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ABSTRACT

Digital fingerprinting protects multimedia content from il-
legal redistribution by uniquely marking every copy of the
content distributed to each user. One major category of
collusion-resistant fingerprinting employs an explicit step of
coding. Most existing works on coded fingerprinting mainly
focus on the code-level issues and treat the embedding is-
sues through abstract assumptions without examining the
overall performance. In this paper, we jointly consider the
coding and embedding issues for coded fingerprinting sys-
tems and examine their performance in terms of collusion
resistance, detection computational complexity, and distri-
bution efficiency. Our studies show that coded fingerprinting
has efficient detection but rather low collusion resistance.
Taking advantage of joint coding and embedding, we pro-
pose two new techniques, namely, a Permuted Subsegment
Embedding technique and a Group-based Joint Coding and
Embedding (GRACE) technique, to improve the collusion
resistance of coded fingerprinting while maintaining its effi-
cient detection. Experimental results show that the number
of colluders that the proposed methods can resist is more
than three times as many as that of the conventional coded
fingerprinting approaches.

1. INTRODUCTION

Technology advancement has made multimedia content
widely available and easy to process. These benefits also
bring ease to unauthorized users who can duplicate and ma-
nipulate multimedia content, and redistribute it to a large
audience. As such, the protection of multimedia content
becomes increasingly important. Digital fingerprinting is
an emerging technology to protect multimedia content from
unauthorized dissemination, whereby each user’s copy is iden-
tified by a unique ID, known as fingerprint, embedded in
his/her copy, and the fingerprint can be extracted to help
identify culprits when a suspicious copy is found. A power-
ful, cost-effective attack from a group of users is collusion,
where users combine their copies of the same content to gen-
erate a new version. If designed improperly, the fingerprints
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can be weakened or removed by collusion attacks.

A growing number of techniques have been proposed re-
cently concerning collusion-resistant fingerprinting for mul-
timedia. Many of them fall in one of the two categories,
according to whether an explicit discrete coding step is in-
volved. In the non-coded category, a typical example is or-
thogonal fingerprinting, which assigns each user a spread
spectrum sequence as a fingerprint, and the sequence is typ-
ically orthogonal to those for other users [1][2]. Non-coded
fingerprinting is a natural extension from spread spectrum
embedding [3] and is easy to implement. A weakness of
non-coded schemes is that the required number of spread-
ing sequences and the computational complexity of detection
would increase linearly with the number of users.

Building coded fingerprints for generic data (such as exe-
cutable software programs and bitstreams) was investigated
by the coding and cryptography communities. A concept
of marking assumption was introduced by Boneh and Shaw
in [4], and a two-level code construction known as a c-secure
code was proposed to resist up to ¢ colluders with high prob-
ability. This binary code was later used to modulate a direct
spread spectrum sequence to embed fingerprint codes into
multimedia signals [5]. By explicitly exploiting the multi-
media characteristics through selecting appropriate modu-
lation and embedding schemes, a more compact code was
introduced in [6] based on combinatorial design to identify
colluders through the code bits shared by them. Many re-
cent works on coded fingerprinting [7][8] extend Boneh and
Shaw’s framework and consider the construction of codes
with traceability, such as identifiable parent property (IPP)
codes and traceability (TA) codes. Among these codes, TA
codes are stronger than other codes in terms of tracing ca-
pability and can be systematically constructed using well
known error correcting code (ECC). Thus, TA codes are
widely used in the coded fingerprinting literature. The au-
thors of [9] applied an ECC-based TA code to multimedia
fingerprinting, and extended it to deal with symbol erasures
contributed by noise or cropping in multimedia signal do-
main. In this paper, we focus on the coded fingerprinting
constructed by ECC and refer to it as the ECC-based fin-
gerprinting.

In the existing coded fingerprinting works that are origi-
nated from fingerprinting generic data, the special properties
and issues of multimedia signal have not been sufficiently
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claimed that their schemes are for multimedia, the embed-
ding issues are handled in a rather abstract level through
models based on the marking assumptions [4][9]. They typi-



cally assume that colluders can only change fingerprint sym-
bols in which they have different values, and that the collud-
ers assemble pieces of their codewords to generate a colluded
version. Although the marking assumptions may work well
with generic data, they alone are not capable of modelling
multimedia fingerprinting, where colluders can manipulate
fingerprinted multimedia in the signal domain to bring code-
domain changes beyond the marking assumptions. In the
meantime, as have been shown in [6], by jointly exploring
embedding and coding, we can substantially limit the effec-
tive ways that attackers may exploit. Thus, it is important
to examine the overall performance across coding and signal
domains, taking into account the coding, embedding, attack,
and detection issues.

In this paper, we start with introducing a general frame-
work for coded multimedia fingerprinting by integrating cod-
ing and embedding issues. Focusing on ECC code construc-
tion, we examine the overall performance of ECC-based mul-
timedia fingerprinting across both coding and embedding
layers. As will be shown in the paper, the ECC-based fin-
gerprinting has more efficient detection in terms of compu-
tational complexity than non-coded orthogonal fingerprint-
ing, but its colluder traceability is considerably lower. In or-
der to achieve a better trade-off between collusion resistance
and detection computational complexity, we jointly consider
coding and embedding during fingerprint design. We pro-
pose a Permuted Subsegment Embedding technique and a
Group-based Joint Coding and Embedding (GRACE) tech-
nique. The comparisons between the proposed approaches
and the existing ECC-based fingerprinting show that the
joint coding and embedding fingerprinting strategy substan-
tially improves the collusion resistance of ECC-based finger-
printing, while preserving its advantages of compact repre-
sentation and efficient detection.

