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ABSTRACT

Simulation has been the de facto standard method for per-
formance evaluation of newly proposed ideas in computer
architecture for many years. While simulation allows for
theoretically arbitrary fidelity (at least to the level of cycle
accuracy) as well as the ability to monitor the architecture
without perturbing the execution itself, it suffers from low
effective fidelity and long execution times.

We (and others) have advocated the use of empirical ex-
perimentation on reconfigurable hardware for computer ar-
chitecture performance assessment. In this paper, we de-
scribe an empirical performance assessment subsystem im-
plemented in reconfigurable hardware and illustrate its use.
Results are presented that demonstrate the need for the
types of performance assessment that reconfigurable hard-
ware can provide.

Categories and Subject Descriptors

B.8.2 [Performance and Reliability]: Performance Anal-
ysis and Design Aids; C.4 [Performance of Systems]:
Measurement Techniques

General Terms

Design, Experimentation, Measurement, Performance

1. INTRODUCTION

In computer architecture research, the primary tool used to-
day for performance analysis is simulation. Using simulators
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such as SimpleScalar [4], SimOS [20], or M5 [5], investigators
execute code from common benchmarks (e.g., SPEC [23],
MiBench [10], MediaBench [13], CommBench [25]) to assess
the performance impact of the architectural features they
are interested in evaluating. This reliance on simulation is
primarily due to the fact that constructing a physical pro-
totype of a new architecture is cost prohibitive.

Simulation, however, is limited by the following concerns:

o fidelity — simulations are typically performed with ab-
stract, incomplete, or missing components. While it is
conceptually easy to describe a “cycle accurate” simu-
lation model, there is little hope of any implementation
reflecting the details of that simulation exactly.

e execution time — simulations are typically interpretive
so that they can perform sufficient introspection to
collect data of interest. As such, they typically run
orders of magnitude slower than the system they are
modeling.

One viable remediation for the above concerns is to simu-
late portions of an application’s execution by sampling [26]:
some segments are simulated in fine detail while the details
of executing the other segments are largely ignored. For av-
erage behavior, sampling may provide adequate resolution in
a reasonable timeframe. However, if an execution contains
infrequent events whose details are important, sampling may
miss the most noteworthy phenomena.

Moreover, for some applications, occasional worst-case be-
havior can be more significant than the application’s average-
case behavior. For example, in the real-time application we
consider below, its worst-case execution time is necessary
for proper scheduling within the application. A rare event
that can lead to increased execution time can adversely af-
fect scheduling or perhaps cause a real-time program to miss
a crucial deadline.

Reconfigurable hardware, in the form of field-programmable
gate arrays (FPGAs), can be used to model systems that



will ultimately be implemented in custom silicon. In fact,
soft-core descriptions of common architecture implementa-
tions are becoming widely available. With the appropriate
instrumentation of such descriptions, and the addition of
logic to log events reliably, execution details at the microar-
chitectural level can be captured at full (FPGA) speed for
an application’s entire execution [11].

While much of a program’s observed behavior is intrinsic to
the application and its host architecture, other processes—
some of which may be required for proper system operation—
can adversely affect the primary application’s performance.
System processes responsible for resource management, de-
vice allocation, page management, and logging typically ex-
ecute outside the domain of an application’s performance in-
trospection. Thus, debugging and performance monitoring
tools can reveal much about about problems within an ap-
plication, but they are hard pressed to identify interprocess
behavior that contributes to poor performance. Moreover,
as we show in this paper, interprocess behavior can even
mask performance problems within an application.

The use of FPGAs for performance monitoring has recently
received a fair amount of attention. In terms of functionality,
our approach resembles SnoopP [22], in that we both aug-
ment a soft-core architecture (e.g., Microblaze for SnoopP)

with logic to capture information based on instruction ranges.

Our model, however, utilizes additional logic that allows
users to correlate event behavior with the program counter,
specific instruction address ranges, and also the process IDs
in the operating system. The recently initiated RAMP [3,
19] project uses FPGA technology to perform architectural
performance analysis, especially focusing on parallel com-
puting architectures, but they have not yet described the
specific mechanisms they intend to use. In a similar vein,
IBM’s Cell processor has extensive on-chip mechanisms for
performance monitoring [9], of course limited to the specific
architecture of the Cell processor itself.

In this paper, we make the case that empirical measurement
of computer architectures deployed on FPGAs has signifi-
cant advantages over performance evaluation via simulation,
and we describe an infrastructure we have constructed for
this purpose, illustrating its use in several experiments.

