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ABSTRACT
A method for pedestrian detection from challenging real
world outdoor scenes is presented in this paper. This tech-
nique is able to extract multiple pedestrians, of varying ori-
entations and appearances, from a scene even when faced
with large and multiple occlusions. The technique is also
robust to changing background lighting conditions and ef-
fects, such as shadows. The technique applies an enhanced
method from which reliable disparity information can be
obtained even from untextured homogeneous areas within a
scene. This is used in conjunction with ground plane estima-
tion and biometric information, to obtain reliable pedestrian
regions. These regions are robust to erroneous areas of dis-
parity data and also to severe pedestrian occlusion, which
often occurs in unconstrained scenarios.

Categories and Subject Descriptors
I.4.8 [Image Processing and Computer Vision]: Scene
Analysis—depth cues, stereo, object recognition

General Terms
Design, Security, Algorithms

Keywords
Pedestrian Detection, Homography, Stereo, Disparity, Bio-
metric Data

1. INTRODUCTION
Pedestrian detection and tracking is an important task

for many computer vision based applications, such as se-
curity systems, pedestrian density and flow pattern estima-
tion, driving assistants and automated crossroads. However
there are many inherent difficulties with extracting individ-
ual pedestrians from an unconstrained scene. A few of the
complicating factors include; the large variability in a pedes-
trian’s local and global appearance [9] and orientation; oc-
clusion of a pedestrian by one or several other pedestrians,
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or objects, especially if the pedestrian is located within a
crowd; a pedestrian’s clothing may also be the same colour
as the background region, resulting in difficult segmenta-
tion. In addition, pedestrian detection in real world scenar-
ios must address rapidly changing lighting conditions due to
the sun becoming occluded and then emerging from behind
clouds; the possibility of having moving backgrounds, reflec-
tions on windows or from rain puddles on the ground, and
shadows cast by pedestrians and other foreground objects.

Various techniques for segmenting individual pedestrians
have been investigated using traditional 2D computer vi-
sion techniques. Some require a certain camera orientation
which is difficult to achieve in outdoor scenarios [13]. Other
approaches use rhythmic features, such as the periodicity of
human walk, or motion patterns unique to human beings,
such as learned gait [10]. These techniques assume a pedes-
trian is non-static, unoccluded and walking in a particular
direction relative to the camera. Shape based approaches,
such as [5], try to solve the harder problem of recognizing
pedestrians in single images, hence addressing both moving
and stationary pedestrians. This is achieved by searching
images for pedestrian shapes which are matched to a pre-
defined set of pedestrian templates. The biggest challenge
that this problem offers is to model the huge amount of
variations in the shapes, pose, size and appearance of hu-
mans and their backgrounds. In addition, unless a good
estimate of both the size and position of the pedestrian is
known then it becomes a very computationally expensive ap-
proach. To increase reliability, some systems, such as [12],
integrate multiple cues such as stereo, skin color, face and
shape pattern to detect pedestrians. However, skin color is
very sensitive to illumination changes and face detection can
identify only pedestrians facing the camera. These systems
illustrate that stereo and shape are more reliable and helpful
cues than color and face detection in general situations [6].

The results of many of these 2D based approaches are de-
preciated in unconstrained real-world environments due to
dynamic conditions such as rapidly changing lighting con-
ditions causing shadows, pedestrian occlusion and the large
variability in a pedestrian’s local and global appearance due
to pose, orientation and clothing. 3D stereo information has
been proposed as a technique to guide pedestrian detection,
as stereo and shape are more reliable and helpful cues than
color and face detection in general situations. The use of
stereo information carries with it some distinct advantages
over conventional 2D techniques [14]: (a) it allows explicit
occlusion analysis and is robust to illumination changes; (b)
the real size of an object derived from the disparity map pro-



vides a more accurate classification metric than the image
size of the object; (c) using stereo cameras both stationary
and moving objects can be detected.

In this paper we present a significant improvement of our
existing pedestrian detection technique descried in [8]. This
technique can be applied using a stereo camera system that
is located, as most surveillance cameras are, above human
height and orientated at approximately a 45 degree angle
to look down on pedestrians below, making this technique
applicable to both indoor and outdoor scenarios. The tech-
nique is based on the use of disparity information, ground
plane estimation and basic human biometric information.
We can detect pedestrians even in the presence of severe
occlusion or a lack of reliable disparity data. We also make
reliable choices in ambiguous areas since candidate pedestri-
ans are selected using the disparity of head regions. These
are usually highly textured and unoccluded, and therefore
more reliable in a disparity image than homogeneous or oc-
cluded regions. As the technique uses disparity information,
pedestrian characteristics, such as the variability in clothing
colour, for example, does not affect the approach. In addi-
tion, biometric information, based on the Golden Ratio is
used to remove regions that do not adhere to a pedestrian’s
global shape.

