for every 1 < k < n, we define distin-
guished Informative k-Common Subsumers, to denote
k-Common Subsumers adding informative content to the
LCS. k-Common Subsumers equivalent to the LCS would
not justify in fact the introduction of a reasoning service
other than the LCS.

Imagine now that the management of a company in the
organizational scenario introduced before needs to extract
the features common to the biggest number of employees in
the company: we define to this aim Best Common Sub-
sumers, which are concepts subsuming a number k of el-
ements in the collection, where k is the biggest number of
subsumed concepts.

If the collection admits an LCS not equivalent to the uni-
versal concept, the Best Common Subsumer is obviously the
LCS itself. In this case we therefore define the Best Infor-
mative Common Subsumers, which are concepts sub-
suming the biggest number of elements in the collection less
than the cardinality n.

The rest of this paper is organized as follows: in the next
Section we briefly introduce the DL formalism we adopt;
then we outline our motivational case study and its formal-
ization in DLs. In Section 4 we detail all reasoning services
needed for the commonalities extraction process. Solving
algorithms are provided in Section 5 w.r.t. different DLs, to-
gether with some computational complexity results. A case
study illustrating introduced services in the organizational
context is presented in Section 6, before closing the paper
with conclusions.

2. BASIC DESCRIPTION LOGICS
We start recalling here basics of the formalism we adopt,

based on Description Logics (DLs). DLs are a family of for-
malisms and reasoning services widely employed for knowl-
edge representation in a decidable fragment of First Order
Logic.

The alphabet of each DL is therefore made up by unary
and binary predicates, denoted as Concepts Names and
Role Names, respectively. The domain of interest is rep-
resented through more expressive and complex Concept
Descriptions, involving constructors over concept and role
names. The set of constructors allowed by a DL character-
izes it in terms of expressiveness and reasoning complexity:
of course the more a DL is expressive, the harder is inferring
new knowledge on its descriptions.

Concept Definitions allow to assign an unique concept
name to complex concept descriptions: the so called Unique
Name Assumption (UNA) holds in every DL. Names as-
sociated to concept descriptions constitute the set of Defined
Concepts, distinguished by Primitive Concepts not appear-
ing on the left hand side of any concept definition and cor-
responding to the concept names. Defined and primitive
concepts constitute the set of concept names, which will be
referred to by the letter A in the following; C and D will
denote instead arbitrary concept descriptions.

Concept Inclusions detail instead specificity hierarchies
among concepts, either defined or primitives.

Role Inclusions are also aimed at detailing specificity
hierarchies, but among roles.

The set of concepts inclusions and definitions represents
the formal representation of the domain of interest, the in-
tensional knowledge which takes the name TBox in DL sys-
tems and Ontology in the generic knowledge representation
framework. TBoxes containing recursive concept definitions
are called cyclic(acyclic otherwise).

The semantic of concept descriptions is conveyed through
an Interpretation I = (∆I , ·I) , where ∆I is a non empty
set denoting the domain of I and ·I is an interpretation
function such that:

• ·I maps each concept name A in a set AI ⊆ ∆I

• ·I maps each role name R in a binary relation rI ⊆
∆I ×∆I

Possible DL constructors and the related semantics are
shown in Table 1, which also shows the constructors allowed
by the DLs investigated in this paper.

The behavior of the interpretation function in presence
of definitions and inclusions is detailed in Table 2 and can
be inductively explained by taking the semantics of allowed
constructors into account. Table 2 also shows assertions
allowed by all DLs investigated in the paper.

An interpretation I is a model for a TBox T if it satisfies
the whole set of assertions in T .

The motivating scenario we here propose needs at least
the expressiveness of ELHN sublanguage of DLs for re-
sources representation. The full expressiveness of ELHN
is explained, with the aid of constructors usage examples, in
Table 3.

Ontologies using DL can be easily modeled using lan-
guages for the Semantic Web [13, 19, 23]. These languages
have been conceived to allow for representation of machine
understandable, unambiguous, description of web content
through the creation of domain ontologies, and aim at in-
creasing openness and interoperability in the web environ-
ment. The strong relations between DLs and the above in-
troduced languages for the Semantic Web [2] is also evident
in the definition of the three OWL sub-languages:

OWL-Lite: allows class hierarchy and simple constraints
on relation between classes;

OWL-DL: is based on Description Logics theoretical stud-
ies, it allows a great expressiveness keeping computa-
tional completeness and decidability;

OWL-Full: using such a language, there is a huge syntac-
tic flexibility and expressiveness. This freedom is paid
in terms of no computational guarantee.