The paper is organized as follows: Section 2 provides a
general background on the ECC-based fingerprinting. Sec-
tion 3 examines the performance of detection efficiency and
collusion traceability of the conventional ECC-based finger-
printing. Based on the results obtained from Section 3,
we propose a permuted subsegment embedding technique
in Section 4 and show its effectiveness through experiments.
We present in Section 5 the proposed GRACE technique,
along with the design and evaluation of the multimedia fin-
gerprinting system integrating the two proposed techniques.
Finally, conclusions are drawn in Section 6.

2. BACKGROUND ONECC-BASED FINGER-

PRINTING

A typical framework for coded multimedia fingerprinting
includes a code layer and a spread spectrum based embed-
ding layer [11], as shown in Fig. 1. For anti-collusion pur-
poses, we choose a code with tracing capability at the code
layer and assign each codeword to one user as the finger-
print. A ¢-TA code is a widely used code with the property
that any colluded version of the codewords by any c col-
luders has closer distance to at least one of these colluders’
codewords than to the innocents’ [12]. It can be constructed
using an established ECC over an alphabet of size g, as long
as the minimum distance D is large enough and satisfies

D>ﬂ—éﬂ. (1)

Here, L is the code length, and c is the number of colluders
that the code is intended to resist. With the minimum dis-
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Figure 1: A framework of ECC-based fingerprinting

tance achieving the Singleton bound, Reed-Solomon code is
a natural choice for constructing ¢-TA code. Reed-Solomon
codes over an alphabet of size ¢ can be used to construct
c-TA codes with the codeword number N, = ¢', where
t = [L/c*]. To embed a codeword, we first partition the
host signal into L non-overlapped segments, with one seg-
ment corresponding to one symbol. We then build ¢ mutu-
ally orthogonal spread spectrum sequences {w;,j =1, ...,q}
with identical energy ||w]||? to represent the ¢ possible sym-
bol values in the alphabet. Each user’s fingerprint sequence
is constructed by concatenating the spreading sequences cor-
responding to the symbols in his/her codeword. This finger-
print sequence is then added to the host signal with percep-
tual scaling to form the ultimate fingerprinted signal.

After the distribution of the fingerprinted copies, users
may collaborate and mount cost-effective collusion attacks.
The existing works on coded fingerprinting have primarily
targeted at code-level collusion resistance. The widely con-
sidered collusion model is the interleaving collusion, whereby
each colluder contributes a non-overlapped set of segments
(corresponding to symbols), and these segments are assem-
bled to form a colluded copy. Another major type of collu-
sion is done in the signal domain. A typical example is the
averaging collusion [2], whereby colluders average the corre-
sponding components in their copies to generate a colluded
version. The averaging collusion can be modelled as follows:

1
zZ=- s; +x+d, 2

p J; d (2)
where z is the colluded signal, x is the host signal, d is the
noise term, s; represents the fingerprint sequence for user
j, Sc is the colluder set, and c is the number of colluders.
For simplicity in analysis, we assume that the additional
noise follows an i.i.d. Gaussian distribution. In both types
of collusion, the colluders generally make contributions of
an approximately equal amount to share the risk of being
captured [13].

At the detector side, our goal is to catch one colluder with
high probability. We first determine which symbol is present
in each multimedia segment through a correlation detector
commonly used for spread spectrum embedding [2][3]. As
the host signal can be made available to detectors in many
fingerprinting applications, we register the suspicious copy
with the host signal and subtract the host signal from it to
obtain a test signal. Then for each segment of the test sig-
nal, we correlate it with each of the ¢ spreading sequences,
identify the sequence that gives the maximum correlation,
and record the corresponding symbol. The detection statis-
tic for the k' segment is defined as

Zi — xk)Tui
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where z, and xj represent the kth segment of the colluded
signal and that of the original signal, respectively. The ex-
tracted symbol of k" segment is i= argmaxi=1,..,q Ls(k,1).
With the sequence of symbols extracted from all media seg-
ments using this maximum detector, we proceed to the ECC
code layer and apply a decoding algorithm to identify the
colluder whose codeword has the most matched symbols
with the extracted symbol sequence.

Alternatively, we can employ a soft-detection strategy to
keep the correlation results of (3) for each of the ¢ possible
sequences at each segment without determining the sym-
bol values, and then collect the results from all segments to
arrive at the correlation result for each user as

L
TN(J) :ZTs(k7sym(.77k)) .7: 1727"’7Nu7 (4)
k=1

where L is the code length, N, is the total number of users,
and the function sym(j, k) is used to retrieve the symbol for
the k' segment from the j* user’s codeword. Note that
this approach has the correlation results equivalent to the
matched filter detector that correlates the entire test signal
with each user’s fingerprint sequence s; by

T
. z—x)'s; |

Tn(j) = W j=1,2,...,Ny. (5)

Here ||s|]| = ||s;|| for all j owing to equal energy construction.