This paper extends the work described in [8] with two im-
portant contributions. The first is the enhancement of the
dense disparity algorithm which is the basis for obtaining
3D information from a given scene and without which the
accuracy of the pedestrian detection technique deteriorates
significantly. To obtain a disparity map of a given scene,
correspondences have to be made between pixels in one im-
age, to pixels in a second image of the same scene taken from
a different position. This, in itself, is a difficult process, es-
pecially in areas of homogeneous colour with little texture,
where the correct correspondence of a single pixel may be
ambiguous or non-existent.

The second contribution of this paper involves the clus-
tering of these disparity values into individual pedestrian
regions. This technique differs to that described in [8] in
that it incorporates a biometric pedestrian model directly
into the object clustering process. This technique is less
likely to cluster two pedestrians into a single region, can
overcome large gaps of erroneous disparity data, has lower
complexity and results in better pedestrian segmentation.

This paper is organized as follows: Section 2 gives an
overview of the system and the components of this which
are the key contributions in this paper. Section 3 presents
the details of the developed algorithmic approach. Firstly,
we describe improvements to the the dense disparity estima-
tion process; we then illustrate how individual pedestrians
are segmented and post-processed. In Section 4 we present
experimental results from a real world outdoor situation con-
taining multiple pedestrians at various depths, some with
severe occlusion, displaying a large variability in both local
and global appearance. Finally, Section 5 details conclusions
and future work.

2. SYSTEM OVERVIEW
Figure 1 illustrates an overview of the system and the key

contributions of this paper, which are highlighted in the di-
agram. The stereo camera setup involves two digital lenses
with a resolution of 640x480 pixels, and a baseline of 10cm.
As a starting point to the algorithmic process, Ground Con-

Figure 1: System Overview

trol Points (GCPs) are obtained using the technique defined
by us earlier in [7]. A new stage in the disparity estima-
tion process is introduced which is described in Section 3.1.
These GCPs are interpolated throughout the image by ap-
plying predefined knowledge of the orientation of the 3D
position of the GCPs, with respect to the 3D groundplane
within the scene. This is where we introduce an extra stage
into the disparity estimation process which improves the re-
sultant disparity map, especially in areas where there is a
lack of texture. This is a very significant improvement to
the system as the pedestrian segmentation process is highly
dependent on the quality of the input disparity map and
without this some pedestrian regions are likely to be split
into more than one region due to horizontal areas of homo-
geneous texture.

The disparity maps are then generated and post-processed
as described by us previously in [8]. The second contribution
of this paper involves clustering these disparity values into
pedestrian regions described in Section 3.2.1. This cluster-
ing process differs to that described in [8] in that it incorpo-
rates a biometric pedestrian model directly into the object
clustering process. This technique is less likely to cluster two
pedestrians into a single region, can overcome large areas of
erroneous disparity data, has less complexity and results in
better pedestrian segmentation.

Finally, in Section 3.2.2, the clustered regions are post-
processed into individual pedestrians. As shown in Figure
1, this is a 5-step process. The first four steps remove back-
ground regions, which include regions due to noise. The
fifth step improves on the post-processing steps set out in
[8] to segment pedestrians which are at the same depth as
background regions, such as walls. The fifth step applies
biometric information to segment any possible regions that
may contain two or more pedestrians that exist in individ-
ual regions. This final step mirrors a post-processing step
defined in [8].

3. ALGORITHMIC DETAILS

3.1 Enhanced Disparity Estimation
The technique used to obtain dense disparity information

in this paper is based on the work described in [7]. This de-
tails a dynamic programming based stereo correspondence
technique that has been specifically developed for pedestrian
surveillance type applications. The technique reduces arti-
facts in the calculated disparity map by integrating certain
constraints into the dense disparity estimation algorithm.
The two main constraints it invokes are the use of a dynamic
disparity limit constraint, which limits the region where a
match for a pixel in one image can occur in a second image.