3. MOTIVATING CASE STUDY
The investigations on the problem of finding informative

commonalities in concept collections originate from a real
need we faced in the implementation of IMPAKT, a novel
and optimized semantic-based knowledge management sys-
tem, which will be released late this year. IMPAKT is
specifically aimed at semantic-based human resources man-
agement [11] and provides Core Competence extraction as
decisional support service. IMPAKT ensures the scalability

808

Constructor Name Syntax Semantics ELHN ALN ALE ALEN
top-concept > ∆I x x x x

bottom-concept ⊥ ∅ x x x x

atomic negation ¬A ∆I\AI x x x x

conjunction C uD CI ∩DI x x x x

value restriction ∀r.C {x ∈ ∆I |∀y : (x, y) ∈ rI → y ∈ CI} x x x

existential restriction ∃r.C {x ∈ ∆I |∃y : (x, y) ∈ rI ∧ y ∈ CI} x ∃r.> x x

at-least restriction (≥ n r) {x ∈ ∆I |]{y ∈ ∆I |(x, y) ∈ rI} ≥ n} x x x

at-most restriction (≤ m r) {x ∈ ∆I |]{y ∈ ∆I |(x, y) ∈ rI} ≤ m} x x x

Table 1: DLs Set of Conctructors

Syntax Semantics ELHN ALN ALE ALEN
concept definition A ≡ C AI = CI x x x x

concept inclusion A v D AI ⊆ DI x x x x

role inclusion r v q rI ⊆ qI x

Table 2: Syntax and Semantics of TBox assertions

Expression Example Explanation

top-concept whole domain

bottom-concept empty set

atomic negation ¬Skill concepts which are not skills

conjunction C++ u Java knowledge about both Java and C++

existential restriction ∃knowsLanguage.English elements of the domain knowing En-
glish as foreign language

at-least restriction (≥ 3 hasExperienceYears)
elements of the domain endowed with
more than 3 years of working experi-
ence

at-most restriction (≤ 2 knowsLanguage)
elements of the domain knowing not
more than two foreign language

concept definition Engineer ≡ ∃hasMasterDegree.Engineering
An engineer is an element of the do-
main endowed with a degree in engi-
neering

concept inclusion Consultant v ¬Employee
Elements of the domain working as
consultants may not be included in
employees set

role inclusion advancedKnowledge v basicKnowledge

Elements of the domain endowed with
a specific knowledge at an advanced
level hold the same knowledge at a ba-
sic level

Table 3: ELHN expressiveness explained

809

of proposed knowledge management approaches by means
of a smart pre-classification of semantic-based information.

In [15] the notion of Core Competence was introduced to
indicate the strategic knowledge of a company. A core com-
petence is defined as a sort of capability providing customer
benefits, hard to be imitated from competitors and possess-
ing leverage potential.

Further definitions of Core Competence have been pro-
posed in the literature in the attempt of finding methods for
detecting such a specializing knowledge [18, 22].

The process of individuating Core Competence is in fact
usually characterized by high complexity and low objectivity
because of the intangibility of knowledge itself and difficul-
ties inherent in formalizing them.

The automation of Core Competence extraction process
asks in fact for company know-how to be described according
to a language endowed with formal semantics.

Hereafter we use Description Logics for knowledge rep-
resentation and, for the sake of simplicity, assume that the
only source of company know-how is company personnel. As
a result, a company which needs to automatically extract its
Core Competence has to formalize the knowledge profiles of
employees according to the vocabulary provided by a TBox
describing skill management domain.

An excerpt of the inclusions and the assertions composing
the TBox at the basis of our case study is given in Figure 1
and Figure 2, respectively.

Operations Management w




OperationsOptimization

Process Management

ProductionManagement

SoftwareEngineering w {
UML

Programming w





ScriptLanguages w
{

Javascript

VBscript

OOP w
{

Java

C++

StructuralProgramming w C

InformationSystems w




DBMS

ERPsystem w {
SAP

TCP/IP

OperatingSystems w
{

Unix

Windows
AssetAllocation w HumanResourcesManagement

basicKnowledge w advancedKnowledge

Figure 1: TBox Inclusions

The extraction process is grounded on the reasonable as-
sumption that Core Competence, although characterizing a
company, has not necessarily to be held by the whole person-
nel, but at least by a significant portion of it. A competence
shared by all of the employees could be in fact too generic,
if the objective is, for example, identifying skills to invest on
in long term strategy.

Consider the tiny organizational scenario in which the fol-
lowing employees are employed:

• Antonio: Computer science engineer with advanced
knowledge about Java since more than 3 years, UML
since more than 3 years and about Unix and a basic
knowledge of Information Systems;

• Claudio: Managerial Engineer with basic knowledge

Manager ≡
∃advancedKnowledge.(ManagementTechniques u
(≥ 8 hasExperienceYears))

AssetManager ≡
Manager u ∃advancedKnowledge.(AssetAllocation u
(≥ 5 hasExperienceYears))

Engineer ≡ ∃advancedKnowledge.(Design u
(≥ 5 hasExperienceYears)) u
∃hasMasterDegree.Engineering u
∃basicKnowledge.OperationsOptimization

ManagerialEngineer ≡
Engineer u ∃basicKnowledge.ERPsystem u
∃advancedKnowledge.(ProductionManagement u
(≥ 3 hasExperienceYears)) u
∃advancedKnowledge.(Process Management u
(≥ 3 hasExperienceYears))

CSEngineer ≡
Engineeru∃advancedKnowledge.OperatingSystemsu
∃advancedKnowledge.(Programming u
(≥ 5 hasExperienceYears)) u
∃advancedKnowledge.(SoftwareEngineering u
(≥ 3 hasExperienceYears))

Figure 2: TBox Definitions

about SAP and software engineering and advanced
knowledge about Java since more than 2 years;

• Roberto: Asset Manager with advanced knowledge
about human resources management since more than
5 years and C++ and VB Script;

• Daniele: Engineer with basic knowledge of data base
management systems and advanced knowledge of C
since more than 5 years and Javascript since 3 years.

