
Speeding up the Hyperparameter Optimization of Deep

Convolutional Neural Networks

Tobias Hinz*, Nicol�as Navarro-Guerrero†, Sven Magg‡

and Stefan Wermter§

Knowledge Technology, Department of Informatics
Universit€at Hamburg

Vogt-K€olln-Str. 30, Hamburg 22527, Germany
*hinz@informatik.uni-hamburg.de

†navarro@informatik.uni-hamburg.de
‡magg@informatik.uni-hamburg.de

§wermter@informatik.uni-hamburg.de

Received 15 August 2017

Accepted 23 March 2018

Published 18 June 2018

Most learning algorithms require the practitioner to manually set the values of many hyper-
parameters before the learning process can begin. However, with modern algorithms, the
evaluation of a given hyperparameter setting can take a considerable amount of time and the
search space is often very high-dimensional. We suggest using a lower-dimensional represen-
tation of the original data to quickly identify promising areas in the hyperparameter space. This
information can then be used to initialize the optimization algorithm for the original, higher-
dimensional data. We compare this approach with the standard procedure of optimizing the
hyperparameters only on the original input.

We perform experiments with various state-of-the-art hyperparameter optimization algo-
rithms such as random search, the tree of parzen estimators (TPEs), sequential model-based
algorithm con¯guration (SMAC), and a genetic algorithm (GA). Our experiments indicate that
it is possible to speed up the optimization process by using lower-dimensional data repre-
sentations at the beginning, while increasing the dimensionality of the input later in the opti-
mization process. This is independent of the underlying optimization procedure, making the
approach promising for many existing hyperparameter optimization algorithms.

Keywords: Hyperparameter optimization; hyperparameter importance; convolutional neural
networks; genetic algorithm; Bayesian optimization.

1. Introduction

The performance of many contemporary machine learning algorithms depends cru-

cially on the speci¯c initialization of hyperparameters such as the general architec-

ture, the learning rate, regularization parameters, and many others.1,2 Indeed,

*Corresponding author.

This is an Open Access article published by World Scienti¯c Publishing Company. It is distributed under

the terms of the Creative Commons Attribution 4.0 (CC-BY) License. Further distribution of this work is

permitted, provided the original work is properly cited.

International Journal of Computational Intelligence and Applications
Vol. 17, No. 2 (2018) 1850008 (15 pages)

#.c The Author(s)

DOI: 10.1142/S1469026818500086

1850008-1

In
t. 

J.
 C

om
p.

 I
nt

el
. A

pp
l. 

20
18

.1
7.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
SP

C
 o

n 
07

/1
8/

18
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.

http://dx.doi.org/10.1142/S1469026818500086


¯nding an optimal combination of hyperparameters can often make the di®erence

between bad or average results and state-of-the-art performance.3,4

Hyperparameter optimization tries to ¯nd the optimal set of hyperparameters �ð�Þ

which minimizes the generalization error E for the given learning algorithm. This

becomes very challenging when the dimensionality of the hyperparameter space

increases. Especially, deep neural networks have tens of di®erent hyperparameters

that can be adjusted to any given input data set,3 resulting in a high-dimensional

search space. However, hyperparameter optimization problems usually have a low

e®ective dimensionality: even though there is a signi¯cant number of hyperpara-

meters, often only a subset of them has a measurable impact on the performance.5

Yet, for a given learning algorithm, di®erent subsets of hyperparameters matter for

di®erent data sets.5

We focus on the hyperparameter optimization of one speci¯c learning algorithm,

which is widely used: convolutional neural networks (CNNs). One of the biggest

challenges is that the evaluation of a given hyperparameter setting for CNNs can

take a long time. This is especially the case for deeper models with a potentially high

number of ¯lters on each layer. As a result, the inputs to CNNs are often simpli¯ed or

reduced in size, e.g., by reducing the resolution of images. However, recent studies

show that images with higher resolution are advantageous for many classi¯cation

tasks.6,7 If hyperparameter values for the same images in di®erent resolutions are

similar to each other, we can use this to ¯nd appropriate hyperparameters on images

with low resolution and then ¯ne-tune them for the same images with high resolu-

tion. This is somewhat similar to hyperparameter optimization across data sets,8,9

where the idea is that hyperparameters that are appropriate for a given data set

might be a good starting point for the optimization for similar data sets. However,

since di®erent hyperparameters are important for di®erent data sets,5 we do not use

hyperparameters from di®erent data sets, but instead identify promising areas in the

hyperparameter space on the lower-dimensional representation of the same data.

We apply several hyperparameter optimization algorithms (a genetic algorithm

(GA), random search, the tree of parzen estimators (TPEs),3 and the sequential

model-based algorithm con¯guration (SMAC)10) to optimize the hyperparameters of

CNNs for image inputs with increasing resolution. That way, we have conceptually

the same input data, but in di®erent input dimensions. In the ¯rst experiment, we

examine the dependencies between the hyperparameters found on the di®erent input

sizes to see if there are relationships present. We ¯nd that the same hyperparameters

are important for a given data set, independent of the image resolution. Further-

more, the optimal value for most hyperparameters also seems to be independent of

the image resolution. In the second experiment, we evaluate if this knowledge can be

used to speed up the hyperparameter optimization procedure by starting on

smaller images and increasing the resolution during the optimization procedure.