2. EXPERIMENTAL SYSTEM

We developed an experimental system as part of the liquid

architecture project [6, 12, 18], utilizing the Field-programmable

Port Extender (FPX) platform [17] as our infrastructure ba-
sis. The FPX provides a proven environment for interfac-
ing FPGA designs with off-chip memory and a gigabit-rated
network interface. Working within this system, we have suc-
cessfully deployed the LEON2 [8, 14], a SPARC V8 compat-
ible soft-core processor, on the FPX and interfaced it with
a memory controller unit, a custom network control proces-
sor, and a programmable statistics module (described be-
low). Tailored, application-specific functional acceleration
modules are interfaced to the CPU via either the AMBA
high-speed bus (AHB) [2], the AMBA peripheral bus (APB),
or the standard SPARC co-processor interface. Current OS
support includes both uClinux [24] and, with the addition of
a memory management unit, the Linux 2.6.11 kernel. Fig-
ures 1 and 2 illustrate the liquid architecture system.
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Figure 2: Liquid architecture photograph.

2.1 Statistics Module Architecture

The statistics module exists as a custom VHDL core resident
within the FPGA. Communications to and from the proces-
sor are handled by a wrapper interface connected to the
APB. In addition to this standard interface, the statistics
module receives processor state information via a custom
event bus. This event bus essentially serves as a point-to-
point connection between the statistics-capturing engine and
various architectural “hooks” placed throughout the system.
Currently our event bus is configured to carry information
regarding the state of the instruction cache, data cache,
and PC address; however, as the LEON2 is an open pro-
cessor, one could easily register new hooks to monitor any
given architectural feature with minimal modifications to
the VHDL.

The statistics-capturing engine is designed to count desig-
nated events, as described above, when they occur within a
specified region of the executing program. A region is de-
fined as a particular address range for the program counter,
and the program’s load map (with a suitable GUI) assists a
developer in specifying address ranges of interest.

The statistics module provides a distinct advantage for gath-
ering data in that it is fully programmable by the user at
run time; the bitfile does not need to be resynthesized to ac-
commodate new combinations of address ranges and events.



As hardware build cycles take approximately 50 minutes on
our development machines, this results in a large increase
in productivity. To operate the statistics module, the user
must program the collection mechanism with the follow-
ing three different values: the address range of interest, a
timer duration between statistic collection, and the 32-bit
counter that should be associated with a particular address
range and event. By allowing the free association of coun-
ters, events, and address ranges, we are able to cover every
possible instrumentation combination while utilizing a rel-
atively small portion of the chip resources [11]. Once the
user has instrumented their design by communicating the
necessary information over the APB bus, the program will
be executed and the module alerted. During the program’s
operation the statistics module will increment its internal
counters that track each desired combination of events and
address ranges, and store the resulting values for later re-
trieval every time the user-timer expires.

2.2 Operating System Operation

The instrumentation necessary for our purposes must track
performance both within and outside of the application at
hand. In this section we describe extensions to the statis-
tics module that accommodate performance profiling among
processes running under an operating system. Such an envi-
ronment requires consideration of two additional factors: the
effect of the MMU and the scheduling of multiple compet-
ing processes. Fortunately, the former reduces to a simple
matter of merely changing the address ranges that the mod-
ule should watch for a given program. However, since each
program shares the same virtual memory address space, a
distinction between processes must be instituted to isolate
individual program statistics.

To accommodate this, the user can associate a particular
counter with a specific Process ID (PID). Counters with
an associated PID will only increment if the corresponding
process is in control of the CPU. If the user does not assert
an association, the given counter will increment regardless
of the current PID. A modification was made to the Linux
scheduler so that, just before the scheduler finishes switching
to a new process, it writes the PID of that process over the
APB to the module.

Further work was also necessary to create a Linux driver for
communicating to the statistics module when running the
OS. In this instance we opted to create a simple character
driver, with reads to and writes from the statistics module
transferred via calls to ioctl.

2.3 PID Logging

Due to the competitive nature of thread scheduling in the
Linux kernel, the variance in statistical results from one run
to the next is greater than one would find when running a
stand alone application. In particular, one could potentially
see large differences in execution time if an infrequent pro-
cess, such as a kernel daemon, should be scheduled in one
experimental run but not the other.

To assist in tracking down these rare events, a PID log was
added to the module. When the statistics module is started,
a 32-bit PID timer is continually incremented. Once the
scheduler writes the PID of the new running thread to the

statistics module, the value of the PID counter and the new
PID are stored into a BlockRAM FIFO. The PID timer is
then cleared, and the counting continues until the next con-
text switch by the scheduler. At the end of the run the user
may then read back the log and get a clock-cycle accurate
picture of the order and duration of the context switches
within their system.

3. DESCRIPTION OF EXPERIMENTS

An important consideration when attempting any form of
performance analysis is whether or not the experiment cor-
rectly reflects the essential (performance impacting) charac-
teristics of the target system that is being modeled. With
simulation-based performance analysis, there is an inherent
tradeoff between the complexity of the system that can be
modeled and the fidelity of the underlying model itself.