The four profiles are formalized according to the given
TBox as shown in Table 4. It is noteworthy that the em-
ployees competence descriptions need the full expressiveness
of ELHN to convey all the embedded semantics. We there-
fore in the following refer to such a DL for modeling our case
study.

It is easy to observe that the only characteristic shared by
the four employees of our tiny case study is ”an advanced
knowledge about programming”. Such feature might obvi-
ously be too generic to be considered for Core Competence
identification. The management of a company needs instead
to take into account features shared by significant subsets
of the collection made up by the employees; the minimum
required number of employees may be set by the manage-
ment on the basis of a organizational needs. As an example,
if the management accept that three employees have to hold
some knowledge to consider it part of Core Competence, we
can state that the company has advanced knowledge about
object oriented programming as Core Competence. Such
a result is more significant than the first one w.r.t. to the
objective of determining the fields of excellence of the com-
pany.

Of course, the more the extracted knowledge is specific
and unknown to the management, the more the automated

810

Employee Name Concept Description Representing Employee Profile

Antonio

CSEngineer u ∃advancedKnowledge.(Java u (≥ 3 hasExperienceYears)) u
∃advancedKnowledge.Unix u ∃advancedKnowledge.(UML u
(≥ 3 hasExperienceYears)) u ∃basicKnowledge.InformationSystems

Claudio
ManagerialEngineer u ∃basicKnowledge.SAP u ∃advancedKnowledge.(Java u
(≥ 2 hasExperienceYears)) u ∃basicKnowledge.SoftwareEngineering

Roberto

AssetManager u ∃advancedKnowledge.C++ u
∃advancedKnowledge.(HumanResourcesManagement u (≥ 5 hasExperienceYears)) u
∃advancedKnowledge.VBscript

Daniele

Engineer u ∃advancedKnowledge.(C u (≥ 5 hasExperienceYears)) u
∃basicKnowledge.DBMS u ∃advancedKnowledge.(Javascript u
(≥ 3 hasExperienceYears))

Table 4: The Concept Descriptions representing Employee Profiles

process we propose is useful for achieving competitive ad-
vantage.

Observe that, even though the services proposed in this
paper have been specifically devised for solving Core Com-
petence extraction needs, they are helpful in all frameworks
in which a partial sharing of features in a collection of re-
sources is required. Imagine for example the scenario of a
medical research laboratory investigating new diseases. If
patient health records are formalized in DL w.r.t. an ontol-
ogy describing health care domain, the symptoms of patients
sharing the final diagnosis may be investigated to find com-
mon features. Also in such a scenario a partial coverage of
patients collections might be a crucial information for de-
tecting symptoms commonly associated to a disease, which
could be therefore helpful in diagnosis process.

4. INFERENCE SERVICES
In the following we start recalling standard services we

use in our approach and then proceed to introduce proposed
ones. The most important —and well-known— service char-
acterizing reasoning in DL checks for specificity hierarchies,
by determining whether a concept description is more spe-
cific than another one or, formally, if there is a subsumption
relation between them.

Definition 1 (Subsumption). Given two concept de-
scriptions C and D and a TBox T in a DL L, we say that
D subsumes C w.r.t. T if for every model of T , CI ⊂ DI .
We write C vT D, or simply C v D if we assume an empty
TBox.

For example, consider the following concept descriptions,
referred to a competence and an employee profile, respec-
tively:

• C1 = ∃basicKnowledge.Programming
• P1 = ∃basicKnowledge.Java u ∃hasMasterDegree.
ComputerScience u Consultant

Knowledge expressed by P1 is more specific than the one
required by T1: according to the previous definition C1 sub-
sumes P1.

Based on subsumption new reasoning services may be de-
fined in DLs. In particular, all of the following services are
aimed at finding commonalities in collections of concepts
formalized in a generic DL L.

We recall Least Common Subsumer definition by Cohen
and Hirsh [10], before introducing new services based on it.

Definition 2 (LCS, [10]). Let C1, . . . , Cn be n con-
cept descriptions in a DL L. An LCS of C1, . . . , Cn, denoted
by LCS(C1, . . . , Cn), is a concept description E in L such
that the following conditions hold:

(i) Ci v E for i = 1, . . . , n

(ii) E is the least L-concept description satisfying (i), i.e.,
if E′ is an L-concept description satisfying Ci v E′

for all i = 1, . . . , n, then E v E′

It is well known that, if the DL L admits conjunction of
concepts “u”, then the LCS is unique up to concept equiv-
alence (since if both E1 and E2 are common subsumers of
C1, . . . , Cn, then so is E1 u E2). Moreover, if union of con-
cepts “t” is allowed in L, then for every set of concepts
C1, . . . , Cn ∈ L, their LCS is C1 t · · · t Cn. Hence, the
study of LCS is limited to DLs not admitting union.

In order to deal with partial commonalities, we define now
common subsumers of k concepts in a collection of n ele-
ments.

Definition 3 (k-CS). Let C1, . . . , Cn be n concepts in
a DL L, and let be k < n. A k-Common Subsumer (k-CS)
of C1, . . . , Cn is a concept D 6= > such that D is an LCS of
k concepts among C1, . . . , Cn.

By definition, LCSs are also k-CSs, for every k < n. For
this reason we define a particular subset of k-CSs, adding
informative content to the LCS computation.

