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Whole Body Operational Space Control (WBOSC) is a pioneering algorithm in the

field of human-centered Whole-Body Control (WBC). It enables floating-base highly-

redundant robots to achieve unified motion/force control of one or more operational
space objectives while adhering to physical constraints. Although there are extensive

studies on the algorithms and theory behind WBOSC, limited studies exist on the soft-

ware architecture and APIs that enable WBOSC to perform and be integrated into
a larger system. In this paper we address this by presenting ControlIt!, a new open-

source software framework for WBOSC. Unlike previous implementations, ControlIt! is
multi-threaded to increase servo frequencies on standard PC hardware. A new parameter

binding mechanism enables tight integration between ControlIt! and external processes

via an extensible set of transport protocols. To support a new robot, only two plugins
and a URDF model needs to be provided — the rest of ControlIt! remains unchanged.

New WBC primitives can be added by writing a Task or Constraint plugin. ControlIt!’s

capabilities are demonstrated on Dreamer, a 16-DOF torque controlled humanoid upper
body robot containing both series elastic and co-actuated joints, and using it to perform

a product disassembly task. Using this testbed, we show that ControlIt! can achieve av-

erage servo latencies of about 0.5ms when configured with two Cartesian position tasks,
two orientation tasks, and a lower priority posture task. This is significantly higher than

the 5ms that was achieved using UTA-WBC, the prototype implementation of WBOSC

that is both application and platform-specific. Variations in the product’s position is
handled by updating the goal of the Cartesian position task. ControlIt!’s source code is

released under an LGPL license and we hope it will be adopted and maintained by the
WBC community for the long term as a platform for WBC development and integration.

Keywords: Software Framework; Whole Body Control; Whole Body Operational Space

Control; Upperbody Humanoid Robot

1. Introduction

Whole Body Control (WBC) takes a holistic view of a multi-branched highly re-

dundant robot like humanoids to achieve general coordinated behaviors. One of the

first WBC algorithms is Whole Body Operational Space Control (WBOSC) 1,2,3,

which provides the theoretical foundations for achieving operational space inverse

dynamics, task prioritization, free floating degrees of freedom, contact constraints,

and internal forces. There is now a growing community of researchers in this field

as exemplified by the recent formation of an IEEE technical committee on WBC 4.
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While the foundational theory and algorithms behind WBC have recently made

great strides, less progress exists in software support, limiting the use of WBC

today. In this paper, we remedy this problem by presenting ControlIt!,a an open

sourceb software framework for WBOSC.

In this paper, we introduce ControlIt!, a software framework that en-

ables WBOSC controllers to be instantiated and is designed for systems

integration, extensibility, high performance, and use by both WBC re-

searchers and the general public. Instantiating a WBOSC controller consists

of defining a prioritized compound task that defines the operational space objec-

tives and lower priority goal postures that the controller should achieve, and a

constraint set that specifies the natural physical constraints of the robot. Systems

integration is achieved through a parameter binding mechanism that enables exter-

nal processes to access WBOSC parameters through various transport layers, and

a set of introspection tools for gaining insight into the controller’s state at run-

time. ControlIt! is extensible through the use of plugins that enable the addition

of new WBC primitives and support for new robot platforms. High performance

is achieved by using state-of-the-art software libraries and multiple-threads that

enable ControlIt! to offer higher servo frequencies relative to previous WBOSC im-

plementations. By making ControlIt! open source and maintaining a centralized

website (https://robotcontrolit.com) with detailed documentation, installation

instructions, and tutorials, ControlIt! can be modified to evaluate new WBC ideas

and supported long term.

The intellectual merit and key contributions of this paper are as follows:

(1) We design a software architecture for supporting general use of WBOSC and

its integration within a larger system via parameter binding and events.

(2) We introduce the first API based on WBOSC principles for use across general

applications and robots.

(3) We provide an open-source software implementation.

(4) We design and implement a high performance multi-threaded architecture that

increases the achievable servo frequency by 10X relative to previous implemen-

tations of WBOSC.

