skip to main content
article

Point-sampled cell complexes

Published: 01 July 2006 Publication History

Abstract

A piecewise smooth surface, possibly with boundaries, sharp edges, corners, or other features is defined by a set of samples. The basic idea is to model surface patches, curve segments and points explicitly, and then to glue them together based on explicit connectivity information. The geometry is defined as the set of stationary points of a projection operator, which is generalized to allow modeling curves with samples, and extended to account for the connectivity information. Additional tangent constraints can be used to model shapes with continuous tangents across edges and corners.

Supplementary Material

JPG File (p671-adamson-high.jpg)
JPG File (p671-adamson-low.jpg)
High Resolution (p671-adamson-high.mov)
Low Resolution (p671-adamson-low.mov)

References

[1]
Adams, B., Keiser, R., Pauly, M., Guibas, L. J., Gross, M., & Dutréé, P. 2005. Efficient raytracing of deforming point-sampled surfaces. Computer Graphics Forum 24, 3, 677--684.
[2]
Adamson, A., & Alexa, M. 2004. Approximating bounded, non-orientable surfaces from points. In Proceedings of Shape Modeling International 2004, IEEE Computer Society, F. Giannini & A. Pasko, Eds., 243--252.
[3]
Alexa, M., & Adamson, A. 2004. On normals and projection operators for surfaces defined by point sets. In Proceedings of Eurographics Symposium on Point-based Graphics, Eurographics, M. Alexa, M. Gross, H. Pfister, & S. Rusinkiewicz, Eds., 149--156.
[4]
Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., & Silva, C. T. 2001. Point set surfaces. In IEEE Visualization 2001, 21--28. ISBN 0-7803-7200-x.
[5]
Alexa, M., 2006. Hermite point set surfaces. manuscript.
[6]
Amenta, N., & Kil, Y. J. 2004. Defining point set surfaces. ACM Transactions on Graphics (SIGGRAPH 2004 issue) 23, 3, 264--270.
[7]
Amenta, N., Bern, M., & Kamvysselis, M. 1998. A new voronoi-based surface reconstruction algorithm. Proceedings of SIGGRAPH 98 (July), 415--422.
[8]
Biermann, H., Levin, A., & Zorin, D. 2000. Piecewise smooth subdivision surfaces with normal control. In Proceedings of ACM SIGGRAPH 2000, Computer Graphics Proceedings, Annual Conference Series, 113--120.
[9]
Biermann, H., Martin, I., Bernardini, F., & Zorin, D. 2002. Cut-and-paste editing of multiresolution surfaces. ACM Transactions on Graphics 21, 3 (July), 312--321.
[10]
Biermann, H., Martin, I. M., Zorin, D., & Bernardini, F. 2002. Sharp features on multiresolution subdivision surfaces. Graphical Models 64, 2 (Mar.), 61--77.
[11]
Bremer, P.-T., & Hart, J. C. 2005. A sampling theorem for mls surfaces. In Symposium on Point - Based Graphics 2005, 47--54.
[12]
Dey, T. K., & Kumar, P. 1999. A simple provable algorithm for curve reconstruction. In Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, ACM-SIAM, N.Y., 893--894.
[13]
Dey, T. K., & Sun, J. 2005. An adaptive mls surface for reconstruction with guarantees. In ACM Symposium on Geometry Processing, 43--52.
[14]
Dey, T. K., Goswami, S., & Sun, J., 2005. Extremal surface based projections converge and reconstruct with isotopy. manuscript.
[15]
Fleishman, S., Cohen-Or, D., & Silva, C. T. 2005. Robust moving least-squares fitting with sharp features. ACM Transactions on Graphics 24, 3 (Aug.), 544--552.
[16]
Grimm, C. M., & Hughes, J. F. 1995. Modeling surfaces of arbitrary topology using manifolds. In Proceedings of SIGGRAPH 95, Computer Graphics Proceedings, Annual Conference Series, 359--368.
[17]
Gumhold, S., Wang, X., & McLeod, R. 2001. Feature extraction from point clouds. In Proc. 10th International Meshing Roundtable, 293--305.
[18]
Hart, J. C. 1996. Sphere tracing: a geometric method for the antialiased ray tracing of implicit surfaces. The Visual Computer 12, 9, 527--545.
[19]
Hart, J. C. 1999. Using the CW-complex to represent the topological structure of implicit surfaces and solids. In Proc. Implicit Surfaces '99, 107--112.
[20]
Hatcher, A. 2002. Algebraic Topology. Cambridge University Press, Cambridge, UK.
[21]
Hilaga, M., Shinagawa, Y., Kohmura, T., & Kunii, T. L. 2001. Topology matching for fully automatic similarity estimation of 3d shapes. In Proceedings of ACM SIGGRAPH 2001, Computer Graphics Proceedings, Annual Conference Series, 203--212.
[22]
Hoppe, H., DeRose, T., Duchamp, T., Halstead, M., Jin, H., McDonald, J., Schweitzer, J., & Stuetzle, W. 1994. Piecewise smooth surface reconstruction. Proceedings of SIGGRAPH 94 (July), 295--302.
[23]