Definition 4 (IkCS). Let C1, . . . , Cn be n concepts in
a DL L, and let k < n. An Informative k-Common Sub-
sumer (IkCS) of C1, . . . , Cn is a k-CS E such that E is
strictly subsumed by LCS(C1, . . . , Cn).

In the following we define concepts subsuming the maxi-
mum number of elements in a collection:

811

Definition 5 (BCS). Let C1, . . . , Cn be n concepts in
a DL L. A Best Common Subsumer (BCS) of C1, . . . , Cn

is a concept S such that S is a k-CS for C1, . . . , Cn, and for
every k < j ≤ n every j-CS ≡ >.

The Least Common Subsumer, when not equivalent to the
universal concept, is of course the best common subsumer
a collection may have: it subsumes the whole collection.
As a consequence, the computation of BCSs for collections
admitting LCSs not equivalent to > is meaningless. For such
collections, we alternatively propose the following service:

Definition 6 (BICS). Let C1, . . . , Cn be n concepts in
a DL L. A Best Informative Common Subsumer (BICS) of
C1, . . . , Cn is a concept B such that B is an Informative k-
CS for C1, . . . , Cn, and for every k < j ≤ n every j-CS is
not informative.

Proposition 1. If LCS(C1, . . . , Cn) ≡ >, every BCS is
also a BICS.

Even though the services defined above may appear quite
similar to each other at a first sight, it has to be underlined
that they deal with different problems [12]:

• k-CS: can be computed for every collection of elements
and finds least common subsumers of k elements among
the n belonging to the collection;

• IkCS: describes those k-CSs adding an informative con-
tent to the one provided by LCS, i.e., more specific
than LCS. Observe that IkCS does not exist when ev-
ery subset of k concepts has the same LCS as the one
of all C1, . . . , Cn;

• BICS: describes IkCSs subsuming h concepts, such
that h is the maximum cardinality of subsets of the
collection for which an IkCS exists. A BICS does not
exist if and only if Ci ≡ Cj for all i, j = 1, . . . , n;

• BCS: may be computed only for collections admitting
only LCS equivalent to the universal concept; it finds
k-CSs such that k is the maximum cardinality of sub-
sets of the collection for which an LCS not equivalent
to > exists.

5. COMMONALITIES EXTRACTION
In the following we show how to find commonalities in

concept collections formalized in DL in accordance with out-
lined services, while determining some complexity results for
such services.

In the computation of common subsumers of a collection
of concept descriptions C1, . . . , Cn we assume that all con-
cepts Ci in the collection are consistent; hence Ci 6≡ ⊥ for
every Ci ∈ (C1, . . . , Cn).

The reasoning services introduced in Section 4 ask for the
concepts of the input collection to be written in components
according to the following recursive definition:

Definition 7 (Concept Components). Let C be a
concept description in a DL L, with C written in a con-
junction C1 u · · · u Cm. The Concept Components of C are
defined as follows:

1. if Cj, with j = 1 . . . , m is either a concept name, or
a negated concept name, or a number restriction, then
Cj is a Concept Component of C

2. if Cj = ∃R.D , with j = 1 . . . , m, then ∃R.> is a
Concept Component of C

3. if Cj = ∀R.E, with j = 1 . . . , m , then ∀R.Ek is a
Concept Component of C, for each Ek Concept Com-
ponent of E

Observe that we do not propagate universal restriction over
existential restriction since existential restriction always sim-
plify to a component of the form ∃R.>.

For the computation of the sets of k-CSs, IkCSs, BICSs
and BCSs of a collection of concepts we define in the fol-
lowing a Subsumers Matrix, for the representation of the
collection itself.

Definition 8 (Subsumers Matrix). Let C1, . . . , Cn

be a collection of concept descriptions Ci in a Description
Logic L and let Dj ∈ {D1, . . . , Dm} be the Concept Compo-
nents deriving from all concepts in the collection. We define
the Subsumers Matrix S = (sij) , with i = 1 . . . n and
j = 1 . . . m, such that sij = 1 if the component Dj subsumes
Ci, and sij = 0 if the component Dj does not subsume Ci.

Definition 9. Referring to the Subsumers Matrix of
C1, . . . , Cn, we define:

Concept Component Signature (sigDj) : set of indices
of concepts C1, . . . , Cn subsumed by Dj ; observe that
sigDj ⊆ {1, . . . , n};

Concept Component Cardinality (TDj) : cardinality
of sigDj , that is, how many concepts among C1, . . . , Cn

are subsumed by Dj . Such a number is
∑n

i=1 sij;

Maximum Concept Component Cardinality (MS):
maximum among all concept component cardinalities,
that is, MS = max{TD1 , . . . TDm};

Second Maximum Concept Component Cardinality
(PMS): maximum among the cardinalities of concept
components not subsuming all n concepts in the col-
lection (PMS = max{TDj |TDj < n}); by definition
PMS < n;

Common Signature Class(
⋂

sigDj
) : concept formed by

the conjunction of all concept components whose sig-
nature contains Dj : u{Dh | sigDj ⊆ sigDh}

Definition 8 hints that the computation of Subsumers Matrix
includes an oracle to subsumption. As a consequence the
following proposition holds:

Proposition 2. Let L be a DL whose subsumption prob-
lem is decidable in polynomial time. Then Subsumers Matrix
in L is computable in polynomial time too.

Such a result causes the computation of common sub-
sumers in DLs with different complexities for subsumption
to be treated separately. We therefore concentrate on the
DL needed for modeling our case study, ELHN , in Section
5.1 and provide results for different DLs in Section 5.2.