Figure 1 shows our approach of using increasing image sizes (IIS) to speed up the

hyperparameter optimization process.

T. Hinz et al.

1850008-2

In
t. 

J.
 C

om
p.

 I
nt

el
. A

pp
l. 

20
18

.1
7.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
SP

C
 o

n 
07

/1
8/

18
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



Our experiments suggest that by using increasing image resolutions during the

optimization process we can ¯nd high-quality hyperparameters in lesser time when

compared to the same algorithms optimizing the hyperparameters only on the

original sized input images. This method can easily be combined with existing hyper-

parameter optimization algorithms for CNNs on images to shorten the optimization

process, minimizing the amount of computational resources that need to be spent on

hyperparameter optimization. For additional information on the experiments and

more results see the supplementary material.11

2. Related Work

Traditionally, the choice of hyperparameters for a given problem is made by the

experimenter. However, this requires a signi¯cant amount of experience, intuition,

and trial and error. Additionally, results are usually not scienti¯cally reproducible

and sometimes suboptimal.12 Recent results indicate that more sophisticated and

automated approaches can ¯nd better hyperparameters ��� and thus achieve better

results ��� than humans.2,3,12–14

Two of the most widely used methods are also two of the simplest: grid search and

random search.5 In grid search, a pre-determined range of values is chosen for a given

set of hyperparameters. Then a grid is constructed through every possible combi-

nation of all hyperparameter values. Grid search is easy to implement and trivial to

parallelize. However, a big problem is that the grid grows exponentially with the

number of hyperparameters. Together with a low e®ective dimensionality, the grid is

likely to be suboptimal since it will potentially cover many spaces of low importance

while under-examining hyperparameters in areas of high importance. Random

search, on the other hand, draws a random value from a pre-de¯ned distribution for

each hyperparameter of interest. It is equally easy to implement and parallelize but

can have some advantages in higher-dimensional search spaces. Bergstra and Bengio5

Fig. 1. Overview of our algorithm using IIS: We take the original input images, resize them to a smaller

resolution and use a hyperparameter optimization algorithm, e.g., random search or TPE, to ¯nd good

hyperparameters for these images. Based on the results, we identify good hyperparameter value ranges for

all hyperparameters and use them to identify promising areas in the hyperparameter search space. We then
increase the image size and run the next iteration of hyperparameter optimization on the larger images, but

on the smaller hyperparameter search space initialized from the hyperparameter value ranges identi¯ed in

the previous iteration. This process can be repeated multiple times until we reach the desired image
resolution.

Speeding up the Hyperparameter Optimization of Deep CNNs

1850008-3

In
t. 

J.
 C

om
p.

 I
nt

el
. A

pp
l. 

20
18

.1
7.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
SP

C
 o

n 
07

/1
8/

18
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



empirically show that random search performs almost as or equally well in higher-

dimensional search spaces while being much quicker than grid search. An extension

to random search is introduced by Li et al.15 Their approach, called Hyperband,

randomly samples a set of hyperparameter con¯gurations. These con¯gurations are

then trained for a certain amount of iterations before they are ranked based on their

performance. Then, the best performing con¯gurations are chosen and are trained

for an additional number of iterations. This process is repeated until only few con-

¯gurations are remaining, which are then trained for the maximum number of

iterations to ¯nd the best con¯guration.

One of the main problems of optimizing hyperparameters for learning algorithms

is that it can take a long time to evaluate a given set of hyperparameters. As a result,

Sequential Model-Based Optimization (SMBO) algorithms have been employed in

many settings when the performance evaluation of a model is expensive.3,10,13,16–19

SMBO takes the approach of spending additional computing time on calculating the

most promising next hyperparameter instantiation, with the goal that fewer eva-

luations of the learning algorithm itself are needed. To achieve this, SMBO algo-

rithms employ a probabilistic model to model the black box function f, which in this

case is the learning algorithm. The model is built with any existing prior knowledge

about the problem and point evaluations of f.9 Bayesian optimization1,4,12,20–24 is one

of the most used methods for SMBO, and centers on building a probability model

describing the performance given a hyperparameter con¯guration. The model is then

continuously updated with new information gained by sample points providing in-

formation about the performance under a given hyperparameter con¯guration.1

Another approach is to employ evolutionary and swarm algorithms for the search

of optimal hyperparameters. Population-based optimization methods are well suited

for optimization tasks over high-dimensional variable spaces, as they can evaluate

many candidate solutions in parallel. They also o®er the possibility of combining

some sort of random search while utilizing the results of previous evaluations.

Miikkulainen et al.,25 Navarro-Guerrero et al.,26,27 Real et al.,28 and Xie et al.29 apply

evolutionary algorithms to optimize a subset of hyperparameters for neural net-

works, while Lorenzo et al.30 use a particle swarm optimization algorithm.