This limit is dynamic and changes throughout the matching
process. The second constraint involves the use of highly
reliable matched pixels, known as Ground Control Points
(GCPs) [4], to help guide results. Figure 2(b) shows the
GCPs obtained from the input scene shown in Figure 2(a).

This technique, however, can still suffer from disparity es-
timation errors in large areas of homogeneous colour. Figure
2 illustrates an example scenario. In Figure 2(c) the dispar-
ity through the midsection of a pedestrian on the lefthand
side is incorrect. This type of artifact occurs as there is no
texture within the area of the pedestrians torso. GCPs can
therefore not be found within this region, and therefore can-
not be used to guide results. In addition, the height of the
region of homogeneous color is too great for inter scanline
consistency to be enforced by the one-pass dynamic pro-
gramming based disparity estimation technique. If the inter
scanline cost is increased, the dense disparity map will be-
come blocky and results will deteriorate.

We improve the dense disparity estimation technique by
applying predefined knowledge of the orientation of the 3D
position of the Final Ground Control Points (FGCPs), ob-
tained in [7], with respect to the 3D groundplane within
the scene. In general, most surveillance cameras are located
above human height and orientated at approximately a 45
degree angle to look down on pedestrians, and the ground-
plane, below. We obtain the 3D position of this groundplane
via a technique described in [8]. By applying the reasonable
assumption that all the objects in the scene (i.e. people) are
vertical with respect to the 3D groundplane, we can improve
the resultant disparity map by extending the FGCPs across
regions of homogeneous texture.

An initial step in this process is clustering FGCPs into dis-
crete areas of 3D space. This is a simple implementation of 8
neighbourhood connected components, where two separate
FGCPs can be clustered together if they have a Euclidean
distance in 3D space of less than a threshold, α. We set α
to 25cm. The 3D position of a FGCP point, p3d = {x, y, z},
is obtained via triangulation, as defined in [11]. This clus-
tering is a necessary step as we do not want to extend the
FGCPs from one distinct foreground object into another.

The perpendicular projection of p3d onto the groundplane
is then obtained, via the following technique. Let {A, B, C, D}
represent the equation of the groundplane in 3D, where A,
B, and C are the X, Y , and Z components of the surface
normal, and D is the distance value. The perpendicular
projection of p3d onto a groundplane point, q3d, is obtained
by finding the intersection of the line defined by the points
{x, y, z} and {x+A, y+B, z +C}, and the 3D groundplane.
q3d is defined as {x + (A ∗ t), y + (B ∗ t), z + (C ∗ t)}, where

t = −A ∗ x + B ∗ y + C ∗ z + D√
A2 + B2 + C2

(1)

If p3d is within the predefined search space defined in [8],
i.e. if the height, h, of the point above the groundplane is
heightmin < h < heightmax and z < zmax, then each pixel
in the image between p2d and q2d is traversed, where p2d and
q2d are the projections of p3d and q3d onto the image plane
respectively. For each point between p2d and q2d the dispar-
ity is interpolated and a new FGCP is created. This path
traversal is stopped at any point, (x, y), from p2d onwards if

1. (x, y) is the last edge on the path

2. (x, y) is a FGCP

3. SADc((x, y), ((x+d, y)) ≥ tMaxAccept, where (x+d, y)
is the point in image 2 where d is the interpolated dis-
parity at the point (x, y), SADc is the sum of absolute
colour differences and tMaxAccept is a threshold repre-
senting the maximum acceptable difference

4. SADg((x, y), ((x+d, y)) ≥ tMaxAccept, where SADg is
the sum of absolute gradient differences

The third and fourth tests ensure that these extended dis-
parity values do not result in poor correspondence matches.
In our experiments, heightmin and heightmax are set to 0.9
and 2.4 meters respectively, which represent the minimum
and maximum expected pedestrian height above the ground-
plane. zmax is set to 8 meters, due to the image resolution
and the degradation of accurate stereo information beyond
this distance.

If the second item in the list is the one to cause the traver-
sal of the path from p2d and q2d to stop, then before the stop
is made it is tested to see if the two regions can be merged
together. The two separate regions can be clustered together
if the two neighbouring FGCPs on the path have a distance
in 3D space of less than a Euclidean distance of α to each
other. Figure 2(d) shows the results from this stage.