The user whose fingerprint has the highest correlation value
is identified as the colluder, i.e. 3 = argmax;=1,...N, In(J).
Compared with the former 2-step hard-decision scheme, the
latter scheme takes advantage of the soft information on
the symbol level and provides a better colluder-identification
performance. In both hard and soft detectors, we always
make decisions on the colluder identification and only accuse
one user as the colluder. Therefore, the probability of false
positive will be one minus the probability of detection.

3. PERFORMANCE EVALUATION OF ECC-
BASED FINGERPRINTING

Very few of the existing works on ECC-based fingerprint-
ing [5] actually consider the embedding of the designed fin-
gerprints into a host signal and the extraction of them after
the collusion. There is little overall performance analysis for
ECC-based fingerprinting by jointly considering the coding
and embedding, and little comparison with non-coded or-
thogonal fingerprinting. In this section, we first analyze the
computational complexity of the detection process and the
efficient distribution of ECC-based fingerprinting. We then
examine its collusion resistance through measuring the prob-
ability of catching one colluder under different values of the
colluder number, and compare it with the performance of
non-coded orthogonal fingerprinting.

3.1 Efficient Detection and Distribution

For a fingerprinting system with a total of N, users and
a host signal with totally N embeddable components, the
detection of the orthogonal fingerprinting is done by corre-
lating the test signal with each user’s fingerprint sequence.
This takes N, N multiplications plus N,(N — 1) summa-
tions, or a total of O(N, N) operations. We further perform
N, — 1 comparisons to find the fingerprint sequence corre-
sponding to the highest correlation to identify one of the
colluders. Thus, the computational complexity of the whole

detection process is O(NyN) + O(N.) = O(N,N). For
ECC-based fingerprinting, since the fingerprint sequences
for each segment only have ¢ different versions (correspond-
ing to ¢ symbols), we only need ¢L(N/L) multiplications
plus ¢L(N/L — 1) summations and L(g— 1) comparisons for
demodulation, giving a total computational complexity of
O(gN). In the decoding step, we can determine the colluder
through N, L+ N, — 1 comparisons by brute force searching,
which provides an upper bound on the decoding complex-
ity. Putting the demodulation and decoding steps together,
we find the computational complexity for ECC-based finger-
printing as O(¢N)+O(N,L). In many practical applications
of robust fingerprinting, to ensure fingerprints be reliably
embedded in multimedia, we generally have N,, << N. This
suggests that the demodulation part dominates the overall
complexity, regardless of the use of efficient decoding al-
gorithms. Therefore, the overall computational complexity
becomes O(gN). Similarly, the soft detector of Eqn.(5) with
implementation of Eqn.(4) needs O(¢N) operations to cal-
culate the partial correlations and further requires O(N, L)
summations and N, — 1 comparisons to determine the col-
luder. This leads to the same computational-complexity
bound of O(¢gN) as the hard detection. Taking a Reed-
Solomon code construction with N, = ¢’ as an example,
we obtain the bound of detection computational complex-
ity for ECC-based fingerprinting as O(v/N,N), which is a
substantial improvement over orthogonal fingerprinting es-
pecially when the user number gets larger.

In some applications, such as video streaming, where a
huge amount of data has to be transmitted to a number of
users in real time, the efficient generation and distribution
of fingerprinted copies for different users is an important is-
sue. ECC-based fingerprinting provides a potential support
for the efficient distribution of the fingerprinted signal. This
is because for a total of N, users, every segment only has ¢
versions, each of which has one of the g possible symbols em-
bedded. We can pre-generate these g versions for each seg-
ment, which allows us to quickly construct the fingerprinted
copy for any given user by concatenating the correspond-
ing segments according to his/her codeword. To distribute
these fingerprinted copies, we can employ secure multicast
protocols such as that by Chu et al. [14]. Since for each seg-
ment we send ¢ copies, the bandwidth requirement on the
sender side for distributing N, copies is ¢B, where B is the
bandwidth consumption of sending only one copy. In con-
trast, for an orthogonal fingerprinting system, all users have
different versions at each segment. There is no structural
advantage we can take in constructing and distributing the
fingerprinted signals. The owner needs to generate the whole
fingerprinted signal for each user and unicast one of the N,,
versions of the signals to each user, which generally requires
a bandwidth of N, B. When the ECC-based fingerprinting
is constructed based on a Reed-Solomon code, for example,
with parameters t = 2,q = 32, N, = 1024, the communica-
tion bandwidth required by a sender employing ECC-based
fingerprinting can be one to two orders of magnitude lower
than that of orthogonal fingerprinting.

3.2 Collusion Resistance

We measure the collusion resistance of a fingerprinting
system in terms of the probability of catching one colluder,
denoted as P;. To get an analytic approximation, we first
consider the averaging collusion over an ideal fingerprinting



system whose fingerprint sequences have a constant pairwise
correlation, denoted as p. Without loss of generality, we
assume the first ¢ out of n users perform the collusion. The
vector of detection statistics Tn’s defined in (5) follows an
n-dimensional Gaussian distribution:

T = [Tn(1),...,Tn(n)]" ~ N(jmi,ms]",05%)  (6)
. 1 1
with my = [|s[|(Z + (1 = ~)p)1c, m2 = |s]lpLn—c.