Recently, several approaches use reinforcement learning to ¯nd appropriate

neural network architectures. Zoph et al.31,32 train a recurrent neural network via

reinforcement learning to ¯nd neural network architectures that are likely to yield a

good performance on speci¯c tasks. Baker et al.33 construct a Q-learning agent that is

trained to ¯nd CNN architectures that perform well on multiple data sets. Zhong

et al.34 also use a Q-learning algorithm to build CNN architectures using individual

building blocks. Cai et al.35 introduce an algorithm that transforms existing network

architectures which allows to reuse previously trained networks, leading to a large

speed-up in the optimization process. However, many reinforcement learning

approaches only optimize architectural hyperparameters, while many other hyper-

parameters such as the learning rate and regularization parameters are manually

chosen in the end.

T. Hinz et al.

1850008-4

In
t. 

J.
 C

om
p.

 I
nt

el
. A

pp
l. 

20
18

.1
7.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
SP

C
 o

n 
07

/1
8/

18
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



3. Methodology

We evaluate our approach in conjunction with several popular hyperparameter

optimization algorithms. Similar to Li et al.,15 we use random search, TPE, and,

in the ¯nal experiment, SMAC to optimize the hyperparameters. Additionally, we

also evaluate it in combination with a GA, as they have also shown promising

results for the task of hyperparameter optimization.25,28 Spearmint12 was excluded

since it does not natively support conditional hyperparameters.36 All optimization

algorithms are evaluated with a total of 1500 hyperparameter settings per

optimization run.

For all experiments we run the hyperparameter optimization algorithm both on

the original images for 1500 evaluations (traditional procedure) and on rescaled

images. For the latter, we scale the images to several smaller resolutions and use IIS

during the optimization process. Each approach is repeated three times for each data

set and optimization procedure. We optimized the following hyperparameters for

CNNs: the learning rate, the number of convolutional and fully connected layers, the

number of ¯lters per convolutional layer and their size, the number of units per fully

connected layer, the batch size, and the L1 and L2 regularization parameters.11 All

other hyperparameters are ¯xed during the experiments, and similar to Lorenzo

et al.30 we stop the training process of a CNN if it does not increase its performance

on the validation set for ¯ve consecutive epochs. We use a traditional CNN archi-

tecture layout, such that each convolutional layer is followed by a max-pooling layer

which reduces the input size by a factor of four. Our last convolutional layer is

followed by at least one fully connected layer and our ¯nal layer is a Softmax layer

used for classi¯cation.

In the ¯rst experiment, we compare the importance of di®erent hyperparameters

across di®erent resolutions of the same images in combination with random search,

TPE, and the GA. To evaluate this, we need images of su±cient resolution which

allows us to scale them down to smaller resolutions in order to get a range of various

resolutions for each data set. This excludes popular data sets such as the MNIST and

CIFAR data sets, since their resolution is too small (28� 28 and 32� 32 pixels,

respectively). We therefore choose image data sets with a higher resolution (mini-

mum of 96� 96 pixels) and use them to obtain images of the same data sets in

various smaller resolutions. In the second experiment, we then test whether using IIS

during the optimization process does indeed lead to a speed-up of the optimization

process without negative e®ects on the ¯nal network quality.

The ¯rst data set is the extended Cohn–Kanade (CKþ) data set37 which consists

of images depicting facial expressions of 210 adults, and the task is to classify the

displayed emotion. All images were converted to gray scale and resized to four

di®erent image sizes of 200� 200; 128� 128; 64� 64 and 32� 32 pixels, respec-

tively. For the hyperparameter optimization process, we split the data and use 70%

for training and the remaining 30% for validation purposes. Since the classes do not

have equal amounts of images, we perform the split individually for each class, i.e., of

Speeding up the Hyperparameter Optimization of Deep CNNs

1850008-5

In
t. 

J.
 C

om
p.

 I
nt

el
. A

pp
l. 

20
18

.1
7.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
SP

C
 o

n 
07

/1
8/

18
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



each class we take 70% and add it to the training data, while the remaining 30% are

added to the validation data.

The second data set used is the STL-10 data set,2 which is made up from labeled

images acquired from ImageNet. It consists of color images with size 96� 96 pixels

and contains 10 classes. Each class has 500 images for training and 800 images for

testing purposes. Similarly to the CKþ data set, we converted the images to gray

scale and resized them to sizes of 32� 32 and 48� 48 pixels. There exist 10 pre-

de¯ned folds containing 100 images from each class for the training set. Training is

performed using each of those folds at a time, i.e., using only 1000 images. The

reported test set accuracy is then calculated as the average of the accuracy of each of

the 10 models on the test set. For the process of hyperparameter optimization, we

follow the approach by Swersky et al.4 and use the ¯rst fold as training data while

using the remaining 4000 images from the training set as our validation set.