(5) We reduce the number of components that need to be modified to develop

a new behavior to the set of RobotInterface, ServoClock, CompoundTask,

ConstraintSet and decouple these changes from core ControlIt! code via dy-

namically loadable plugins.

aControlIt! should not be associated with MoveIt! 5. ControlIt! is primarily focused on whole

body feedback control whereas MoveIt! is primarily focused on motion planning. Thus, MoveIt!
and ControlIt! typically reside at different levels of a robot application’s software stack. The default

feedback controller used by MoveIt! is ros control 6. However, MoveIt! could be configured to

work with ControlIt! instead of ros control if needed.
bThe source code for ControlIt! is available under a LGPLv2.1 license. Instructions for downloading

and using it are available at https://robotcontrolit.com

https://robotcontrolit.com
https://robotcontrolit.com
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(6) We demonstrate ControlIt!’s utility and performance using a humanoid robot

executing a product disassembly task.

The remainder of this paper is organized as follows. Section 2 discusses related

work. Section 3 provides an overview of WBOSC’s mathematical foundations. Sec-

tion 4 presents ControlIt!’s software architecture and APIs. Section 5 presents how

ControlIt! was integrated with Dreamer and used to develop a product disassem-

bly task. Section 6 contains a discussion on other experiences using ControlIt! and

future research directions. The paper ends with conclusions in Section 7.

2. Related Work

As a field, WBC is rapidly evolving. Most algorithms issue torque com-

mands 7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25. They differ in whether they

are centralized 26,27 or distributed 28,29, focus on manipulation 30, loco-

motion 31,32,33, or behavior sequencing 34,35, the underlying control models

used 36,37,38, and whether they’ve been evaluated in simulation or on hard-

ware 39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67. These

efforts demonstrate the behaviors enabled by WBC such as the use of compliance,

multi-contact postures, robot dynamics, and joint redundancy to balance multiple

competing objectives. ControlIt! is currently focused on supporting general use of

WBOSC and its capabilities, but may be enhanced to include ideas and capabilities

from these recent WBC developments.

An implementation of WBOSC called Stanford-WBC 68 was released in 2011.

Stanford-WBC includes mechanisms for parameter reflection, data logging, and

script-based configuration, but was a limited implementation of WBOSC that did

not support branched robots, mobile robots, or contact constraints. It was used

to make Dreamer’s right arm wave and shake hands. More recently, UTA-WBC

extended Stanford-WBC to support the full WBOSC algorithm, which includes

branched robots, free floating degrees of freedom, contact constraints, and a more

accurate robot model that includes rotor inertias 69. UTA-WBC was used to make

a wheeled version of Dreamer containing 13 DOFs maintain balance on rough ter-

rain. While this demonstrated the feasibility of WBOSC using a real humanoid

robot, UTA-WBC was a research prototype targeted for a specific robot and spe-

cific behavior, i.e., balancing 27. The implementation was not designed to work as

part of a larger system for general applications. Instead, ControlIt! is a complete

software re-design and re-implementation of the WBOSC algorithm with a focus

on the software constructs and APIs that facilitate the integration of WBOSC into

larger systems.

The differences between UTA-WBC and ControlIt! are shown in Table 1.

Compared with UTA-WBC and Stanford-WBC, ControlIt! is a complete re-

implementation that does not build upon but rather replaces the previous im-

plementation. Specifically, ControlIt! contains new and more expressive software

abstractions that enable arbitrarily complex WBOSC controllers to be configured,
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Property UTA-WBC ControlIt!

OS Ubuntu 10.04 Ubuntu 12.04 and 14.04

ROS Integration ROS Fuerte ROS Hydro and Indigo

Linear Algebra Library Eigen 2 Eigen 3

Model Library Tao RBDL 2.3.2

Model Description Format Proprietary XML URDF

Integration (higher levels) N/A Parameter binding

Integration (lower levels) Proprietary RobotInterface and
ServoClock plugins

Controller Introspection Parameter Reflection Parameter Reflection and
ROS Services

WBC Initial Configuration YAML YAML and ROS parameter
server

WBC Reconfiguration N/A Enable / disable tasks and
constraints, update task
priority levels

Key Abstractions task, constraint, skill Compound task, constraint
set

Task / Constraint Libraries Statically coded Dynamically loadable via
ROS pluginlib

Number of threads 1 3

Simulator Proprietary Gazebo 5.1

Website https://github.com/

lsentis/

uta-wbc-dreamer

https:

//robotcontrolit.com

Table 1. A comparison between UTA-WBC and ControlIt!

works with newer software libraries, middleware, and simulators, supports exten-

sibility through a plugin-based architecture, is multi-threaded, and is designed to

easily integrate with external processes through parameter binding and controller

introspection mechanisms.