The final stage in this process involves traversing the im-
age horizontally with respect to the groundplane and in-
terpolating FGCPs across areas within regions. For each
FGCP we obtain the 3D path that is horizontal with re-
spect to the groundplane, then we project this path onto
the image plane. This path is traversed from left to right
and, if possible, we interpolate FGCPs across areas where
there are no original FGCPs that lie between the bounds
of individual FGCP regions. If, along the path, two FGCPs
from the same region are separated by a gap where there
are no FGCPs, then it is tested to see if the tests defined
in items 2 and 3 of the previous list are satisfied for every
point within the gap. If this is true then the disparity is
interpolated between these two points. Figure 2(e) shows
the results from this stage. Finally, Background Ground
Control Points (BGCPs) are obtained using background dis-
parity and edge models and a dynamic programming based
disparity estimation technique is applied as described in [7].

This addition to the disparity estimation technique has
the potential to greatly improve the resultant disparity map
in certain scenarios. For example, Figure 2(f) shows the
dense disparity map obtained with this process. Notice how
the disparity flows more smoothly vertically and the con-
sistency of the disparity within homogeneous regions is im-
proved.

Unfortunately, if incorrect GCPs are obtained initially
then they too will be extended vertically and horizontally.
This would decrease the quality of the resultant disparity
map significantly under certain conditions. The probability
of this scenario occurring is reduced by altering the sec-
ond post-processing step of FGCPs defined in [7] to make
it more stringent in its choice of FGCPs. Previously, this
post-processing step assessed a value, valcol, which is asso-
ciated with each FGCP. This value represents the number
of neighbouring pixels around the FGCP pixel that agreed
with the FGCPs choice of disparity for that point. There-
fore, the higher the valcol value, the more likely that the
FGCP match was a good one. The post-processing step
looked at each FGCP’s valcol and compared it to the valcol

value of all other possible disparities that the FGCP could
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Figure 2: (a) Input Image; (b) FGCPs; (c) Original
Disparity; (d) Extend FGCPs Vertically; (e) Extend
FGCPs Horizontally; (f) Improved Disparity

be matched to. The post-processing step then removed any
FGCP that could be matched to a second possible disparity
that has valcol value equal to half its valcol value. In the
new system, this step has been altered so that any FGCP
that can be matched to any other second possible disparity,
is removed. The resultant FGCPs are thereby more likely to
be true, and due to the technique used to obtain the FGCPs,
there are still numerous FGCPs that can be used to drive
the disparity estimation technique.

3.2 Enhanced Pedestrian Detection
Before individual pedestrians are detected, the disparity

is post-processed, as described in [8]. This is a two stage
process. The first step removes disparity points that are
outside a predefined search space mentioned in Section 3.1.
The second post-processing step removes erroneous areas
from the resultant disparity map. After post-processing has
been completed, we refer to the remaining disparity points
as foreground disparities. Figure 3(1a) displays an example
of these foreground disparities. In Figure 3, the first column
represents points on the 2D image plane, the second column
displays these points in 3D from above, in a birds-eye view,
and the third column displays the same 3D points but from
a front elevation, so that the normal of the groundplane is
vertical in the resultant image. In this front elevation, the
brown line represents the detected 3D groundplane. The im-
age scene that the disparities were obtained from in Figure
3 can be seen in Figure 4(a).

In [8] a technique for detecting pedestrians was described
in which foreground disparities were clustered together into
regions. Each region was then compared to a pedestrian
model based on the golden ratio. Depending on the out-
come of this comparison, the region was either split into
multiple pedestrians, left intact or removed. This technique
is very dependent on the quality of the disparity map which

should be smooth and detailed; continuous and even surfaces
should produce a region with smooth disparity values with
their boundaries are precisely delineated, while small surface
elements should be detected as separately distinguishable re-
gions [15]. However, it is not easy for a stereo algorithm to
satisfy these two requirements at the same time. Algorithms
that can produce a smooth disparity map tend to miss the
details and those that can produce a detailed map tend to be
noisy. In our system, we wish to obtain a relatively smooth
disparity map as we are not too concerned with small subtle
differences in disparity because our ultimate application is
detecting and counting pedestrians.