As a result, existing simulation models must make choices
as to where they position themselves in this space. For ex-
ample, very high fidelity models that approach (or achieve)
cycle-accurate fidelity are constrained as to the scope of the
model, often modeling single threads of execution running
standalone on a processor without an operating system and
certainly without additional competing applications present.
At the other end of the spectrum, models that include the
full operating system will simplify (to some degree) the un-
derlying model fidelity. Of course, there are numerous ex-
amples between these two extremes as well.

The use of reconfigurable hardware to address this perfor-
mance analysis limitation has been proposed by a number
of groups. In this section, we illustrate the capabilities of
our performance analysis system and describe its benefits.
First, we show how the complexity of the modeled system
can be increased (by including both the operating system
as well as competing applications) without diminishing the
fidelity of the model. Second, we demonstrate the ability to
reason about and quantitatively investigate rare events that
are particularly difficult to address with simulation model-
ing because of the long execution times involved.

3.1 Process-Centric Measurements

When proposing some new (or altered) microarchitectural
feature, it is standard practice to empirically evaluate the ef-
ficacy of that feature across a set of benchmark applications.
Similarly, the microarchitectural feature might not be new
at all, in an embedded system design we might simply be
interested in choosing the parameter setting that best suits
the needs of the current application. Here, we illustrate the
ability to do this type of investigation by measuring cache
hit rates as a function of cache size and associativity for a set
of benchmark applications (most of which are traditionally
embedded applications). Our particular interest here is the
degree to which the performance measures are altered by the
presence of both an operating system and other applications
present and competing for processor resources.

First we describe the benchmark set, followed by the exper-
imental procedure.

3.1.1 Benchmarks

The MiBench benchmark suite [10] consists of a set of em-
bedded system workloads which differ from standard desk-



top workloads. The applications contained in the MiBench
suite were selected to capture the diversity of workloads
in embedded systems. For the purposes of this study, we
chose workloads from the networking, telecommunications,
and automotive sections of the suite.

CommBench [25] was designed with the goal of evaluat-
ing and designing telecommunications network processors.
The benchmark consists of 8 programs, 4 of which focus on
packet header processing, and the other 4 are geared towards
data stream processing.

Following are the set of applications we have used as part of
this study:

e From MiBench:

— basicmath: This application is part of the auto-
motive applications inside MiBench. It computes
cubic functions, integer square roots and angle
conversions.

— sha: This is part of the networking applications
inside MiBench. Sha is a secure hash algorithm
which computes a 160-bit digest of inputs.

— fft: This is part of the telecommunication appli-
cations inside MiBench, and computes the fast
Fourier transform on an array of data.

e From CommBench:

— drr, frag: These are part of the header process-
ing apps inside CommBench. The drr algorithm
is used for bandwidth scheduling for large num-
bers of flows. Frag refers to the fragmentation
algorithm used in networking to split IP packets.

— reed_enc, reed_dec: These are part of the packet
processing applications in CommBench. They are
the encoder and decoder used in the Reed-Solomon
forward error correction scheme.

To the above set we added one locally developed bench-
mark, blastn, which implements the first (hashing) stage of
the popular BLAST biosequence alignment application for
nucleotide sequences [1].

3.1.2 Procedure

For each of the applications, the following sequence of ac-
tions was taken:

e The application was executed under the Linux 2.6.11 OS
on the Liquid Architecture system. The OS was in
single-user mode with no other user applications en-
abled. The benchmark was adapted to initiate the
statistics collection subsystem (this required the addi-
tion of a single call at the beginning of the code).

e A subset of the applications was executed with one or
more competing applications concurrently scheduled.
The competing applications were drawn from the same
benchmark set. Figure 3 shows the pairing of primary
and competing applications.

primary single set of 3
application | competing competing
application applications

drr frag —
frag reed_dec —
reed_dec reed_dec —
sha It —

blastn It fit, drr,

frag
1t reed_enc reed_enc, reed_dec,

1t

Figure 3: Pairings of primary and competing appli-
cations.

e A number of different configurations of the LEON pro-
cessor were generated. Data cache sizes of 2, 4, 8,
and 16 Kbytes were included for a two-way associa-
tive cache, and cache sizes of 4, 8, and 16 Kbytes were
included for a four-way associative cache.

e Sets of the applications were executed on each of the
processor configurations, measuring loads, stores, cache
hits, cache misses, memory reads, and memory writes.
It is the variations in these parameters that we wish
to examine.

Each execution was repeated five times. The mean results
are reported in the tables, and the plots include both mean
and error bars representing 95% confidence intervals.