In our ¯nal experiment, we use the 102 Flowers data set38 so as not to be biased by

the hyperparameters that were found previously. While this data set o®ers images of

very high resolution (minimum 500� 500 pixels), many practitioners rescale the

images to a smaller size39,40 to reduce the number of inputs and the amount of time

needed to train the model. Therefore, we reduce the images to 128� 128 pixels as our

\maximum" input size, i.e., the input for which the hyperparameters should be

optimized are RGB images of size 128� 128 pixels. There are 8189 images in total,

and Nilsback and Zisserman38 provide a pre-de¯ned data split, which gives

2040 images for training and validation, while the remaining 6149 images are used as

a test set. The 2040 training and validation images are further split into two equally

sized groups, each of which contains 10 images of each °ower category. We follow the

protocol by Nilsback and Zisserman38 and use the ¯rst 1020 images as a training

set to optimize the hyperparameters, evaluating their performance on the other

1020 images.

4. Importance of Hyperparameters

We will now examine the importance of the di®erent hyperparameters for di®erent

resolutions and the similarity of hyperparameter values across di®erent resolutions of

the same images. All three optimization algorithms (random search, TPE, GA)

found similar values for the di®erent hyperparameters for all resolutions. Especially,

the chosen learning rate, the batch size, the L1 and L2 regularization penalties, and

the general architecture (i.e., number of layers) are very similar for all optimization

algorithms. Minor di®erences can be found in the number of ¯lters and units per

convolutional or fully connected layer. The hyperparameters found by the GA and

TPE typically performed better than those found by random search.11

To evaluate the importance of the various hyperparameters, we use a variant of

analysis of variance (ANOVA), called functional ANOVA, to analyze the impor-

tance of di®erent subsets of hyperparameters as suggested by Hutter et al.14 We

de¯ne the importance of a subset of hyperparameters as the amount of variance it

T. Hinz et al.

1850008-6

In
t. 

J.
 C

om
p.

 I
nt

el
. A

pp
l. 

20
18

.1
7.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
SP

C
 o

n 
07

/1
8/

18
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



accounts for in the validation error. The higher the amount of variance in the vali-

dation error that is explained by a certain subset of hyperparameters, the higher its

importance. If the explained variance is high this means it is important to ¯nd

\good" values for this subset of hyperparameters, since a \bad" value will likely lead

to suboptimal results. Conversely, hyperparameters that have little impact on the

variance can be neglected in the optimization process, since they have little impact

on the ¯nal performance.

Figure 2 shows an overview of the ��� on average ��� most important hyper-

parameter subsets of the CKþ data set and their impact on the validation error. We

can observe that the importance of hyperparameter subsets stays somewhat constant

across the di®erent input sizes. The only subsets that deviate strongly from this are

the subsets that include the number of convolutional and fully connected layers.

However, this is to be expected as the number of convolutional layers is directly

dependent on the input dimension (since we insert a max-pooling layer after each

convolutional layer) and the number of hidden layers might be dependent on the

number of convolutional layers. Other hyperparameters, such as the batch size and

regularization parameters, are similarly important for all input sizes. Indeed, the top

¯ve and top 10 of the most important hyperparameter subsets are virtually identical

for all input sizes.

Figure 3 shows the impact of the learning rate on its own on the average vali-

dation error of the CKþ data set. We can see that the learning rate's impact is very

Fig. 2. Explained variance of the validation error in percent on the CKþ data set. Depicted are the e®ects
of the 18 most important hyperparameter subsets, aggregated from the data of all runs of the GA, random

search, and TPE.

Speeding up the Hyperparameter Optimization of Deep CNNs

1850008-7

In
t. 

J.
 C

om
p.

 I
nt

el
. A

pp
l. 

20
18

.1
7.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
SP

C
 o

n 
07

/1
8/

18
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



similar across all input settings. Figure 4 depicts the impact of the combination of the

learning rate and the number of hidden layers on the validation error of the CKþ
data set. Again, this is very similar across all input sizes, identifying a learning rate

between 0.1 and 0.01 together with one hidden layer as good parameters. Both

Figs. 3 and 4 further indicate that not only the importance of hyperparameters is the

same for di®erent input sizes, but even the general \best" value for a given

Fig. 3. Relationship between the learning rate and the validation error (CKþ data set), aggregating the
data of all three algorithms on the respective image resolutions.

Fig. 4. Relationship between the learning rate, the number of hidden layers, and their impact on the

validation error for the CKþ data set, aggregating the data of all three algorithms on the respective image

sizes.

T. Hinz et al.

1850008-8

In
t. 

J.
 C

om
p.

 I
nt

el
. A

pp
l. 

20
18

.1
7.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
SP

C
 o

n 
07

/1
8/

18
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



hyperparameter seems to be closely correlated. These results are closely re°ected on

the STL-10 data set, see the supplementary material.11

The experiment also showed that the di®erent hyperparameters' importance is

approximately consistent across the various input sizes. The only exception to that

are hyperparameters that include the number of layers. Due to the max-pooling

layers, CNNs with smaller inputs cannot have as many convolutional layers as CNNs

with bigger inputs. Additionally, for instance, for an input size of 32� 32 pixels, a

CNN might still perform reasonably well with only one convolutional layer, even if

two layers lead to an improvement of performance. For an input size of 96� 96

pixels, or even 200� 200 pixels, on the other hand, a CNN with only one convolu-

tional layer does not perform well at all. This is an inherent problem of the opti-

mization process across di®erent input dimensions and most likely means that the

optimal number of convolutional layers has to be found for each speci¯c input size.