The smoothing effect, in certain scenarios, can cause prob-
lems to the technique proposed in [8] as it assumes a dispar-
ity map is obtained with well-defined object boundaries. To
highlight how these conditions occur we take, for example,
the section of the 3D points in Figure 4(a), shown in Figure
4(b) observed from a birds-eye view. The majority of these
points belong to the pedestrian labeled A in Figure 4(a).
In order to segment this pedestrian, all the 3D points be-
longing to the pedestrian should be clustered together into
one distinct region, as shown in Figure 4(d). However, due
to the smoothing effect, the disparities may change gradu-
ally from 1 disparity level to another at object boundaries.
Figure 4(e) displays some of these smoothed points in red.

These smoothed points can have adverse effects on the
technique proposed in [8]. If an object of high disparity
is above a second object of low disparity in the image and
there exists a set of smoothed points from the high dispar-
ity object to the low disparity object, where by each jump
in the set of smoothed points is below the maximum dis-
tance threshold to merge the two regions, then both rules
for joining the two regions would be adhered to and the two
regions would be incorrectly joined. This is a scenario that
can occur relatively frequently when pedestrian density is
high.

The technique proposed in this paper incorporates the
biometric pedestrian model described in [8] into the object
clustering technique. An advantage of this is that the tech-
nique is less likely to cluster two pedestrians into a single
region. It is not affected by smoothed points between two
distinct objects, and so is less dependent on an ideal dis-
parity map. In addition the process is able to cope with
regions of poor disparity data better than that of [8], and
this improvement results in one less post-processing step.
The complexity of the overall clustering process is reduced
when compared to that of [8]. This is due to it not being
necessary to recalculate the average disparity for a region
within the biometric bounds as described in [8] every time
two regions are merged.

In order to cluster a single pedestrian into a distinct re-
gion, we would like to obtain the central axis of the region
and based on a predefined model, cluster all points within a
certain distance of this axis. The central axis is that which
runs through the center of a pedestrian region and is parallel
to the 3D groundplane normal. This idea can be represented
in 3D by a cylinder that is centered on the pedestrian’s cen-
tral axis and has a radius of r. Any 3D point that is inside
of this cylinder is a point that belongs to the pedestrian.
Figure 4(f) illustrates this idea, where the circle represents
the cylinder as seen from a birds-eye view. For each clus-
ter, the position of the central axis is very important. If
it does not run through the center of a cluster then it is



very likely that the object can become clustered into two
or more separate regions as the cylinder will not be cor-
rectly positioned around the object. Figure 4(e) illustrates
this potential problem. The central axis of each cylinder is
therefore constantly repositioned to the center of the cluster
of points it represents throughout the clustering process.

The value for r can be obtained using the biometric pedes-
trian model, as described in [8]. The height above the
groundplane can be used to define the proportions of a hu-
man body by applying the Golden Ratio, Φ, (Φ =

√
5 ∗

0.5 + 0.5 ' 1.618) [2]. Using Φ and a humans height var-
ious other points on the human body can be defined, such
as the width of the shoulders, dws, or the head, dwh; the
distance from the top of the head to the neck, dhn, or the
eyes, dhe. Using this process, each pedestrian will have a
different value r, which is solely based on the pedestrian’s
height, thereby eliminating the need for any other externally
defined thresholds.

3.2.1 Region Clustering
The clustering of the foreground 3D points is a two stage

process. The first stage is clustering via an 8 neighbourhood
connected components algorithm. Each region is initialised
using a single 3D point, p. The central axis for this region
is set through p, parallel to the groundplane normal defined
by the vector {A, B, C}. The height above the groundplane
of this point, ph, is stored as the regions maximum height,
regh, and the point where the central axis cuts the ground-
plane is stored as the regions average groundplane point,
reggp.

To test if another single pixel, q, is allowed to merge with
the region, reg, we first obtain the maximum height con-
tained in q and reg. This height value is used to define a
3D distance value, β, using the biometric pedestrian model.
β is used as the radius of the cylinder for the region reg. q
is allowed to merge with reg if

• in 2D, q neighbours a pixel, preg, of identical disparity
in reg

• in 3D, dist(q, preg) ≤ β

• in 3D, dist(q, regcx) ≤ β

where dist is the perpendicular Euclidean distance, and regcx

is the region’s central axis. If q is allowed to merge with reg
then ph is updated if necessary, and reggp is updated so that
the average groundplane point takes into account the point
where q is perpendicularly projected onto the groundplane.