3.2 Rare Event Investigation

While the above section emphasizes the exploration of an ar-
chitectural design space, we next concentrate on the need to
investigate rare events. This is first motivated by a specific
case study, which is followed by an illustration of the use of
the statistics module to perform this type of investigation.

3.2.1 Motivation

In this section we present a case study that motivates the
techniques we present in this paper. Real-time applications
often involve tasks that must be scheduled so as to know
they will complete within a given timeframe. The analy-
sis [16] required to prove that deadlines are met necessitates
knowing the cost (time) of the code that must be scheduled
within the tasks, as well as the tasks’ deadlines and peri-
odicity. Static scheduling analysis [15] requires a worst-case
bound on the tasks’ costs, so that scheduling can account
for worst-case behavior to ensure that deadlines are met.

Consider a given task’s worst-case and average-case execu-
tion time. For real-time scheduling, the time alloted for each
release of the task must account for the task’s worst-case be-
havior. Its actual utilization will follow the task’s average-
case cost, but statically it cannot be determined when the
task will experience average- or worst-case behavior. Thus,
the task most suitable for real-time applications has an av-
erage cost that is nearly the task’s worst-case cost.

Consider a simple hash table, into which data will be in-
serted and retrieved by a real-time application. The cost
of a “put” into the table is typically quite small. However,



most implementations test the capacity of a hash table dur-
ing a put operation; if the table should be resized, then the
table’s reorganization is accomplished during the put. Thus,
the cost of some put operations can be much worse than the
put’s average cost.

Real-time implementations of hash tables [7] amortize the
excessive cost over all put operations, so that the hash table
adapts slightly at every put and the cost of each put is the-
oretically the same. Execution of such an implementation
is shown in Figure 4 for ~5,000 put operations. The data
was collected under Solaris 8 on a Sparc 5 with the appli-
cation running at the highest priority in real-time mode; no
other task supposedly could pre-empt the application. Note
that almost every put operation is within 980 nanoseconds.
Occasionally, a put is observed to be significantly more ex-
pensive and can take as much as ~23 microseconds.
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Figure 4: Observed execution times for a real-time
HashTable put operation

Following are results obtained via classical approaches for
determining the source of the excessive execution times:

e The code can be instrumented within the put to deter-
mine which statement or segment of code is responsible
for the observed times.

Standard tools do not instrument at such a level, but
manual insertion of timers revealed that the problem
could not be attributed to any one section of the code.

e Cache and other such features can be disabled or made
useless to determine if the problem arises at a microar-
chitectural level.

With the cache effectively disabled, the execution times
were uniformly worse (as expected) but there were
still occasional put operations whose times greatly ex-
ceeded the average case.

Based on the unpredictability of the worst-case observed
execution times, it is clear that the spikes in Figure 4 are due
to activity occurring in other processes or threads that cause

the CPU to be taken from the real-time task. In theory,
such activity should not occur: the application executed
in “real-time” mode on an operating system (Solaris) that
supposedly supports such applications, and all pages were
locked into memory.

Because the events in Figure 4 occur rarely and seemingly
at random, sampling methods are likely to miss the moment
of bad behavior. Moreover, the problem exists between two
separate address spaces and between processes that may not
have permission to inspect each other. Finally, the code seg-
ment of interest is relatively brief; any method for finding
the source of the bad behavior must be sufficiently nonintru-
sive so as not contribute to or mask the actual bad behavior.
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Figure 5: Isolated execution times for HashTable put

If the sources of the unpredictable behavior are located, us-
ing the methods we propose in this paper, then the appli-
cation’s behavior per put is shown in Figure 5. Note that
the data includes data points beyond the first 5000 shown
in Figure 4. While the times still do not reflect the desired
real-time behavior, the pattern of spikes is now much clearer
and was easily resolved to a problem with the storage allo-
cator. When more storage is necessary for expansion of the
hash table, the allocator is spending nonlinear time, which
contributes to poor real-time performance. By substituting
the ACE allocator [21], we obtain the performance shown in
Figure 6.

4500

4000
3500

3000

2500
2000

1500

1000
500 JFER »e

ST I I L A

1 2454 4907 7360 9813 12266 14719 17172 19625 22078 24531 26984 29437)

0

Figure 6: Real-time performance obtained with a
better allocator



In summary, this case study illustrates the difficulties faced
in obtaining an accurate picture of an application’s perfor-
mance when that performance is adversely affected by other
processes. Standard debugging and profiling tools are un-
able to capture system-wide performance data at a resolu-
tion and on a scale that allows a developer to appreciate the
application’s behavior. Indeed, in this case, system inter-
ference with the application masked an actual problem in
the application that was easily fixed (if not easily found) to
obtain real-time performance.