Hoppe, H. 1996. Progressive meshes. In Proceedings of SIGGRAPH 96, Computer Graphics Proceedings, Annual Conference Series, 99--108.
[24]
Kobbelt, L., & Botsch, M. 2004. A survey of point-based techniques in computer graphics. Computers & Graphics 28, 6, 801--814.
[25]
Kobbelt, L., Campagna, S., Vorsatz, J., & Seidel, H.-P. 1998. Interactive multi-resolution modeling on arbitrary meshes. In Proceedings of SIGGRAPH 98, Computer Graphics Proceedings, Annual Conference Series, 105--114.
[26]
Kolluri, R. 2005. Provably good moving least squares. In ACM-SIAM Symposium on Discrete Algorithms. to appear.
[27]
Kristjansson, D., Biermann, H., & Zorin, D. 2001. Approximate boolean operations on free-form solids. In Proceedings of ACM SIGGRAPH 2001, Computer Graphics Proceedings, Annual Conference Series, 185--194.
[28]
Levin, D. 1998. The approximation power of moving least-squares. Math. Comput. 67, 224, 1517--1531.
[29]
Levin, A. 1999. Combined subdivision schemes for the design of surfaces satisfying boundary conditions. Computer Aided Geometric Design 16, 5, 345--354.
[30]
Levin, D. 2003. Mesh-independent surface interpolation. In Geometric Modeling for Data Visualization, Springer.
[31]
Litke, N., Levin, A., & Schrööder, P. 2001. Fitting subdivision surfaces. In IEEE Visualization 2001, 319--324.
[32]
Nasri, A. H., & Sabin, M. A. 2002. Taxonomy of interpolation constraints on recursive subdivision surfaces. The Visual Computer 18, 5/6, 382--403.
[33]
Ni, X., Garland, M., & Hart, J. C. 2004. Fair morse functions for extracting the topological structure of a surface mesh. ACM Transactions on Graphics 23, 3 (Aug.), 613--622.
[34]
Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., & Seidel, H.-P. 2003. Multi-level partition of unity implicits. ACM Transactions on Graphics 22, 3 (July), 463--470.
[35]
Pauly, M., Kaiser, R., Kobbelt, L., & Gross, M. 2003. Shape modeling with point-sampled geometry. ACM Transactions on Graphics (SIGGRAPH 2003 issue) 22, 3. to appear.
[36]
Pauly, M., Keiser, R., & Gross, M. 2003. Multi-scale feature extraction on point-sampled surfaces. Computer Graphics Forum 22, 3 (Sept.), 281--290.
[37]
Rossignac, J. 1997. Structured topological complexes: a feature-based api for non-manifold topologies. In SMA '97: Proceedings of the Fourth Symposium on Solid Modeling and Applications, 1--9.
[38]
Sederberg, T. W., Zheng, J., Bakenov, A., & Nasri, A. 2003. T-splines and t-nurccs. ACM Transactions on Graphics 22, 3 (July), 477--484.
[39]
Sederberg, T. W., Cardon, D. L., Finnigan, G. T., North, N. S., Zheng, J., & Lyche, T. 2004. T-spline simplification and local refinement. ACM Transactions on Graphics 23, 3 (Aug.), 276--283.
[40]
Shen, C., O'Brien, J. F., & Shewchuk, J. R. 2004. Interpolating and approximating implicit surfaces from polygon soup. ACM Transactions on Graphics 23, 3 (Aug.), 896--904.
[41]
Shinagawa, Y., Kunii, T. L., & Kergosien, Y. L. 1991. Surface coding based on morse theory. IEEE Computer Graphics & Applications 11, 5 (Sept.), 66--78.
[42]
Wald, I., & Seidel, H.-P. 2005. Interactive ray tracing of point based models. In Proceedings of 2005 Symposium on Point Based Graphics, 9--16.
[43]
Wendland, H. 1995. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4, 4, 389--396.
[44]
Ying, L., & Zorin, D. 2001. Nonmanifold subdivision. In IEEE Visualization 2001, 325--331.
[45]
Ying, L., & Zorin, D. 2004. A simple manifold-based construction of surfaces of arbitrary smoothness. ACM Transactions on Graphics 23, 3 (Aug.), 271--275.
[46]
Zorin, D., Schröder, P., & Sweldens, W. 1997. Interactive multiresolution mesh editing. In Proceedings of SIGGRAPH 97, Computer Graphics Proceedings, Annual Conference Series, 259--268.
[47]
Zwicker, M., Pauly, M., Knoll, O., & Gross, M. 2002. Pointshop 3d: An interactive system for point-based surface editing. ACM Transactions on Graphics 21, 3 (July), 322--329.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 25, Issue 3
July 2006
742 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/1141911
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 July 2006
Published in TOG Volume 25, Issue 3

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. cell complex
  2. continuity constraints
  3. point-based modeling
  4. sharp edges and corners

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)3
  • Downloads (Last 6 weeks)1
Reflects downloads up to 08 Feb 2025

Other Metrics

Citations

Cited By

View all

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media