Nevertheless some considerations are logic independent
and preliminary to the determination of common subsumers
in every DL.

Firstly, we define the solution sets for the introduced rea-
soning services, regardless of the DL employed for the rep-
resentation of concepts in a given collection:

812

D1 D2 D . . . Dm

C1 x x x

C2 x x

C . . . x

Cn x x x

IkCS, k-CS k-CS, IkCS,
BICS

LCS, k-CS

Figure 3: Subsumers Matrix of a collection admit-
ting LCS 6= >

BCS : set of BCSs of the collection

BICS : set of BICSs of the collection

ICSk : set of IkCSs of the collection, given k < n

CSk : set of k-CSs of the collection, given k < n

Proposition 3. Given a DL L and a collection of con-
cept descriptions in L, for each k < n the solution sets of
the collection are such that Ik ⊆ Lk. If the collection admits
only the universal concept as LCS, then B = BI also holds.

Proposition 4. The following observations on the Sub-
sumers matrix represent necessary conditions to determine
common subsumers of the collection:

1. Only concept components Dj for which TDj ≥ k are
meaningful for the determination of CSk elements

2. Only concept components subsuming k concepts but not
all n concepts in the collection are meaningful for the
determination of ICSk elements: Dj for which k ≤
TDj < n

3. Only concept components Dj for which TDj = PMS

are taken into account for the determination of BICS
elements

4. Only concept components Dj for which TDj = MS,
with MS < n may determine BCS elements.

The representation (for k = 2) in Figure 3 and 4 shows
the introduced necessary conditions and should clarify the
differences among introduced services. In particular, notice
that in case of a collection admitting LCS 6= > (Figure
3), the best common subsumer of the collection is the LCS
itself, so only the computation of BICSs makes sense. On the
contrary, for a collection admitting only LCS ≡ > (Figure
4), BCSs may be computed and are BICSs too.

5.1 Computation in ELHN
The commonalities extraction process in the DL we em-

ploy to model our case study, relies on computation results
for LCS computation. Baader et al. [4] showed that, even for
the small DL EL, the shortest representation of the LCS of
n concepts has exponential size in the worst case, and this
result holds also when a TBox is used to shorten possible
repetitions [7]. Such a result affects the computation of the
introduced solution sets of common subsumers, as stated in
the following theorem.

D1 D2 D . . . Dm

C1 x x x

C2 x x

C . . .

Cn x x

k-CS, IkCS k-CS, IkCS
k-CS, IkCS,
BICS, BCS

Figure 4: Subsumers Matrix of a collection whose
LCS ≡ >

Theorem 1. The computation of the solution sets BCS,
BICS, CSk, ICSk for a collection of concept descriptions
in ELHN may be reduced to the problem of computing the
LCS of the subsets of the collection.

Proof. For computing CSk it is sufficient to compute for
every subset {i1, . . . , ik} ⊆ {1, . . . , n} the concept
LCS(Ci1 , . . . , Cik).
The same holds for ICSk, excluding those LCS(C1, . . . , Ck)
which are equivalent to LCS(C1, . . . , Cn). For the compu-
tation of the sets BCS and BICS, instead, we provide an
algorithm that uses the one proposed by Kusters and Moli-
tor [17] for LCS computation. The algorithm takes as in-
put the collection C1, . . . , Cn represented through its Sub-
sumers Matrix. Consider now the Concept Components of
the elements Ci in the collection: the reduction in Step 2 of
Definition 7 causes not all the components to be straightly
included in the solution sets BCS and BICS. For example,
consider the concept description
C1 = AssetManager u ∃basicKnowledge.Psychology: the
resulting concept component is D1 = ∃basicKnowledge.>
and D2 = ∃advancedKnowledge.> (taking also into account
the TBox definitions in Figure 2). Even though such com-
ponent is selected for the determination of the solution sets
according to Proposition 4, it just individuates the concepts
in the collection to consider for the determination of BCS
and BICS. For each component Dj we denote LCSDj the
LCS of the Ci such that sij = 1.

Input : Subsumers Matrix S = (sij) for a collection of
concepts Ci ∈ {C1, . . . , Cn} in ELHN

Output: BICS; BCS
if MS = n then1

BCS := ∅;2

foreach Dj s.t. TDj = PMS do3

BICS := BICS ∪ LCSDj ;

else4

foreach Dj s.t. TDj = MS do5

BCS := BCS ∪ LCSDj ;6

BICS := BCS;7

return BCS , BICS;8

Algorithm 1: An algorithm for Common Subsumers enu-
meration in ELHN

Algorithm 1 requires the computation of the LCS of l
concepts — with l ≤ n— in lines 3, 6. Similarly to the
approach used in [5] we limit the size on the input collection
from n to l, and we compute the LCS of the l concepts as
shown in [17]. The problem of determining the solution sets

813

of a collection may be then reduced to the computation of
the LCS of subsets of the collection itself.

5.2 Further Computation Results
The choice of proposing an algorithm finding informative

commonalities in ELHN is due to modeling needs in our case
study. We therefore generalize our approach by investigating
the computational complexity of introduced services in two
different DLs, namely ALN and ALE .