3.2.2 Rare Event Experiment

To illustrate the abilities of the statistics module for inves-
tigating events of the type just described, we repeatedly
executed the blastn application 549 times and measured the
total execution times shown in Figure 7. Note that the vast
majority of the runs complete in 2.717 billion clock cycles,
several runs take an additional 3 million clock cycles, but
15 runs take an additional 5.5 million clock cycles to fin-
ish. We configured the statistics module to investigate the
properties of these incremental 5.5 million clock cycles.
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Figure 7: Total execution time for blastn applica-
tion, multiple runs.

4. RESULTS

The results are described in two sections, starting with the
discussion of the cache behavior and following with the rare
event investigation.

4.1 Cache Behavior

Figures 8 to 10 show the mean execution time, data cache
read miss rates, and data cache write miss rates for the
benchmark applications when executing code in the virtual
address range 0 to Ox7TFFFFFFF (i.e., the .text segment of
the application itself, excluding all system calls). Each of
these values is presented twice. The first is for the entire
execution (i.e., application, OS, and any competing appli-
cations) and the second is for the application alone (i.e.,
configuring the statistics module to be sensitive only to the
primary application process).

The ability to collect this data illustrates the discriminatory
features of the statistics module, both restricting the PID to
that of the application and also restricting the address space
of the data collection within the application. In addition,
the ability to cover this wide of a design space is significantly

enabled by the fact that the investigation is executing on an
FPGA rather than a simulation model. The execution time
required to collect all of the data comprised approximately
4 trillion clock cycles, requiring approximately 40 hours of
FPGA execution time. This would have been simply pro-
hibitive in a software simulation environment.
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Figure 11: Execution time (in billions of clock cy-
cles) for fft running on OS with no other compet-
ing application. Various dcache configurations are
shown.
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Figure 12: Execution time (in billions of clock cy-
cles) for total of fft plus the OS with no other com-
peting application. Various dcache configurations
are shown.

The next set of graphs illustrate some of the interesting fea-
tures of this data set. Figure 11 shows the application-only
execution time for fft for varying dcache configurations when
running on the OS without a competing application. Fig-
ure 12 shows the complete execution time (fft application
plus OS) for the same set of experiments. Note that there
is only a slight increase in execution time across the board,
implying that the OS is not significantly impacting the exe-
cution of the application (i.e., at each scheduling quantum,
the scheduler simply returns to the application). Figure 13
plots fft-only execution time when there is a competing ap-
plication (reed_enc) scheduled concurrently. Note the simi-
larity to Figure 11, indicating that the competing applica-
tion doesn’t significantly impact the execution time required
for fft alone. Contrast this with Figure 14, which plots the
total execution time for all of fft, the competing application



Application size, os+app app os+2apps app os+4apps app
assoc. (109 clks) | (10° clks) || (10° clks) | (10° clks) || (10° clks) | (107 clks)
basicmath 2K, 2-way 8.468 8.458 — — — —
4K, 2-way 8.453 8.444 — — — —
8K, 2-way 8.437 8.428 — — — —
16K, 2-way 8.432 8.424 — — — —
4K, 4-way 8.443 8.433 — — — —
8K, 4-way 8.435 8.426 — — — —
16K, 4-way 8.431 8.423 — — — —
reed_enc 2K, 2-way 2.024 2.022 — — — —
4K, 2-way 1.935 1.933 — — — —
8K, 2-way 1.924 1.922 — — — —
16K, 2-way 1.921 1.919 — — — —
4K, 4-way 1.933 1.931 — — — —
8K, 4-way 1.923 1.920 — — — —
16K, 4-way 1.921 1.919 — — — —
drr 2K, 2-way 2.706 2.703 5.243 2.704 — —
4K, 2-way 2.650 2.647 5.180 2.647 — —
8K, 2-way 2.618 2.615 5.147 2.614 — —
16K, 2-way 2.605 2.602 5.134 2.603 — —
4K, 4-way 2.646 2.644 5.176 2.644 — —
8K, 4-way 2.611 2.608 5.140 2.608 — —
16K, 4-way 2.605 2.603 5.134 2.603 — —
frag 2K, 2-way 2.541 2.538 5.081 2.537 — —
4K, 2-way 2.535 2.531 5.081 2.532 — —
8K, 2-way 2.533 2.530 5.084 2.530 — —
16K, 2-way 2.532 2.530 5.077 2.529 — —
4K, 4-way 2.533 2.531 5.091 2.530 — —
8K, 4-way 2.533 2.530 5.075 2.530 — —
16K, 4-way 2.532 2.530 5.077 2.530 — —
reed_dec 2K, 2-way 4.682 4.677 9.349 4.675 — —
4K, 2-way 4.614 4.599 9.214 4.604 — —
8K, 2-way 4.603 4.591 9.191 4.595 — —
16K, 2-way 4.581 4.576 9.153 4.577 — —
4K, 4-way 4.603 4.598 9.200 4.600 — —
8K, 4-way 4.586 4.581 9.148 4.580 — —
16K, 4-way 4.582 4.578 9.135 4.578 — —
sha 2K, 2-way 9.166 9.157 13.129 9.145 — —
4K, 2-way 9.141 9.119 13.100 9.122 — —
8K, 2-way 9.123 9.111 13.067 9.097 — —
16K, 2-way 9.115 9.106 13.044 9.080 — —
4K, 4-way 9.127 9.117 13.078 9.109 — —
8K, 4-way 9.119 9.107 13.054 9.090 — —
16K, 4-way 9.113 9.103 13.041 9.074 — —
blastn 2K, 2-way 4.497 4.492 8.474 4.493 13.715 4.491
4K, 2-way 4.488 4.484 8.453 4.484 13.633 4.482
8K, 2-way 4.482 4.477 8.443 4.478 13.590 4.477
16K, 2-way 4.468 4.463 8.427 4.464 13.562 4.464
4K, 4-way 4.480 4.476 8.442 4.476 13.618 4.475
8K, 4-way 4.474 4.469 8.433 4.469 13.573 4.469
16K, 4-way 4.470 4.465 8.428 4.465 13.562 4.465
1t 2K, 2-way 3.979 3.975 6.001 3.976 13.948 3.981
4K, 2-way 3.969 3.965 5.898 3.966 13.839 3.967
8K, 2-way 3.966 3.962 5.885 3.963 13.824 3.964
16K, 2-way 3.964 3.960 5.881 3.961 13.828 3.962
4K, 4-way 3.967 3.963 5.895 3.963 13.846 3.964
8K, 4-way 3.964 3.960 5.882 3.961 13.828 3.960
16K, 4-way 3.964 3.960 5.880 3.960 13.824 3.960