Here 14 is an all-1 vector with dimension k-by-1; ¥ is an
n-by-n matrix whose diagonal elements are 1’s, and off-
diagonal elements are p’s; o2 is the variance of the noise;
m; is the mean vector for colluders; and ms is the mean
vector for innocent users. Given the same colluder number
¢ and fingerprint strength ||s||, the mean correlation val-
ues with colluders m; and with innocents my are separated
more widely for a smaller p. This suggests that in absence of
any prior knowledge on collusion patterns, a smaller p leads
to a larger colluder detection probability P;. We thus pre-
fer fingerprint sequences with a small pairwise correlation p
when designing a fingerprinting system.

The pairwise correlation of ECC-based fingerprinting can
be calculated by examining the code construction. Con-
sider an ECC-based fingerprinting constructed on a Reed-
Solomon code with alphabet size g, dimension ¢, and code
length L. Its minimum distance D equals L —t 4+ 1. We
use s; and s; to represent the fingerprint sequences for user
¢ and user j, respectively, and w;; the orthogonal sequence
representing the symbol in user ¢’s codeword at position &
with ||wik|| = ||w||. The normalized correlation between s;
and s; is

<si8; > _ Zﬁzl Wikwfk L—-D _t= 1 2 7)
Is[l? Liwlz = L L~

We can see that codes with a larger minimum distance have
a smaller upper bound on the correlation and thus are more
preferable. We can choose ¢ and L such that pg is close
to 0. By doing so, the ECC-based fingerprinting and the
orthogonal fingerprinting should have comparable resistance
against averaging collusion.

To validate the analysis, we examine through simulation
the performance of an ECC-based fingerprinting constructed
on a Reed-Solomon code with ¢ = 32, ¢t = 2, L = 30, and the
number of users N, = 1024. According to the conditions in
(1), the code level alone can only assure resisting up to five
users’ interleaving collusion; on the other hand, the correla-
tion between fingerprint sequences is only 0.03 according to
(7). For comparison purposes, we build orthogonal finger-
printing with the same N,. Both systems are applied to a
host signal that is modelled as an i.i.d. Gaussian sequence
with the length N = 3 x 10*. This simple assumption on
the host signal suits the fingerprinting applications well since
the host signal is often known to the detector, and its effect
will be mostly removed by subtracting it from the colluded
signal. The detector in (5) is employed for colluder detec-
tion. We show the simulation results of Py for both systems
under interleaving and averaging collusion in Fig. 2(a)-(d).
The Watermark-to-Noise-Ratio (WNR) ranges from -20dB
to 0dB, which includes the scenarios from severe distortion
to mild distortion.

From Fig. 2(b)(d) we can see that under averaging col-
lusion, the orthogonal fingerprinting and the ECC-based
fingerprinting constructed above have similar colluder iden-

tification performance as expected. They both can resist
at least a few dozen colluders’ averaging attack under high
WNR and about half dozen’s under very low WNR. How-
ever, under interleaving collusion, we observe from Fig. 2(a)
(c¢) a huge gap on the collusion resistance between the two
systems. For orthogonal fingerprinting, the probability of
colluder detection under interleaving collusion is compara-
ble to that under averaging collusion owing to the orthogo-
nal spreading [6]; at WNR = 0dB, the Py remains close to
1 when c is around a few dozens. On the other hand, the
detection probability of the ECC-based fingerprinting drops
sharply when more than seven colluders come to create an
interleaved copy, even when WNR is high. The traceabil-
ity under interleaving collusion becomes the weak link of
the ECC-based fingerprinting and makes it perform much
worse than the orthogonal fingerprinting in the collusion re-
sistance.

When designing a fingerprinting system, a better trade-
off between the collusion resistance and other performance
measures, such as detection computational complexity, is de-
sired. Although orthogonal fingerprinting performs well in
collusion resistance, its detection computational complex-
ity and distribution cost are expensive, as we have seen in
Section 3.1. The significant computational and distribution
advantages of ECC-based fingerprinting motivate us to find
avenues to improve its collusion resistance and to reduce
the performance gap with that of the orthogonal fingerprint-
ing while preserving its efficient detection and distribution.
In the following sections, we identify two directions for im-
proving collusion resistance and propose two new techniques
that jointly consider coding and embedding of fingerprints —
a Permuted Subsegment Embedding technique and a Group
Based Joint Coding and Embedding (GRACE) technique.