The computational complexity for ALN is lower than the
one for ELHN , given that ALN lacks of existential restric-
tions, which is the source of exponentiality [7]. In particular,
in knowledge domains which can be modeled in ALN the
introduced common subsumers can be computed by straight-
forwardly applying conditions in Proposition 4, as stated in
the following theorem.

Theorem 2. For a collection of concept descriptions in
ALN the necessary conditions for solution sets determina-
tion exposed in Proposition 4 are also sufficient.

Proof. Let the Common Signature Class
⋂

sigDj
of a

concept component Dj satisfy one of the necessary condi-
tions in Proposition 4 and let LCSDj be the LCS of the
k concepts subsumed by Dj . If

⋂
sigDj

is just a common

subsumer and not the least one, LCSDj <
⋂

sigDj
, hence

LCSDj must be equivalent to
⋂

sigDj
uF , with F a suitable

concept. This means that F subsumes each concept Ci sub-
sumed by Dj hence, according to Definition 7, F must be
one of the concept components conjoined in

⋂
sigDj

for the

computation of BCS, BICS, CSk and ICSk elements.

When a TBox is present—even a simple one, made of
axioms A

.
= C where A is a name—Nebel proved that sub-

sumption is Pspace-hard even for the simple DL FL0 [21]1.
Hence, in the following complexity analysis we decouple the
contribution of the subsumption tests in the subsumers ma-
trix computation from the computation of different intro-
duced common subsumers.

The complexity of solution sets computation is object of
the following theorem.

Theorem 3. Let C1, . . . , Cn, T be n concepts and a sim-
ple Tbox in ALN , let m be the sum of the sizes of C1, . . . , Cn,
and let S(s) be a monotone function bounding the cost of de-
ciding C vT D in ALN , whose argument s is |C|+|D|+|T |.
The computation of the solution sets BCS, BICS, CSk,
ICSk for a collection of concept descriptions in ALN is then
a problem in O(m2 + (S(m))2).

Proof. We propose an algorithm determining the sets
BICS, CSk, ICSk, BCS of a collection {C1, . . . , Cn} of
concepts in ALN , whose Subsumers Matrix is given as in-
put. Hence the computation of the Subsumers Matrix can
be carried over in polynomial time (see Proposition 2).

1However, Nebel himself claims that exponentiality raises
from the nesting of the definitions (a concept that defines
another that defines another etc.) and that for “bushy but
not deep” TBoxes exponentiality does not arise. A precise
characterization of what “bushy but not deep” means has
been given by Di Noia et al. [14].

According to Theorem 2 the determination of the output
sets asks then only for the enumeration of Common Sig-
nature Classes of the components Dj chosen according to
conditions in Proposition 4.

The algorithm for Common Subsumers enumeration in
ALN is shown in the following:

Input : Collection Subsumers Matrix S = (sij) for a
collection of concepts {C1, . . . , Cn} in ALN ,
integer k < n

Output: CSk; ICSk; BICS; BCS
CSk := ∅; ICSk := ∅; BICS := ∅; BCS := ∅;1

foreach Dj s.t. TDj ≥ k do2

CSk := CSk ∪
⋂

sigDj
;

3

if TDj < n then ICSk := ICSk ∪
⋂

sigDj
;

4

if MS = n then5

foreach Dj s.t. TDj = PMS do6

BICS := BICS ∪⋂
sigDj

;
7

else foreach Dj s.t. TDj = MS do8

BCS := BCS ∪⋂
sigDj

; BICS := BICS ∪⋂
sigDj

;
9

return CSk,BCS , ICSk, BICS;10

Algorithm 2: An algorithm for Common Subsumers enu-
meration in ALN
It is straightforward to verify that the algorithm runs in

O(m2). Given that subsumers matrix can be computed in
O(m2 + (S(m))2), the claim follows.

For the computation of BICS and BCS in ALE , we
can use Algorithm 1. For computing CSk it is again suf-
ficient to compute for every subset {i1, . . . , ik} ⊆ {1, . . . , n}
the concept LCS(Ci1 , . . . , Cik). The same holds for ICSk,
excluding those LCS(C1, . . . , Ck) which are equivalent to
LCS(C1, . . . , Cn). A method for computing the hierarchy of
all such LCSs (but for the DL ALC, so without number re-
strictions and role inclusions) has been proposed by Baader
and Sertkaya[6]. Once such a hierarchy is computed, it is
easy to find IkCSs, BICSs, and BCSs. However, we observe
that for DLs in Table 1, some theoretical results on LCS are
still missing. Since the output of an algorithm computing an
LCS in DLs including EL is exponential in the worst case
[7], we refer to the usual model of computation of Turing
Machines with three tapes: one for input (read-only), one
for working memory, and one for output (write-only) [16].
In such a model, space complexity refers to the working
memory tape. In this setting we observe that the algorithm
proposed by Baader and Turhan [7] for LCS in ALE works in
polynomial space, while the algorithm proposed by Kusters
and Molitor [17] works in exponential space, since it relies
on a normalization step for input concepts, and it is still
unclear if such a normalization step can be avoided.

6. CASE STUDY SOLUTION
In order to better clarify the proposed services we apply

the commonalities extraction process detailed in Section 5
to our tiny example scenario proposed in Section 3.

The input collection therefore is made up by the four pro-
files in Table 4. Let 50 % be the required level of competence
coverage set by company management to individuate Core
Competence. We are hence interested in determining com-
petence shared by at least two employees out of the four in
the company.