Figure 8: Execution time results for 8 benchmark applications.



Application size, os+app app os+2apps app os+4apps app
assoc. miss rate | miss rate || miss rate | miss rate || miss rate | miss rate
basicmath 2K, 2-way 0.025 0.024 — — — —
4K, 2-way 0.018 0.018 — — — —
8K, 2-way 0.011 0.011 — — — —
16K, 2-way 0.010 0.009 — — — —
4K, 4-way 0.014 0.013 — — — —
8K, 4-way 0.011 0.011 — — — —
16K, 4-way 0.009 0.009 — — — —
reed_enc 2K, 2-way 0.043 0.043 — — — —
4K, 2-way 0.011 0.011 — — — —
8K, 2-way 0.007 0.007 — — — —
16K, 2-way 0.006 0.006 — — — —
4K, 4-way 0.010 0.010 — — — —
8K, 4-way 0.006 0.006 — — — —
16K, 4-way 0.006 0.006 — — — —
drr 2K, 2-way 0.082 0.082 0.051 0.082 — —
4K, 2-way 0.044 0.044 0.029 0.044 — —
8K, 2-way 0.023 0.022 0.017 0.022 — —
16K, 2-way 0.014 0.014 0.012 0.015 — —
4K, 4-way 0.042 0.042 0.027 0.042 — —
8K, 4-way 0.018 0.018 0.014 0.018 — —
16K, 4-way 0.014 0.015 0.012 0.014 — —
frag 2K, 2-way 0.016 0.016 0.024 0.015 — —
4K, 2-way 0.012 0.011 0.013 0.011 — —
8K, 2-way 0.010 0.010 0.011 0.010 — —
16K, 2-way 0.009 0.010 0.009 0.009 — —
4K, 4-way 0.010 0.010 0.011 0.010 — —
8K, 4-way 0.010 0.010 0.009 0.010 — —
16K, 4-way 0.009 0.009 0.009 0.009 — —
reed_dec 2K, 2-way 0.029 0.029 0.029 0.029 — —
4K, 2-way 0.015 0.012 0.014 0.013 — —
8K, 2-way 0.012 0.011 0.011 0.011 — —
16K, 2-way 0.008 0.007 0.008 0.008 — —
4K, 4-way 0.012 0.012 0.012 0.013 — —
8K, 4-way 0.009 0.009 0.008 0.008 — —
16K, 4-way 0.008 0.008 0.008 0.008 — —
sha 2K, 2-way 0.007 0.007 0.008 0.006 — —
4K, 2-way 0.006 0.005 0.006 0.005 — —
8K, 2-way 0.005 0.005 0.005 0.004 — —
16K, 2-way 0.004 0.004 0.003 0.003 — —
4K, 4-way 0.005 0.005 0.005 0.005 — —
8K, 4-way 0.005 0.004 0.004 0.004 — —
16K, 4-way 0.004 0.004 0.003 0.003 — —
blastn 2K, 2-way 0.035 0.035 0.033 0.035 0.039 0.035
4K, 2-way 0.033 0.033 0.029 0.033 0.029 0.033
8K, 2-way 0.031 0.031 0.027 0.031 0.023 0.031
16K, 2-way 0.028 0.028 0.024 0.028 0.020 0.028
4K, 4-way 0.031 0.031 0.027 0.031 0.027 0.031
8K, 4-way 0.029 0.029 0.025 0.029 0.021 0.029
16K, 4-way 0.028 0.028 0.024 0.028 0.020 0.028
1t 2K, 2-way 0.023 0.023 0.037 0.024 0.030 0.028
4K, 2-way 0.015 0.015 0.011 0.016 0.013 0.017
8K, 2-way 0.012 0.013 0.008 0.013 0.010 0.014
16K, 2-way 0.011 0.011 0.007 0.011 0.008 0.012
4K, 4-way 0.013 0.013 0.011 0.013 0.012 0.014
8K, 4-way 0.011 0.011 0.007 0.011 0.009 0.011
16K, 4-way 0.010 0.010 0.007 0.010 0.008 0.011