A good starting point for the number of ¯lters per convolutional layer can be inferred

from smaller input dimensions, at least for convolutional layers that are present in

CNNs for smaller inputs.

For a more unbiased evaluation of the hyperparameters, we also test some

hyperparameter settings on held-out test sets. For these tests, we choose the

hyperparameter settings of each algorithm that performed best on the respective

validation set. We adhere to the common guidelines about the test sets as detailed by

Khorrami et al.41 for the CKþ data set and Coates et al.2 for the STL-10 data set.

Both the GA and the TPE algorithm signi¯cantly outperform random search11

when no additional regularization methods are applied. All in all, the results are

similar to the results obtained on the validation sets, which indicates that the

hyperparameters are not ¯t speci¯cally to the validation set, but rather are appro-

priate hyperparameters for this kind of input. We also ¯nd that the accuracy usually

increases with a higher image resolution, highlighting the importance of a high

enough resolution for optimal performance.6,7

5. Using IIS for Hyperparameter Optimization

The previous experiment suggests that hyperparameters are approximately of the

same importance, independent of the image resolution, and that good hyperpara-

meter values are similar across image resolutions. The traditional approach is to take

the data as is and then run an algorithm to optimize the hyperparameters for the

given model. Our approach, in contrast, does also make use of the same images, but

in smaller resolutions. Due to this, we rescale the images of the 102 Flowers data set

to sizes of 64� 64 and 32� 32 pixels.

Our pipeline for the optimization process is then as illustrated in Sec. 1, Fig. 1: we

use our algorithms to optimize the hyperparameters of a CNN that receive as input

images of size 32� 32 pixels for 750 evaluations. The hyperparameters obtained

through this are then used to initialize the algorithms for the optimization process on

the images of size 64� 64 pixels for another 500 evaluations. Finally, these

Speeding up the Hyperparameter Optimization of Deep CNNs

1850008-9

In
t. 

J.
 C

om
p.

 I
nt

el
. A

pp
l. 

20
18

.1
7.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
SP

C
 o

n 
07

/1
8/

18
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



hyperparameters are used to initialize the algorithms to optimize the hyperpara-

meters for images of size 128� 128 pixels for the ¯nal 250 evaluations. With this

strategy, we expect to need less time to arrive at hyperparameters that are compa-

rable in performance to those obtained by the same algorithms run on the images of

resolution 128� 128 pixels for all 1500 evaluations. In addition to the previously

used hyperparameter optimization algorithms, we now also use the SMAC10 as an

additional state-of-the-art optimization procedure for further validation.

We will now have a look at how the di®erent optimization algorithms perform

during the two strategies. For more details on the initialization of the algorithms and

the obtained hyperparameters and results on the test, set see the supplementary

material.11 Figure 5 shows how the best validation error developed during the dif-

ferent optimization processes, averaged over three runs of each optimization process

for each strategy. The left column shows the development of the validation error per

50 evaluations for all algorithms, while the right column depicts the same informa-

tion in relation to the elapsed time. Table 1 shows the exact amount of time in

minutes it took to perform each of the optimization procedures, averaged over three

runs for each method.

Fig. 5. Best average validation error for all algorithms on the 102 Flowers data set. The progress is

visualized over the number of evaluations (left column) and the amount of elapsed time in minutes (right

column).

T. Hinz et al.

1850008-10

In
t. 

J.
 C

om
p.

 I
nt

el
. A

pp
l. 

20
18

.1
7.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
SP

C
 o

n 
07

/1
8/

18
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



For the standard procedure, when the optimization is only performed on the full-

sized images, we see that, except for random search, the algorithms ¯nd their best

solution after 500–750 evaluations. For optimization over IIS, we see that the

algorithms improve their solution continuously until the ¯nal evaluation. The

solution usually improves between the 750th and 800th evaluations, when the image

size is increase to 64� 64 pixels. However, when the image size is increased to

128� 128 pixels (evaluation 1250), we often observe a drop in performance and it

takes a few evaluations to improve upon the previous best performance.

When we look at the development of the validation error over time (right col-

umn of Fig. 5), we see that the procedure with IIS needs between 9% and 42% less

time than the standard approach. The di®erence in time is especially big for the

TPE and SMAC algorithms (see Table 1), while it is less pronounced for the GA

and random search. For both the GA and random search, the ¯nal solutions are

also signi¯cantly better when they are found while using increasing image sizes as

opposed to when the optimization process is performed only on the originally sized

images.

The increase in performance with random search and the GA is likely due to the

fact that we reduce the size of the hyperparameter search space to \good" value

ranges for the di®erent hyperparameters whenever we increase the image size. The

same e®ect could probably be achieved by decreasing the search space of the

hyperparameters during the traditional optimization process after a given number of

evaluations. However, as we showed in Sec. 4, it is possible to ¯nd good hyper-

parameter value ranges with smaller-scaled images, leading to a speed-up in the

training of the CNNs. Summing up, the approach using IIS never leads to worse

performance, but leads to a signi¯cant reduction of the time needed for the opti-

mization process (especially for TPE and SMAC), and sometimes also leads to sig-

ni¯cantly better results (especially for the GA and random search).