814

D1 D2 D3

Antonio x x x
Claudio x x x
Roberto x
Daniele x x x

Figure 5: Example Collection Subsumers Matrix

In order to compute the set CS2, it is sufficient to compute
the LCS of all subsets of cardinality 2:

LCS(Antonio, Claudio) =
Engineer u ∃advancedKnowledge.(Java u
(≥ 2 hasExperienceYears)) u
∃basicKnowledge.SoftwareEngineering u
∃basicKnowledge.InformationSystems

LCS(Antonio, Roberto) = ∃advancedKnowledge.OOP
LCS(Antonio, Daniele) =

Engineer u ∃advancedKnowledge.(Programming u
(≥ 5 hasExperienceYears)) u
∃basicKnowledge.InformationSystems)

LCS(Claudio, Roberto) = ∃advancedKnowledge.OOP
LCS(Claudio, Daniele) =

Engineer u ∃advancedKnowledge.(Programming u
(≥ 2 hasExperienceYears)) u
∃basicKnowledge.InformationSystems

LCS(Roberto, Daniele) =
∃advancedKnowledge.ScriptLanguages

All elements in CS2 have to be investigated w.r.t. the
LCS of the collection to identify Informative 2-Common
Subsumers. We need then to compute such a concept:

LCS = LCS(Antonio, Claudio, Roberto, Daniele) =
∃advancedKnowledge.Programming
Each element in CS2 is more specific than LCS and then
belongs also to ICS2.

We use instead Algorithm 1 for computing the sets BCS
and BICS. The algorithm requires the concept collection
Subsumers Matrix as input; so we have to compute it first.
The concept components coming from the collection are
computed according to Definition 7 and take into account
TBox definitions in Figure 2. As a result we have the three
concept components as in the following:

• D1 = ∃hasMasterDegree.>
• D2 = ∃advancedKnowledge.>
• D3 = ∃basicKnowledge.>

The collection subsumers matrix is shown in Figure 5 and
is characterized by the following values: MS = 4, PMS = 3.
By applying Algorithm 1 we have that BCS := ∅ (line 2) and
we need to compute, according to line 3, LCSD1 and LCSD3 .
It is straightforward to notice that LCSD1 ≡ LCSD3 , so the
only BICS for the collection is:

LCS(Antonio, Claudio, Daniele) =
Engineer u ∃advancedKnowledge.(Programming u
(≥ 2 hasExperienceYears)) u
∃basicKnowledge.InformationSystems

The solution sets coming from the commonalities extraction
process are detailed below:

BCS =∅
BICS =

{ (Engineer u ∃advancedKnowledge.(Programming u
(≥ 2 hasExperienceYears)) u
∃basicKnowledge.InformationSystems) }

CS2 =

{ (Engineer u ∃advancedKnowledge.(Java u
(≥ 2 hasExperienceYears)) u
∃basicKnowledge.SoftwareEngineering u
∃basicKnowledge.InformationSystems),
(∃advancedKnowledge.OOP),
(Engineer u ∃advancedKnowledge.(Programming u
(≥ 5 hasExperienceYears)) u
∃basicKnowledge.InformationSystems),
(Engineer u ∃advancedKnowledge.(Programming u
(≥ 2 hasExperienceYears)) u
∃basicKnowledge.InformationSystems),
(∃advancedKnowledge.ScriptLanguages) }

ICS2 =CS2

Thanks to the commonalities extraction process proposed
here, the company in our tiny case study discovered some
new information about the fields of excellence characterizing
its know-how. In particular, by computing the LCS of the
collection of employee profiles, the company management
may discover that the whole personnel knows Programming
at an advanced level, which is quite a generic sort of infor-
mation, probably well known by the company.

More significant and unknown commonalities may be found
by computing the set of IkCSs: i) knowledge embedded in
Engineer job title together with an advanced knowledge in
Java, related to two years of working experience, and a basic
knowledge in Information Systems and software engineer-
ing; ii) advanced knowledge about object oriented program-
ming;iii) advanced knowledge about script languages. Such
commonalities are therefore informative w.r.t. the objective
of determining unknown fields of excellence in the company.

Moreover the company may discover, thanks to the com-
putation of BICSs, that knowledge shared by the maximum
number of employees in the company (excluding Program-
ming which is shared by all employees) is an advanced knowl-
edge of programming related to 2 years of experience, to-
gether with the knowledge embedded in Engineer job title
and a basic knowledge in Information Systems.

In large knowledge intensive companies, like multinational
ones, the proposed approach may hence help to detect hid-
den fields of excellence of a company, especially if out of its
core business, thus representing a potential source of com-
petitive advantage.

7. CONCLUSIONS
Motivated by the need to identify and extract so called

Core Competence in knowledge intensive companies, and by
the limits of LCS in such a framework, we have introduced

815

and exploited informative common subsumers in Description
Logics, useful in application fields where there is the need
to extract significant informative commonalities in concept
collections, and such commonalities are not shared by the
entire collection. We have proposed definitions, algorithms
to compute such informative common subsumers for various
DLs and presented simple complexity results.

Obviously our approach requires competencies —or in gen-
eral concept collections— be modeled in accordance with an
ontology, but as semantic-based languages and technologies
gain momentum it is reasonable to assume that more and
more companies will move towards a logic-based formaliza-
tion of their skills and processes and be able to take advan-
tage of proposed and other relevant non-standard services.