4. PERMUTED SUBSEGMENT EMBEDDING
4.1 The Proposed Embedding Method

The drastic difference in collusion resistance against aver-
aging and interleaving collusions of ECC-based fingerprint-
ing inspires us to look for an improved fingerprinting method,
for which the interleaving collusion would have a similar ef-
fect to averaging collusion. Careful examination on the two
types of collusion shows that the difference in the resistance
against them comes from how we use the embedding layer
for collusion resistance. Since each colluded segment comes
from just one user, the segment-wise interleaving collusion is
equivalent to the symbol-wise interleaving collusion on the
code level. The collusion resilience primarily relies on the
code layer and almost bypasses the embedding layer. Ow-
ing to the limited alphabet size, the chance for the colluders
to interleave their symbols and to create a colluded finger-
print close to the fingerprint of an innocent user is very high.
On the other hand, for averaging collusion, every colluder
contributes his/her share in each segment. Through a corre-
lation detector, the collection of such contributions over the
entire test signal leads to high expected correlation values
when correlating with the fingerprints from true colluders,
and to low expected correlation values when correlating with
the fingerprints from innocent users. In other words, the em-
bedding layer helps defending the collusion. This suggests
that a closer consideration of the relation between finger-
print encoding, embedding, and detection is helpful to im-
prove the collusion resistance against interleaving collusion.
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Figure 2: Collusion resistance of orthogonal fingerprinting under (a) interleaving collusion, (b) averaging
collusion; ECC-based fingerprinting under (c) interleaving collusion, (d) averaging collusion; Improved ECC-
based fingerprinting under (e) segment-wise interleaving collusion, (f) subsegment-wise interleaving.

The basic idea of our improved algorithm is to prevent
the colluders from using the whole segment that carries one
symbol as an interleaving unit and exploiting the code-level
limitation. We accomplish this by making each colluded
segment contain multiple colluders’ contributions. Build-
ing upon the existing code construction, we perform two
important additional steps that we collectively refer to as
Permuted Subsegment Embedding. Consider as before, a fin-
gerprint signal generated by concatenating the appropriate
sequences corresponding to the symbols in a user’s code-
word. We first partition each original segment of the finger-
print signal into 8 subsegments, giving a total of BL subseg-
ments. We then randomly permute these subsegments ac-
cording to a secret key to obtain the final fingerprint signal
to represent the user. In detection, the extracted fingerprint
sequence is first inversely permuted, and then the correlator
(5) is applied to the entire fingerprint signal to identify the
colluder.

With subsegment partitioning and permutation, each col-
luded segment after interleaving collusion most likely con-
tains subsegments from multiple users. To the correlation-
based detectors, this would have a similar effect to what av-
eraging collusion brings. Since averaging collusion is far less
effective from the colluders’ point of view, the permuted sub-
segment embedding can greatly improve the collusion resis-
tance of ECC-based fingerprinting under interleaving collu-
sion. Even if the colluders know the actual size of a segment
or a subsegment, the permutation unknown to them pre-
vents them from creating a colluded signal with the equiva-
lent effect of symbol interleaving in the code domain.

In the proposed scheme, the parameter (3 controls the
“approximation” level of the effect of interleaving collusion
to that of averaging collusion. Larger [ provides a finer
granularity in subsegment division and permutation. Thus

each segment may contain subsegments from more collud-
ers, leading to better approximation and better collusion
resistance. We verify this relation by building an improved
ECC-based fingerprinting system with different 8 values in
the experiment setup in Section 3.2. Our results show that
larger 3 gives higher detection probability P4, but it may in-
cur higher computational complexity in permutation. Thus
a tradeoff should be made when choosing a 3 value. For
the particular system we examined, the improvement of the
detection probability saturates when > 5. Therefore, we
choose 8 = 5 for the same system in the experiments to
obtain a good trade-off between the permutation computa-
tional complexity and the detection performance improve-
ment.

4.2 Experimental Results

We evaluate the performance of the improved system with
B = 5 under various WNRs, and show the results in Fig. 2(e)
for segment-wise interleaving collusion. We can see that the
detection probability of the proposed system is substantially
improved over the conventional ECC-based fingerprinting
system under the same interleaving collusion. The gap be-
tween the performance of the proposed system in Fig. 2(e)
and that of the orthogonal fingerprinting in Fig. 2(c) is
very small. Fig. 2(f) shows the results for subsegment-wise
interleaving collusion. We can see that the proposed system
has similar performance under two interleaving collusions
and gives a high detection probability for up to two dozen
colluders at moderate to high WNRs. Since the permuted
subsegment embedding does not affect the performance of
the system under averaging collusion, the P; under averag-
ing collusion remains unchanged.

The above results show that the proposed permuted sub-
segment embedding provides significant collusion resistance
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Figure 3: Performance illustration of three finger-
printing designs

improvement for ECC-based fingerprinting. The additional
computation cost of the detection comes from the inverse
permutation with O(BL). Since the maximum value of 3L
is N, the detection complexity of the improved ECC-based
fingerprinting remains at O(¢qN). The efficient distribution
of fingerprinted signal discussed earlier for ECC-based fin-
gerprinting is still applicable here, except that the multicast
becomes subsegment based instead of segment based. More-
over, the different user-capacity requirement can be met by
preserving the alphabet size but adjusting the dimension of
the ECC, such as selecting the ¢ of a Reed-Solomon code,
which provides another advantage over orthogonal finger-
printing. We summarize in Fig. 3 the relation of collu-
sion resistance and detection efficiency for three fingerprint-
ing systems, namely, ECC based fingerprinting, improved
ECC based fingerprinting with permuted subsegment em-
bedding, and orthogonal fingerprinting. Overall, the im-
proved ECC based fingerprinting provides a better tradeoff
among the collusion resistance, detection and distribution
efficiency over the conventional schemes. It can accommo-
date different application requirements through a flexible
fingerprinting code construction.