Figure 9: Dcache read miss rate results for 8 benchmark applications.



Application size, os+app app os+2apps app os+4apps app
assoc. miss rate | miss rate || miss rate | miss rate || miss rate | miss rate
basicmath 2K, 2-way 0.008 0.007 — — — —
4K, 2-way 0.005 0.005 — — — —
8K, 2-way 0.002 0.002 — — — —
16K, 2-way 0.002 0.002 — — — —
4K, 4-way 0.004 0.003 — — — —
8K, 4-way 0.003 0.002 — — — —
16K, 4-way 0.002 0.002 — — — —
reed_enc 2K, 2-way 0.015 0.015 — — — —
4K, 2-way 0.007 0.007 — — — —
8K, 2-way 0.006 0.006 — — — —
16K, 2-way 0.006 0.005 — — — —
4K, 4-way 0.007 0.006 — — — —
8K, 4-way 0.006 0.006 — — — —
16K, 4-way 0.006 0.005 — — — —
drr 2K, 2-way 0.038 0.038 0.041 0.039 — —
4K, 2-way 0.035 0.034 0.036 0.034 — —
8K, 2-way 0.032 0.031 0.033 0.031 — —
16K, 2-way 0.028 0.027 0.031 0.028 — —
4K, 4-way 0.034 0.034 0.035 0.034 — —
8K, 4-way 0.032 0.031 0.033 0.031 — —
16K, 4-way 0.028 0.027 0.031 0.028 — —
frag 2K, 2-way 0.043 0.043 0.024 0.041 — —
4K, 2-way 0.038 0.036 0.021 0.036 — —
8K, 2-way 0.035 0.034 0.019 0.034 — —
16K, 2-way 0.033 0.033 0.018 0.033 — —
4K, 4-way 0.035 0.035 0.019 0.034 — —
8K, 4-way 0.034 0.034 0.019 0.034 — —
16K, 4-way 0.034 0.033 0.018 0.033 — —
reed_dec 2K, 2-way 0.010 0.010 0.010 0.010 — —
4K, 2-way 0.007 0.006 0.007 0.006 — —
8K, 2-way 0.006 0.006 0.006 0.006 — —
16K, 2-way 0.005 0.005 0.005 0.005 — —
4K, 4-way 0.006 0.006 0.006 0.006 — —
8K, 4-way 0.006 0.005 0.006 0.005 — —
16K, 4-way 0.006 0.005 0.006 0.005 — —
sha 2K, 2-way 0.006 0.005 0.005 0.004 — —
4K, 2-way 0.004 0.002 0.003 0.003 — —
8K, 2-way 0.002 0.001 0.002 0.001 — —
16K, 2-way 0.001 0.001 0.001 0.001 — —
4K, 4-way 0.003 0.002 0.002 0.002 — —
8K, 4-way 0.002 0.001 0.001 0.001 — —
16K, 4-way 0.001 0.001 0.001 0.001 — —
blastn 2K, 2-way 0.004 0.004 0.006 0.005 0.017 0.004
4K, 2-way 0.003 0.002 0.004 0.003 0.014 0.002
8K, 2-way 0.002 0.002 0.003 0.002 0.012 0.002
16K, 2-way 0.001 0.001 0.002 0.001 0.011 0.001
4K, 4-way 0.003 0.002 0.003 0.003 0.013 0.002
8K, 4-way 0.002 0.002 0.002 0.002 0.012 0.002
16K, 4-way 0.001 0.001 0.002 0.001 0.011 0.001
1t 2K, 2-way 0.007 0.006 0.012 0.008 0.011 0.011
4K, 2-way 0.005 0.004 0.006 0.005 0.006 0.005
8K, 2-way 0.003 0.003 0.005 0.004 0.005 0.003
16K, 2-way 0.003 0.003 0.004 0.003 0.004 0.003
4K, 4-way 0.004 0.003 0.005 0.003 0.005 0.004
8K, 4-way 0.003 0.002 0.004 0.003 0.004 0.003
16K, 4-way 0.003 0.002 0.004 0.002 0.004 0.002

Figure 10: Dcache write miss rate results for 8 benchmark applications.