Acknowledgment
We thank Franz Baader and Sergei O. Kuznetsov for helpful
discussions. This work has been supported in part by EU-
FP6-IST-26896 project and Apulia Region funded projects
PE 013 Innovative models for customer profiling and PS 092
DIPIS.

8. REFERENCES
[1] F. Baader, D. Calvanese, D. Mc Guinness, D. Nardi,

and P. Patel-Schneider, editors. The Description Logic
Handbook. Cambridge University Press, 2003.

[2] F. Baader, I. Horrocks, and U. Sattler. Description
logics as ontology languages for the semantic web. In
D. Hutter and W. Stephan, editors, Festschrift in
honor of Jörg Siekmann, Lecture Notes in Artificial
Intelligence. Springer-Verlag, 2003.

[3] F. Baader and R. Küsters. Computing the least
common subsumer and the most specific concept in
the presence of cyclic ALN -concept descriptions. In
Proceedings of the Twenty second German Annual
Conference on Artificial Intelligence (KI’98), volume
1504 of Lecture Notes in Computer Science, pages
129–140, Bremen, Germany, 1998. Springer–Verlag.

[4] F. Baader, R. Küsters, and R. Molitor. Computing
least common subsumer in description logics with
existential restriction. Technical Report LTCS-Report
98-09, RWTH Aachen, 1998.

[5] F. Baader and R. Molitor. Building and structuring
description logic knowledge bases using least common
subsumers and concept analysis. In Proceedings of the
Seventh International Conference on Conceptual
Structures (ICCS’00), pages 292–305, London, UK,
2000. Springer-Verlag.

[6] F. Baader and B. Sertkaya. Applying formal concept
analysis to description logics. In P. Eklund, editor,
Proceedings of the 2nd International Conference on
Formal Concept Analysis (ICFCA 2004), volume 2961
of Lecture Notes in Artificial Intelligence, pages
261–286. Springer, 2004.

[7] F. Baader and A.-Y. Turhan. On the problem of
computing small representations of least common
subsumers. In Proceedings of the Twenty sixth German
Annual Conference on Artificial Intelligence (KI’02),
volume 2479 of Lecture Notes in Artificial Intelligence,
Aachen, Germany, 2002. Springer-Verlag.

[8] A. Borgida, R. Brachman, D. L. McGuinness, and
L. A. Resnick. CLASSIC: A structural data model for

objects. In Proceedings of the ACM SIGMOD
International Conference on Management of Data,
pages 59–67, 1989.

[9] W. Cohen, A. Borgida, and H. Hirsh. Computing least
common subsumers in description logics. In
P. Rosenbloom and P. Szolovits, editors, Proceedings
of the Tenth National Conference on Artificial
Intelligence, pages 754–761, Menlo Park, California,
1993. AAAI Press.

[10] W. Cohen and H. Hirsh. Learning the CLASSIC
description logics: Theorethical and experimental
results. In Proceedings of the Fourth International
Conference on the Principles of Knowledge
Representation and Reasoning (KR’94), pages
121–133, 1994.

[11] S. Colucci, T. Di Noia, E. Di Sciascio, F. Donini, and
A. Ragone. Semantic-based skill management for
automated task assignment and courseware
composition. Journal of Universal Computer Science,
13(9):1184–1212, 2007.

[12] S. Colucci, E. Di Sciascio, and F. Donini. Partial and
informative common subsumers of concepts collections
in description logics. In Proc. of the 21st Intl.
Workshop on Description Logics (DL’08), 2008.

[13] DAML+OIL. DAML+OIL Specifications.
www.daml.org/2001/03/daml+oil-index.html, 2001.

[14] T. Di Noia, E. Di Sciascio, and F. Donini. Semantic
matchmaking as non-monotonic reasoning: A
description logic approach. Journal of Artificial
Intelligence Research, 29:269–307, 2007.

[15] G. Hamel and C. K. Prahalad. The core competence
of the corporation. Harvard Business Review,
May-June:79–91, 1990.

[16] D. S. Johnson. A catalog of complexity classes. In
Handbook of Theoretical Computer Science, Volume A:
Algorithms and Complexity, pages 67–161. 1990.

[17] R. Küsters and R. Molitor. Structural Subsumption
and Least Common Subsumers in a Description Logic
with Existential and Number Restrictions. Studia
Logica, 81:227–259, 2005.

[18] C. C. Markides and P. J. Williamson. Related
diversification, core competences and corporate
performance. Strategic Management Journal,
15:49–65, 1994.

[19] D. McGuinness, R. Fikes, J. Hendler, and L. Stein.
DAML+OIL: An Ontology Language for the Semantic
Web . IEEE Intelligent Systems, 17(5):72–80, 2002.

[20] R. Möller, V. Haarslev, and B. Neumann.
Semantics-based information retrieval. In Proceedings
of the International Conference on Information
Technology and Knowledge Systems (IT&KNOWS’98),
Vienna, Budapest, 1998.

[21] B. Nebel. Reasoning and Revision in Hybrid
Representation Systems, volume 422 of Lecture Notes
in Artificial Intelligence. Springer-Verlag, 1990.

[22] R. R. Nelson. Why do firms differ, and how does it
matter? Strategic Management Journal, 12:61–74,
1991.

[23] OWL. www.w3.org/TR/owl-features/, 2004.

816