5. GROUPBASED JOINT CODING AND EM-
BEDDING TECHNIQUE

Our second improvement technique is rooted from the ob-
servation that a user is often not equally likely to collude
with other users in practice. For example, users in the same
geographic area or having similar social or cultural back-
ground may be more likely to collude. Taking advantage of
this observation, Wang et al. propose group oriented fin-
gerprinting by putting users into groups and adding group
information in the fingerprint to enhance the collusion re-
sistance of non-coded orthogonal fingerprinting [16]. This
prior knowledge on the collusion pattern has not been ex-
ploited for the coded fingerprinting, where new issues arise,
such as how to construct groups and how to embed group
information. In the meantime, the results in the Section
3.2 suggest that the performance of the conventional ECC-
based fingerprinting is mainly restricted by the code struc-
ture especially for high WNR where the symbol detection
from the embedding layer has high accuracy. For example,
we see from Fig. 2(c) that as WNR increases from -20dB
to 0dB, the detection probability of the ECC-based finger-
printing only increases 0.1 0.15 compared with the huge in-
crease of 0.7 0.8 in orthogonal fingerprinting. Based on this
observation, it is possible to use part of the fingerprint en-
ergy to embed group information to facilitate the colluder

detection while keeping the symbol detection accuracy high
enough. We thus propose the Group Based Joint Coding and
Embedding (GRACE) fingerprinting system. In the GRACE
fingerprinting, we construct the fingerprint sequence by su-
perposing the sequences for the group information and the
user codeword. This combined fingerprint is spread over the
host signal during embeddding. As we shall see, this joint
coding and embedding significantly improves the collusion
resistance of ECC-based fingerprinting.

5.1 Fingerprint Construction and Embedding

We partition the codewords in ECC-based fingerprinting
into groups to capture the collusion pattern, and we assign
symbols to each group to represent the group information.
We call these group symbols “group subcode”, and refer
to the symbols for distinguishing individual users as “user
subcode”. Thus each user’s fingerprint consists of two parts,
namely, user subcode and group subcode.

5.1.1 Subcode Construction

To construct the user subcode, we start with a TA code
based on ECC construction over an alphabet of size ¢, as
discussed earlier in Section 2. The code length is L, and
the minimum distance is D and typically less than L. We
then rearrange the codebook into groups so that within each
group the codewords are orthogonal to each other, i.e. users
within a group have distinct values at each symbol position.
Thus the code distance within a group equals the code length
L. We assign one codeword to each user as his/her user
subcode.

We design the group subcodes to be orthogonal to each
other to widely separate the groups and to get accurate
group detection. A simple way to construct the group sub-
code is to use distinct symbols to represent groups; thus, we
need a total of g symbols for g groups. For each group, we
construct a repetition code with length L by repeating the
symbol L times as the group subcode.

5.1.2 Fingerprint Embedding

In the proposed GRACE fingerprinting scheme, we map
group subcode and user subcode to two spreading sequences
that are orthogonal to each other. We then embed the su-
perposition of these two spreading sequences to the host
signal [15]. More specifically, we use the sequences {u;,j =
1,...,q} to represent ¢ symbol values in the alphabet of
the user subcode, where u;’s are orthogonal to each other
and have identical energy [|u||>. The g sequences {a;,i =
1,...,g} represent g group symbols. They are orthogonal to
each other and to {u;}, and have the same energy as u;’s,
ie. |la|> = |lul|>. We then construct the fingerprint se-
quence representing a symbol in the k™ segment of user j
who belongs to group ¢ as

Sijk = V1= pPUsym(j,e) + /pai, (8)

where the function sym.(7, k) is used to retrieve the k" sym-
bol from user j’s user subcode, and p is used to adjust the
relative energy between group subcode and user subcode.
This fingerprint signal is finally added to the k' segment
of the host signal. A higher p puts more energy on group
information and thus provides a more accurate detection of
group information. However, higher p also reduces the de-
tection accuracy of the user subcode and makes it harder
to narrow down to the true colluder. Therefore, there is a



trade-off between group detection and user detection when
choosing p. Since in our scheme we have L segments to
collect the group information for detection and usually col-
lusion happens among a small number of groups, we can
choose a small p to meet the detection performance require-
ment of both user information and group information.

5.2 Fingerprint Detection

At the detector side, the embedded group information can
be used to facilitate the detection by a two-level detection
scheme. First, through a correlation detector, we examine
the group information in the colluded signal to identify the
groups from which the colluders come. More specifically, we
subtract the original signal x from the colluded signal z to
get the test signal, and then extract group information from
the test signal using a non-blind correlation detector. The
detection statistic with respect to group ¢ is

. (z—x)"b;
To) =

where b; is the concatenation of the spreading sequences
representing group 4’s information from each segment. In
the above settings, b; = [a]...a]] since we embed a; in
each segment of group i. The k'™ group is considered guilty
for the test signal if Tg(k) > h, where h is the threshold.
The union of the detected groups forms a suspicious group
set. We then focus our attention on these identified suspi-
cious groups and apply ECC-based fingerprinting detection
discussed in Section 2 on the user subcode to narrow down
to the true colluders. In this paper, we will employ the soft
detector in (5) to correlate the test signal with each user’s
fingerprint sequence and to identify the one with the highest
correlation as the colluder.