In our second experiment, we could illustrate the power of using smaller input

sizes to ¯nd promising areas in the hyperparameter space, before optimizing the

hyperparameters on the ¯nal input size. With this approach, multiple optimization

algorithms were able to ¯nd comparative results in less time than when they were run

on the full-sized images. This is a very promising result since this approach is

independent of the underlying optimization algorithm. It can instead be applied to

any optimization methodology for which it is possible to reduce the dimensionality of

the data in a meaningful way.

Table 1. Amount of time in minutes it took for each of the optimization methods shown in

Fig. 5, and the time reduction of using IIS with respect to the standard approach.

Random Search TPE SMAC Genetic Algorithm

Standard 2974� 77 3822� 294 3197� 885 4043� 199

Increasing image size 2396� 335 2230� 46 2069� 103 3662� 386

Time reduction 19% 42% 35% 9%

Speeding up the Hyperparameter Optimization of Deep CNNs

1850008-11

In
t. 

J.
 C

om
p.

 I
nt

el
. A

pp
l. 

20
18

.1
7.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
SP

C
 o

n 
07

/1
8/

18
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



To make sure that the technique of using IIS during the optimization process does

not negatively a®ect the ¯nal CNN performance, we also compare the obtained

hyperparameters on the 102 Flowers test set of 6149 images. The test set is not

balanced, with di®erent classes containing between 20 and more than 200 examples.

Following the standard approach,38 we report the average classi¯cation error aver-

aged over all classes. All settings perform similarly well,11 i.e., around 46% accuracy

on the test set, when no additional regularization methods are applied, with random

search being 1% less accurate than the more sophisticated algorithms. This indicates

further that the success of using IIS during the optimization process is independent

of the underlying optimization algorithm since the ¯nal performance of all

hyperparameter settings is very similar.

6. Conclusion

In this work, we presented an approach to reduce the time needed for hyperpara-

meter optimization of deep CNNs. One of the main challenges of optimizing

hyperparameters in CNNs is that the training process can take a very long time,

which makes it expensive to evaluate many di®erent hyperparameter combinations.

To deal with this, we propose to ¯rst ¯nd promising hyperparameter values on a

lower-dimensional representation of the original data. To test this, we rescale images

to a lower resolution and optimize the hyperparameters of CNNs on those smaller

images. The results of this are then used to initialize the hyperparameter space of the

optimization process on the original-sized images. In theory, this process can be

repeated several times, i.e., the hyperparameters can be optimized on multiple

smaller representations that increase in size until we reach the original data size. Our

¯rst experiment in Sec. 4 shows that hyperparameter importance and hyperpara-

meter values are mostly consistent across di®erent resolutions of the same images.

Our second experiment in Sec. 5 uses this knowledge and shows that using IIS can

speed up the optimization process signi¯cantly. Furthermore, identifying important

hyperparameters and good value ranges early on in the optimization process can also

help to achieve a higher accuracy on the original images after the optimization

process is completed.

We investigate this approach on a more theoretical level in the ¯rst experiment on

two di®erent data sets. Here, we optimize the hyperparameters independently on the

same images but with di®erent resolutions. We observe that a signi¯cant number of

hyperparameters overlap in their values, independent of the image resolution.

Additionally, we ¯nd that the importance of di®erent hyperparameter subsets in

relation to each other stays roughly the same across di®erent resolutions. This can be

used to quickly identify important hyperparameters on lower-dimensional data.

In the second experiment, we test this on a third data set and show that an

approach using this methodology ¯nds good hyperparameters faster than the tra-

ditional approach of optimizing the hyperparameters only on the original image size.

This concept is generally applicable to many di®erent hyperparameter optimization

T. Hinz et al.

1850008-12

In
t. 

J.
 C

om
p.

 I
nt

el
. A

pp
l. 

20
18

.1
7.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
SP

C
 o

n 
07

/1
8/

18
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



methodologies and is not restricted to a speci¯c methodology. We applied the pro-

cedure on four hyperparameter optimization algorithms (random search, TPE,3

SMAC,10 and a GA11) and found it to work well on each one of them. Furthermore,

this technique is easily extensible with other methods for speeding up the hyper-

parameter optimization process, such as parallelization, extrapolating learning

curves,42 or algorithms developed for speeding up the hyperparameter optimization

procedure such as Fabolas24 and Hyperband.15 Moreover, this might not only be

applicable to images, but to any input whose dimensions can be reduced in a

meaningful way, e.g., through common dimensionality reduction algorithms like

PCA. However, while we show that it works well on CNNs in conjunction with image

classi¯cation, future work needs to test if this is also the case for other tasks and other

ways of dimensionality reduction.

Acknowledgments

The authors gratefully acknowledge partial support from the German Research

Foundation DFG under Project CML (TRR 169) and the European Union under

Project SECURE (No. 642667).