To test if the region, reg1, is allowed to merge with a
second region, reg2, we first obtain the maximum height
contained in reg1 and reg2. This height value is used to
define β. reg1 is allowed to merge with reg2 if

• in 2D, a pixel in reg1, p1
reg, neighbours a pixel in reg2,

p2
reg

• in 3D, dist(p1
reg, p2

reg) ≤ β

• in 3D, dist(p1
reg, reg2

cx) ≤ β, or vice versa

• in 3D, dist(reg1
cx, reg2

cx) ≤ β

if reg1 is allowed to merge with reg2 then p1
h is updated

if necessary, and the reg1
gp is updated so that the average

groundplane point takes into account reg2
gp.

In the first stage of the clustering process β is initialised
using the height value obtained and the biometric distance
dhe. This initialises β as a value of roughly 0.05% of the
height of a pedestrian. This small distance is intended to
create a large number of small regions. Clusters are ini-
tialised in this way to avoid two areas of separate objects,
that are separated by a small Euclidean distance in 3D, to
become merged. By starting with a low value for β, and
gradually increasing this from dhe to dws (see below) we can
force each separate object region to grow in isolation and
avoid being merged together.

The second stage of the clustering process increases β in
3 steps, β = dwh, β = dhn and β = dws. It allows the
merging of regions using only the 3D criteria as described
in stage one. In this way two regions can be merged even if
they do not appear directly beside each other in 2D. Instead,
the perpendicular projection onto the groundplane for each
point in each region is then obtained, as described in Sec-
tion 3.1. This path is traversed, and any two regions can be
tested and possibly merged together if they both appear on
that path. The reason for implementing this stage in this
way is two-fold. Firstly, the disparity map can still obtain
erroneous areas, which if large enough can possibly cut a
pedestrian in two, as described in [8]. Using this technique
even if this occurs the clustering of the pedestrian’s points
can be achieved. Secondly, even if two pedestrians occur
at the same depth, their heads are normally separated and
create separate regions first, by then following these regions
vertically down the rest of the pedestrians body will be sep-
arated in isolation to the second pedestrian and this will
result in better segmentation.

This process has to be slightly altered, however, for ob-
jects that occur further than a particular distance, distz,
from the camera. The further away an object is from the
camera, the smaller the disparity. The disparity estimation
process obtains disparities, d, where d ∈ ZZ+. This means
that if the disparity changes within an object then the dis-
parity difference has to be ≥ 1. When the object is close
to the camera, a change in disparity of 1 between two pix-
els, p2d to q2d, will still result in a smooth surface as the
Euclidean distance between the 3D position of the points,
p3d to q3d, will be relatively small. However, the farther
away the object becomes, the larger the Euclidean distance.
For example, if the disparity values at p2d and q2d were 1
and 0 respectively, then the Euclidean distance from p3d to
q2d becomes ∞. For pedestrians who are greater than distz

from the camera, a change of 1 in disparity becomes greater
than the value of β. This means that although the disparity
change is very small, the pedestrian cannot merge properly.
To combat this the Euclidean distance resulting from a dis-
parity change of 1 at every point is tested, if the distance is
greater than β, then β is redefined as that distance, up to a
threshold of twice the original value of β.

3.2.2 Postprocessing
The final stage of our process to detect pedestrians in-

volves post-processing regions using the first 4 post-processing
steps as described in [8]. These steps remove noise and
background regions which contain no foreground objects.
However, in [8], pedestrians at relatively the same depth as
background objects, such as walls often fail to be segmented
properly, especially when two or more pedestrians become
clustered into the same region. This scenario is also possi-
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Figure 3: (Row 1) Input Disparity; (Row 2) Fore-
ground Disparity; (Row 3) Detected Pedestrians;
(Col a) 2D; (Col b) 3D Birdseye View; (Col c) 3D
Front View

ble using the technique set out in this paper. To separate
out these foreground objects we make use of the background
edge model described in [8]. For each edge in a region, it
is classified, using the background edge model, as either a
foreground or a background edge. If the total percentage
of background edges is greater than 25%, then the biggest
gap, horizontal to the groundplane, between two foreground
edges within the region is obtained and removed. If the sin-
gle region is split into two regions, then two new regions
are created. This process is continued until the total per-
centage of background edges within each region is less than
25%. This post-processing step greatly reduces the number
of pedestrians who cannot be detected as they are at the
same depth as large background objects.

The final post-processing step is uses biometric informa-
tion to segment multiple pedestrians who exist in an indi-
vidual region, as described in [8]. This occurs within regions
where β has been altered and increased.