(reed_enc), and the OS. Here there is clearly an increase
in execution time, as expected, due to the significant ad-
ditional computational requirements associated with both
applications vs. just one solo application.
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Figure 13: Execution time (in billions of clock cy-
cles) for fft running on OS with reed_enc as a com-
peting application. Various dcache configurations
are shown.
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Figure 14: Execution time (in billions of clock cy-
cles) for total of fft plus reed_enc plus the OS. Vari-
ous dcache configurations are shown.

With drr, the presence of an additional competing applica-
tion increases the write miss rate for the dcache for a 2 KB
and a 16 KB cache size, but does not significantly impact
the dcache write miss rate for 4 KB and 8 KB cache sizes.
This is shown in Figures 15 and 16.

With frag, the presence of the competing application doesn’t
have a significant impact on the mean dcache read miss
rates, but dramatically increases the variability across in-
dividual runs, especially near the knee of the curve for the
2-way associative cache. This is shown in Figures 17 and 18.

4.2 Rare Events
For the rare event experiments we used both the event mon-
itoring and the PID logging features of the statistics mod-
ule. For one cache configuration (4 KB, direct-mapped data
cache) we evaluated the variation in the execution time of
the blastn application.
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Figure 15: Dcache write miss rate for drr running
on OS with no other competing application.
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Figure 16: Dcache write miss rate for drr with one
competing application (frag).

Similar to the experiments described in the earlier section,
we booted the OS and launched our application to run suc-
cessively 549 times. Here, blastn is the only user application
running on the system, and we nominally expect a very low
variance in its execution time. For each of the runs we mon-
itored the time spent by the processor in 8 uniform virtual
address ranges from 0 to OxFFFFFFFF. Also, as described
in Section 2.3, we kept track of the PID changes within the
application run and the time spent between changes. At the
end of each run, we can examine the division of execution
time between all PIDs run in the system during that window
of time represented by the log.

Of the address ranges monitored, we observed execution
time attributed to only 3 of the 8 ranges. Figure 7 shows
the total execution time of the application over the 549 runs.
To investigate the 15 “rare events,” application executions
taking an additional 5.5 million clock cycles, we start by ex-
amining the activity in the 3 active address ranges. These
are plotted in Figures 19, 20, and 21. We continue the in-
vestigation by examining the PID log for several individual
runs. Figure 22 shows this information. Runs 32 and 240
are two of the long runs, and run 50 represents a typical run.

Examination of this data leads us to an important conclu-
sion, the causes of the rare events are not all the same. In
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Figure 17: Dcache read miss rate for frag running
on OS with no other competing application.
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Figure 18: Dcache read miss rate for frag with one
competing application (reed_dec).

run 32, approximately 2 million additional clock cycles can
be attributed to the application itself (a fact that is also true
of run 60), and the remaining excess clock cycles are in the
kernel (PID 0). For run 240, virtually all of the additional
clock cycles are in the kernel, not the application. Further-
more, the distribution of excess clock cycles on the two long
runs differs in address range as well. About 2 million addi-
tional clocks are present in the low address range for run 32,
with the remaining 3.5 million clock cycles in the highest
address range (which includes the idle loop). For run 240,
all of the additional clock cycles are in the high addresses.

Given the above information, it is next reasonable to pa-
rameterize the statistics module for a more focused address
range investigation, ultimately identifying the specific meth-
ods (whether in the kernel or the application) that account
for the excess execution time.

5. CONCLUSIONS

In this paper we have described an approach to empirical
performance assessment that exploits the capabilities of FP-
GAs. By including monitoring logic on-chip with the proces-
sor, it is possible to non-intrusively assess the performance
of individual applications in a time-efficient manner.
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Figure 19: Execution time spent in address range 0
to Ox1FFFFFFF for multiple runs of blastn.
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Figure 20: Execution time spent in address range
0x40000000 to Ox5FFFFFFF for multiple runs of
blastn.

We include two performance assessment examples. The first
is a wide characterization of the cache parameterization op-
tions, and an investigation of how those results vary in the
presence of multiple applications. The second is a rare
event investigation, in which mean-value statistics and/or
sampling techniques are typically ineffective. The results
clearly indicate the benefits of empirical measurement of an
FPGA implementation relative to simulation-based perfor-
mance prediction.
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