5.3 Experimental Results

In this section, we demonstrate the effectiveness of the
proposed GRACE fingerprinting through experiments on
synthesis signal. To build the user subcode, we employ
a Reed-Solomon code with ¢ = 32,L = 30,N, = 1024,
D = 29, and rearrange it into 32 groups. Inside each group
there are 32 codewords mutually orthogonal to each other.
We choose p = 1/7 in (8) to generate the fingerprint sig-
nal from the user subcode and the group subcode. We use
the repetition code described in Section 5.1 as the group
subcode, and construct i.i.d. Gaussian signals with 3 x 10*
signal samples to emulate the host signal.

Interleaving collusion is applied to both conventional ECC-
based fingerprinting and GRACE fingerprinting. We exam-
ine the probability of successfully detecting one colluder (Py)
at WNR = 0dB in the following scenarios:

1) Collusion within a small number of groups: In
this case, the grouping correctly reflects the collusion pat-
tern that all the colluders come from a small number of
groups. In our simulation, all colluders are from 2 out of 32
groups, and they are randomly distributed between these
two groups. The result of P; under interleaving collusion
is shown in Fig. 4(a). We can see that for the same num-
ber of colluders, the P; of the proposed GRACE has up to
0.7 improvement over that of the conventional ECC-based
fingerprinting. From another point of view, if we require
the P, of the system to be no less than a certain value e.g.
0.98, the number of colluders the system can resist can be
improved from 6 colluders for the conventional ECC-based

i=1,2,..,9, 9)

fingerprinting to 18 colluders for the proposed GRACE fin-
gerprinting.

2) Colluders randomly distribute across all groups:
In this case, the grouping does not capture the collusion pat-
tern. The colluders randomly distribute across all groups.
The result under interleaving collusion is shown in Fig. 4(b),
where the proposed GRACE fingerprinting has up to 0.3 im-
provement on P, over the conventional ECC-based finger-
printing.

3) Colluders come from distinct groups: In this case,
the grouping knowledge is extremely inaccurate. All the col-
luders come from distinct groups (i.e. the number of groups
equals the number of colluders ¢). The result under inter-
leaving collusion is shown in Fig. 4(c), where the proposed
GRACE fingerprinting still has up to 0.2 improvement on
Py over the conventional ECC-based fingerprinting.

The above results can be explained as follows. When col-
lusion happens within a small number of groups, the group
information is well preserved so that the group detection of
GRACE has high accuracy. As the user subcodes within a
small number of groups can be well distinguished because of
higher minimum distance than that of the whole codebook,
the colluder detection is more accurate than that of the non-
group case. When colluders come from multiple groups or
even distinct groups and apply interleaving collusion, the
energy of the group subcode in GRACE fingerprinting is re-
duced after collusion but does not completely diminish be-
cause of the spreading of group information over the entire
host signal. Therefore, we still have some improvement in
detection, although it is not as much as the first case.

We also examined the cases of averaging collusion and low
WNRs. Under averaging collusion, the proposed scheme has
similar performance to the conventional ECC-based finger-
printing. At low WNRs, the comparative results are similar
to the high WNR case. Overall, the joint coding and em-
bedding as well as the grouping strategy in the proposed
GRACE system have brought consistent performance im-
provement over the conventional ECC-based fingerprinting
under various scenarios.

5.4 Combining GRACE with Permuted Sub-
segment Embedding

Earlier in Section 4, we proposed a new permuted sub-
segment embedding technique for ECC-based fingerprint-
ing, which improves the collusion resistance while retaining
the efficiency in detection and distribution. We can com-
bine the permuted subsegment embedding and the GRACE
fingerprinting to arrive at a complete design of coded fin-
gerprinting system as shown in Fig. 5. We envision that the
combined design can provide further improvement on collu-
sion resistance, and we will verify it through experiments.

In the combined design, the fingerprint sequence of group
subcode is superposed with that of the user subcode as be-
fore. We then employ the permuted subsegment embedding
to embed the superposed fingerprint sequence to the host
signal. A two-level detector is employed after the inverse
permutation at the detector side, namely, the extraction of
the group information followed by the soft detection of the
colluder using (5) within the extracted groups. We demon-
strate the performance of the combined fingerprinting sys-
tem through simulations on the same system as we have
examined in the previous sections.