4. EXPERIMENTAL RESULTS
Example results of this pedestrian detection process can

be seen in Figure 3 (Row 3). In these images, each differently
coloured region represents an individual pedestrian. In Fig-
ures 3 (3b) and (3c), a red line, vertical to the groundplane
is present for each region, and this represents the central
axis of each region, the red lines parallel to the groundplane
which are connected to each central axis illustrate the final
size of β for each region.

Table 1 displays an overview of results for 1000 images

(a) (b)

(c) (d) (e)

(f) (g)

Figure 4: Region Clustering; (a) Input Scene; (b)
3D Birdseye View; (c) 3D Birdseye View Section;
(d) Required Clustered Region; (e) Region Bound-
ary Smoothed Points; (f) Biometric Clustering; (g)
Incorrect Central Axis

at various pedestrian densities and compares them to the
results for the same dataset obtained using the technique
proposed in [8]. The images are taken from two separate
image sequences from a stereo camera mounted on a traffic
light pole on Grafton Street, a busy pedestrianised shopping
street in Dublin city center. The first sequence was taken at
10am on a Summer’s morning and has relatively low pedes-
trian flow density, containing, on average 1.17 pedestrians
per frame, with a maximum of 7 pedestrians in 1 given im-
age. The second sequence was taken at lunchtime two days
later, and the pedestrian flow density is increased to an av-
erage of 3.42 pedestrians per frame, with a maximum of 7
pedestrians in 1 given image frame. On both occasions the
weather is dry with constant cloud cover. These weather
conditions do minimise shadows cast and background illu-
mination changes, however tests on other conditions indicate
that our approach is able to cope well with these type of il-
lumination changes, see Figure 7 for an illustrative example.

In Table 1, the first column represents the total number
of pedestrians that appear in a given image, for example,
1 − 3 indicates that in a given image there are between 1
and 3 pedestrians present, whereas > 6 indicates that there
are more than 6 pedestrians in each image. nped represents
the total number of pedestrians that exist within these im-
ages. For computing precision and recall values, a correctly
segmented pedestrian is defined as a region that contains
at least the pedestrian’s head and no substantial area of
a second pedestrian. All other regions that are detected,
such as those due to prams, bicycles, etc are labeled as a
false positive region. nmult show the number of pedestrians
that were not segmented correctly due to the region con-
taining more than one pedestrian and nover represents the
number of pedestrians oversegmented. Total [8] displays the
results obtained from the same dataset using the system as
described in [8].

From these results it can be seen that there are large im-



nped Precision Recall nmult nover

1-3 964 94.10 96.05 8 48
4-6 1186 94.10 94.18 26 37
>6 521 93.89 91.36 15 14

Total 2671 94.06 94.31 49 99

Total [8] 2671 84.88 82.78 291 69

Table 1: Results Overview

provements in the numbers of pedestrians detected through-
out all three categories of pedestrian density flow. These re-
sults show an increase of both precision, from 84% to 94%,
and recall, from 82% to 94%. In addition, using the tech-
nique in this paper only 32%, or 49, of the pedestrians who
have not been segmented correctly can be attributed to the
pedestrian becoming merged with another pedestrian. This
is compared to 63%, or 291, in [8]. This decrease in nmult

indicates that the technique presented in this paper is able
to segment the pedestrians more robustly than the work de-
scribed in [8]. Figure 5 illustrates examples where correct
pedestrian segmentation has been achieved, where this was
not possible previously.

5. CONCLUSIONS AND FUTURE WORK
In this paper we presented refinements leading to a signif-

icant improvements in an existing pedestrian detection tech-
nique. This technique is able to extract multiple pedestrians,
of varying orientations and appearances, from challenging
real world scenes even when faced with large and multiple
occlusions. The technique is also robust to changing back-
ground lighting conditions and effects, such as shadows, see
Figure 7. The technique applies an enhanced method from
which reliable disparity information can be obtained even
from untextured homogeneous areas within a scene. This
is used in conjunction with ground plane estimation and
biometric information, to obtain reliable pedestrian regions.
These regions are robust to erroneous areas of disparity data
and severe pedestrian occlusion, which often occurs in un-
constrained scenarios.