References

1. J. Bergstra, D. Yamins and D. Cox, Making a science of model search: Hyperparameter
optimization in hundreds of dimensions for vision architectures, Int. Conf. Machine
Learning, Atlanta, USA, 2013, pp. 115–123.

2. A. Coates, A. Y. Ng and H. Lee, An analysis of single-layer networks in unsupervised
feature learning, Int. Conf. Arti¯cial Intelligence and Statistics, Pt. Lauderdale, Florida,
USA, 2011, pp. 215–223.

3. J. Bergstra, R. Bardenet, Y. Bengio and B. K�egl, Algorithms for hyper-parameter opti-
mization, Adv. Neural Inf. Process. Syst. 24 (2011), 2546–2554.

4. K. Swersky, J. Snoek and R. P. Adams, Multi-task bayesian optimization, Adv. Neural
Inf. Process. Syst. 26 (2013) 2004–2012.

5. J. Bergstra and Y. Bengio, Random search for hyper-parameter optimization, J. Mach.
Learn. Res. 13(1) (2012) 281–305.

6. M. Chevalier, N. Thome, M. Cord, J. Fournier, G. Hena® and E. Dusch, LR-CNN for ¯ne-
grained classi¯cation with varying resolution, Int. Conf. Image Processing, Qu�ebec City,
Canada, 2015, pp. 3101–3105.

7. L. Zheng, Y. Zhao, S. Wang, J. Wang and Q. Tian, Good practice in CNN feature
transfer, arXiv:1604.00133.

8. M. Reif, F. Shafait and A. Dengel, Meta-learning for evolutionary parameter optimization
of classi¯ers, Mach. Learn. 87(3) (2012) 357–380.

9. F. Hutter, J. Lücke and L. Schmidt-Thieme, Beyond manual tuning of hyperparameters,
K€unstliche Intelligenz 29(4) (2015) 329–337.

10. F. Hutter, H. Hoos and K. Leyton-Brown, Sequential model-based optimization for
general algorithm con¯guration, Int. Conf. Learning and Intelligent Optimization, 2011,
pp. 507–523.

Speeding up the Hyperparameter Optimization of Deep CNNs

1850008-13

In
t. 

J.
 C

om
p.

 I
nt

el
. A

pp
l. 

20
18

.1
7.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
SP

C
 o

n 
07

/1
8/

18
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



11. T. Hinz, N. Navarro-Guerrero, S. Magg and S. Wermter, Supplementary material for
\Speeding Up the Hyperparameter Optimization of Deep Convolutional Neural
Networks", https://¯gshare.com/s/1359ec28badc548d822e.

12. J. Snoek, H. Larochelle and R. P. Adams, Practical Bayesian optimization of machine
learning algorithms, Adv. Neural Inf. Process. Syst. 25 (2012) 2951–2959.

13. R. Bardenet, M. Brendel, B. K�egl and M. Sebag, Collaborative hyperparameter tuning,
Int. Conf. Machine Learning, Atlanta, USA, 2013, pp. 199–207.

14. F. Hutter, H. Hoos and K. Leyton-Brown, An e±cient approach for assessing hyper-
parameter importance, Int. Conf. Machine Learning, Beijing, China, 2014, pp. 754–762.

15. L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh and A. Talwalkar, Hyperband: Bandit-
based con¯guration evaluation for hyperparameter optimization, Int. Conf. Learning
Representations, Toulon, France, 2017, pp. 1–15.

16. F. Hutter, H. Hoos, K. Leyton-Brown and T. Stützle, Paramils: An automatic algorithm
con¯guration framework, J. Artif. Intell. Res. 36(1) (2009) 267–306.

17. M. Brendel and M. Schoenauer, Instance-based parameter tuning for evolutionary
AI planning, Annual Conf. Companion Genetic and Evolutionary Computation, Dublin,
Freland, 2011, pp. 591–598.

18. C. Thornton, F. Hutter, H. Hoos and K. Leyton-Brown, Auto-WEKA: Combined
selection and hyperparameter optimization of classi¯cation algorithms, Int. Conf.
Knowledge Discovery and Data Mining, 2013, pp. 847–855.

19. J.-C. L�evesque, A. Durand, C. Gagn�e and R. Sabourin, Bayesian optimization for con-
ditional hyperparameter spaces, Int. Joint Conf. Neural Networks, Anchorage, Alaska,
USA, 2017, pp. 286–293.

20. B. Shahriari, K. Swersky, Z. Wang, R. P. Adams and N. de Freitas, Taking the human
out of the loop: A review of bayesian optimization, Proc. IEEE 104(1) (2016) 148–175.

21. K. Swersky, J. Snoek and R. P. Adams, Freeze-thaw Bayesian optimization,
arXiv:1406.3896.

22. J. M. Hern�andez-Lobato, M. W. Ho®man and Z. Ghahramani, Predictive entropy search
for e±cient global optimization of black-box functions, Adv. Neural Inf. Process. Syst. 27
(2014) 918–926.

23. J. Snoek et al., Scalable Bayesian optimization using deep neural networks, Int. Conf.
Machine Learning, Lille, France, 2015, pp. 2171–2180.