As we have expected, the combination of the proposed
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Figure 4: Performance comparison of the proposed GRACE fingerprinting and the conventional ECC finger-
printing schemes in terms of probability of detection P; versus the colluder number ¢ at WNR = 0dB.

two approaches achieves better results than each individual
approach. In the cases with inaccurate grouping information
(Fig. 6(c)-(f)), the permuted subsegment embedding further
improves the detection probability Py of the fingerprinting
system by 0.4 0.5 under interleaving collusion at high WNR.
The combined design can resist up to 25 users’ collusion with
high probability of detection, which is more than three times
as many as that of the conventional ECC fingerprinting.
When the grouping is accurate (Fig. 6(a)-(b)), the grouping
strategy boosts the detection probability P; to nearly 1 for

a wide range of WNR and c.
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In order to further demonstrate the effectiveness of the
proposed joint-coding-and-embedding techniques, we apply
the combination of the two newly proposed approaches to
natural images and compare its collusion resistance perfor-
mance with that of the existing ECC-based fingerprinting.
We use the transform-domain spread spectrum scheme for
fingerprint embedding, where the original image is divided
into 8 x 8 blocks and the fingerprint signal is added into
the block DCT coefficients after perceptual weighting. The
fingerprint basis is generated according to i.i.d. Gaussian
distribution N(0,1). In this experiment, we perform non-
blind detection where the original host signal is available
and subtracted from the colluded signal.

We select 512 x 512 Lena and Baboon as original images

uonseRRa

to demonstrate the performance of the proposed fingerprint-
ing system on images with different natures. We apply two
schemes on both images and examine their performance un-
der collusion attacks: one is the conventional, non-grouped
ECC-based fingerprinting scheme, and the other is our pro-
posed GRACE fingerprinting scheme with permuted subseg-
ment embedding. With the same fingerprint coding setup as
in Section 3, the effective segment size is 2189 for Lena and
4740 for Baboon. The fingerprinted images have an average
PSNR of 41.6dB for Lena and 33.2dB for Baboon. Fig. 7
shows the original and fingerprinted images along with the
corresponding pixel-wise difference between them.

We examine the scenario of interleaving collusion by ran-
domly distributed colluders across all groups with WNR =
0dB. The results of 100 iterations on the two images are
shown in Fig. 8, where the number of colluders the system
can resist is increased from 6 for the conventional ECC-based
fingerprinting to 25 for the proposed combined scheme with
detection probability as high as 0.98. The improvement is
consistent with the earlier results on synthetic signals.

5.5 Discussions

5.5.1 Computational Complexity of GRACE Finger-

printing

Compared with the ECC-based fingerprinting, the extra
detection computation of the GRACE fingerprinting comes
from the detection of guilty groups, which needs O(gN) com-
putations for a total of g groups. Incorporating the compu-
tational complexity of the ECC-based fingerprinting derived
in Section 3.1, the overall computational complexity for the
GRACE fingerprinting is O(¢N) + O(gN). The group num-
ber g is usually much smaller than the total number of users,
and in our example, g equals q. Therefore, the overall com-
putational complexity remains at O(gN), the same order as
the ECC-based fingerprinting.

It is worth mentioning that since in most cases the colluder
detection is applied within a small amount of groups, the
suspicious user set to be examined will be much smaller
than that in non-grouped ECC-based fingerprinting. This
further speeds up the colluder detection process.

5.5.2 Multi-level GRACE Fingerprinting

The idea of the proposed GRACE fingerprinting is to use
the group information to quickly narrow down the suspicious
colluders to a small group of users. Within each group, the
minimum distance between the users’ codewords is larger
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than that of the whole user set so that the users’ codewords
are more separated and easier to detect. Following this idea,
we can extend our GRACE fingerprinting to a general multi-
level GRACE fingerprinting to capture more complicated
collusion patterns.

For example, we partition a codebook with minimum dis-
tance D° into groups. Inside each group the minimum dis-
tance D! is larger than D°. Then we repeat this partition
for each group until the minimum distance equals the code
length L or the structure of the group can capture the collu-
sion pattern. When combining the group information with
the user information, we can adopt a similar strategy used
in the tree-based scheme in [16] to assign each level an or-
thogonal sequence and embed them by proper scaling. At
the detector side, the group information at each level is used
to narrow down the suspicious colluders to a smaller group,
and the colluder can be detected inside the extracted groups
as before.

6. CONCLUSIONS

Starting from a cross-layer framework of multimedia fin-
gerprinting, this paper jointly considers the fingerprint en-
coding, embedding, and detection of ECC-based multime-
dia fingerprinting. Through examining its performance and
comparing it with orthogonal fingerprinting, we have found
the significant detection efficiency advantage of ECC-based
fingerprinting over orthogonal fingerprinting. However, it
has poor collusion resistance. In order to improve the col-
lusion resistance of the ECC-based fingerprinting while pre-
serving its efficient detection, we propose two joint-coding-
and-embedding techniques, namely, the Permuted Subseg-
ment Embedding technique and the Group-Based Joint Cod-
ing and Embedding (GRACE) technique. Our results show
the significant performance gain of each approach on the
collusion resistance over the conventional ECC-based finger-
printing. We then combine these two new schemes to further
improve the collusion resistance and obtain a complete joint-
coding-and-embedding design for coded fingerprinting. Our
combined design can resist more than three times colluders’
collusion as many as that of the conventional ECC-based
fingerprinting and retains the low detection computational
complexity. It offers a much better trade-off between the
collusion resistance and detection efficiency than the con-
ventional ECC-based fingerprinting and the orthogonal fin-
gerprinting.
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