As seen in section 4, 32% of the pedestrians who have not
been segmented correctly can be attributed to the pedestrian
becoming merged with another pedestrian which is where
our approach fails. Improvements to the biometric segmen-
tation could address this. However, it is unrealistic to define
and search for every possible orientation of a pedestrian in a
single region, with another object. The use of other biomet-
ric information, such as skin colour, could be used for aiding
this segmentation. Another possible technique could be to
use face detection algorithms, set to obtain a high value
for recall and using the 3D stereo information in coopera-
tion with a biometric model to validate correct face regions.
However a difficulty with this is that weather conditions
sometimes mean pedestrians wear hats or hooded jackets or
carry umbrellas thus concealing much of their faces, and the
positioning of the cameras at a 45 degree angle above the
pedestrian means a clear shot of the face is often not present.

The technique proposed in this paper does increase the to-
tal number of ovesegmentations on pedestrians by just over
40%. This increase occurs as the biometric model is included
in the clustering process, and therefore the clustering pro-
cess adheres to this model more rigidly than that described
in [8]. A typical case of oversegmentation of a pedestrian can

(a) (b) (c)

Figure 5: Detection Improvements (a) Input; (b)
Segmented Pedestrians using previous detection sys-
tem ; (c) Segmented Pedestrians using this system



(a) (b) (c)

Figure 6: Oversegmentation (a) Input; (b) Fore-
ground Disparity; (c) Segmented Pedestrians

be seen in Figure 6, where the pedestrian labeled A, has his
arm outstretched. This arm is at a distance greater than
the radius of the the cylinder surrounding the pedestrian
cluster, and therefore gets segmented as a separate region.
This poses a problem for the technique as increasing the
radius increases the possibility of including a second pedes-
trian within one region. This type of oversegmentation is
also possible if pedestrians are wearing large backpacks, or
are hunched over. In addition, we notice that if pedestri-
ans are in a wheelchair, the biometric model may not result
in good classification, as the model assumes a pedestrian
is standing upright, therefore wheelchair pedestrians can be
oversegmented. Future work could improve upon the clus-
tering process so that it uses the cylinder based biometric
model for initial clustering upto a certain point, but to in-
corporate a more sophisticated pedestrian model into a final
clustering step.

Depending on the scenario, the detection of objects other
than pedestrians, for example push prams, buggies or bi-
cycles, within a scene is not required. In this paper, these
objects tend not to appear as detected objects as before
individual pedestrians are detected, the disparity is post-
processed, and all points that are defined as outside a prede-
fined search space, are removed. This post-processing step
removes regions that we consider to be irrelevant to our
search for pedestrians, such as groundplane points, which
includes shadows cast by pedestrians and other objects. At
the moment the system removes all points under 0.9 me-
ters (around 3 foot) in height above the groundplane. How-
ever, applying this post-processing technique can also re-
move small children or people in wheelchairs if they are be-
low the 0.9 meter threshold. This threshold should be inves-
tigated to determine the ideal threshold for a given scenario,
to increase recall without an adverse effect on precision.

The use of temporal data should also be investigated. This
information could prove very useful as an additional cue for
pedestrian segmentation. Currently, each frame of a video
sequence is treated independently. The temporal informa-
tion that can be obtained using a video sequence could also
be employed as a feedback into the dense disparity estima-
tion technique to further improve results, possibly helping
to detect a percentage of missed pedestrians.

Finally, our work should be benchmarked against other
techniques and there are two possibilities for this. ETISEO
[1] is an evaluation campaign to evaluate vision techniques
for video surveillance applications. The video data used
is single and multi-view surveillance and the ground truth

(a) (b) (c)

Figure 7: Robustness to Shadows (a) Input; (b)
Foreground Disparity; (c) Segmented Pedestrians

is annotations and classifications of persons, vehicles and
groups. The tasks include detection and tracking of physical
objects, and event recognition. PETS (Performance Evalu-
ation of Tracking & Surveillance) [3] also evaluates object
detection and tracking for video surveillance using multi-
view/multi-camera surveillance video the task is event de-
tection for events such as luggage being left in public places.
However, while participation in such open, metrics-based
evaluation campaigns would allow us to compare our tech-
niques against those of others more directly, the tasks in
PETS and ETISEO are not pedestrian counting but person
tracking and event detection using the richness of a multi-
ple camera surveillance setup, whereas our task is pedestrian
counting using just one camera location. Nonetheless we do
plan to try our techniques on other image data and doing
so on the data used in ETISEO and/or PETS would allow
some element of comparison to take place.
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