24. A. Klein, S. Falkner, S. Bartels, P. Hennig and F. Hutter, Fast Bayesian optimization of
machine learning hyperparameters on large datasets, Int. Conf. Arti¯cial Intelligence and
Statistics, Fort Lauderdale, Florida, USA, 2017, pp. 528–536.

25. R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon, B. Raju,
A. Navruzyan, N. Du®y and B. Hodjat, Evolving deep neural networks, arXiv:1703.00548.

26. N. Navarro-Guerrero, Neurocomputational mechanisms for adaptive self-preservative
robot behaviour, Dissertation, Universität Hamburg (2016).

27. N. Navarro-Guerrero, R. Lowe and S. Wermter, Improving robot motor learning with
negatively valenced reinforcement signals, Front. Neurorobot. 11(10) (2017) 1–14.

28. E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. V. Le and A. Kurakin,
Large-scale evolution of image classi¯ers, Int. Conf. Machine Learning, Sydney, Australia,
2017, pp. 2902–2911.

29. L. Xie and A. Yuille, Genetic cnn, in Proc. IEEE Conf. Computer Vision and Pattern
Recognition, Honolulu, Hawaii, 2017, pp. 1379–1388.

30. P. R. Lorenzo, J. Nalepa, M. Kawulok, L. S. Ramos and J. R. Pastor, Particle swarm
optimization for hyper-parameter selection in deep neural networks, in Proc. Genetic and
Evolutionary Computation Conf., Berlin, Germany, 2017, pp. 481–488.

T. Hinz et al.

1850008-14

In
t. 

J.
 C

om
p.

 I
nt

el
. A

pp
l. 

20
18

.1
7.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
SP

C
 o

n 
07

/1
8/

18
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



31. B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning, Int. Conf.
Learning Representations, Toulon, France, 2017, pp. 1–16.

32. B. Zoph, V. Vasudevan, J. Shlens and Q. V. Le, Learning transferable architectures for
scalable image recognition, arXiv:1707.07012.

33. B. Baker, O. Gupta, N. Naik and R. Raskar, Designing neural network architectures using
reinforcement learning, Int. Conf. Learning Representations, Toulon, France, 2017,
pp. 1–18.

34. Z. Zhong, J. Yan, W. Wei, J. Shao and C.-L. Liu, Practical block-wise neural network
architecture generation, Conf. Computer Vision and Pattern Recognition, Salt Lake City,
Utah, USA, 2018, arXiv preprint: 1708.05552.

35. H. Cai, T. Chen, W. Zhang, Y. Yu and J. Wang, E±cient architecture search by network
transformation, AAAI Conf. Arti¯cial Intelligence, New Orleans, Louisiana, USA, 2018,
pp. 2787–2794.

36. K. Eggensperger, M. Feurer, F. Hutter, J. Bergstra, J. Snoek, H. Hoos and K. Leyton-
Brown, Towards an empirical foundation for assessing bayesian optimization of hyper-
parameters, NIPS Workshop on Bayesian Optimization in Theory and Practice, Lake
Tahoe, Nevada, USA, 2013.

37. P. Lucey, J. Cohn, T. Kanade, J. Saragih, Z. Ambadar and I. Matthews, The extended
Cohn-Kanade dataset (CK+): A complete dataset for action unit and emotion-speci¯ed
expression, IEEE Conf. Computer Vision and Pattern Recognition, San Francisco,
California, USA, 2010, pp. 94–101.

38. M.-E. Nilsback and A. Zisserman, Automated °ower classi¯cation over a large number
of classes, Conf. Computer Vision, Graphics Image Processing, Madurai, India, 2008,
pp. 722–729.

39. P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus and Y. LeCun, OverFeat:
Integrated recognition, localization and detection using convolutional networks, Int.
Conf. Learning Representations, Alberta, Canada, 2014, pp. 1–16.

40. A. S. Razavian, H. Azizpour, J. Sullivan and S. Carlsson, CNN features o®-the-shelf: An
astounding baseline for recognition, Conf. Computer Vision and Pattern Recognition,
Columbus, Ohio, USA, 2014, pp. 806–813.

41. P. Khorrami, T. Paine and T. Huang, Do deep neural networks learn facial action units
when doing expression recognition? IEEE Int. Conf. Computer Vision, Santiago, Chile,
2015, pp. 19–27.

42. T. Domhan, J. T. Springenberg and F. Hutter, Speeding up automatic hyperparameter
optimization of deep neural networks by extrapolation of learning curves, Int. Joint Conf.
Arti¯cial Intelligence, Buenos Aires, Argentina, 2015, pp. 3460–3468.

Speeding up the Hyperparameter Optimization of Deep CNNs

1850008-15

In
t. 

J.
 C

om
p.

 I
nt

el
. A

pp
l. 

20
18

.1
7.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
SP

C
 o

n 
07

/1
8/

18
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.


	Speeding up the Hyperparameter Optimization of Deep Convolutional Neural Networks
	1. Introduction
	2. Related Work
	3. Methodology
	4. Importance of Hyperparameters
	5. Using IIS for Hyperparameter Optimization
	6. Conclusion
	Acknowledgments
	References