The ability to integrate with external processes is important because applica-

tions of branched highly-redundant robots of the type targeted by WBC are typ-

ically very sophisticated involving many layers of software both above and below

the whole body controller. To handle such complexity, a distributed component-

based software architecture is typically used where the application consists of

numerous independently-running software processes or threads that communicate

over both synchronous and asynchronous channels 70,71. The importance of dis-

tributed component-based software for advanced robotics is illustrated by the num-

https://github.com/lsentis/uta-wbc-dreamer
https://github.com/lsentis/uta-wbc-dreamer
https://github.com/lsentis/uta-wbc-dreamer
https://robotcontrolit.com
https://robotcontrolit.com
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ber of recently developed middleware frameworks that provide it. They include

OpenHRP 72,73, RT-Middleware 74, Orocos Toolchain 75, YARP 76, ROS 77,78,

CLARAty 79,80, aRD 81, Microblx 82,83, OpenRDK 84,85,86, and ERSP 87. Among

these, ControlIt! is currently integrated with ROS and is a ROS node within a

ROS network, though usually as a real-time process potentially within another

component-based framework (i.e., ControlIt!’s servo thread was an Orocos real-time

task during the DRC Trials, and is a RTAI 88 real-time process in the Dreamer ex-

periments discussed in this paper). In general, ControlIt! can be modified to be a

component within any of the other aforementioned component-based robot middle-

ware frameworks.

ControlIt! is designed to interact with components both below (i.e., closer to the

hardware) and above (i.e., closer to the end user or application) it within a robotic

system. Components below ControlIt! include robot hardware drivers or resource

allocators like ros control 6,89 and Conman 90 that manage how a robot’s joints

are distributed among multiple controllers within the system. This is necessary since

multiple WBC controllers may coexist and a manager is needed to ensure only one

is active at a time. In addition, joints in a robots’ extremity like those in an end

effector usually have separate dedicated controllers. Components that may reside

above ControlIt! include task specification frameworks like iTaSC 91,92,93,94, plan-

ners like MoveIt! 5, management tools like Rock 95, MARCO 96, and GenoM 97,

behavior sequencing frameworks like Ecto 98 and RTC 99, and other frameworks for

achieving machine autonomy 100,101,102,103,104,105,106,107. Clearly, the set of compo-

nents that ControlIt! interacts with is large, dynamic, and application-dependent.

This is possible since component-based architectures provide sufficient decoupling

to allow these external components to change without requiring ControlIt! to be

modified.

3. Overview of Whole Body Operational Space Control

This section provides a brief overview of WBOSC. Details are provided in previous

publications 1,2,3,27. Let njoints be the number of actual DOFs in the robot. The

robot’s joint state is represented by the vector qactual as shown by the following

equation.

qactual =< q1 . . . qnjoints
> (1)

The robot’s global pose is represented by a 6-dimensional floating virtual joint

that connects the robot’s base link to the world, i.e., three rotational and three

prismatic virtual joints. It is denoted by vector qbase ∈ R6. The two partial state

vectors, qactual and qbase, are concatenated into a single state vector qfull = qactual∪
qbase. This combination of real and virtual joints into a single vector is called the

generalized joint state vector. Let ndofs be the number real and virtual DOFs in

the model that is used by WBOSC. Thus, qfull ∈ R6+njoints = Rndofs .

The underactuation matrix U ∈ Rnjoints×ndofs defines the relationship between

the actuated joint vector and the full joint state vector as shown by the following
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equation.

qactual = U · qfull (2)

Let A be the robot’s generalized joint space inertia matrix, B be the generalized

joint space Coriolis and centrifugal force vector, G be the generalized joint space

gravity force vector, Jc be the contact Jacobian matrix that maps from generalized

joint velocity to the velocity of the constraint space dimensions, λc be the co-state

of the constraint space reaction forces, and τcommand be the desired force/torque

joint command vector that is sent to the robot’s joint-level controllers. The robot

dynamics can be described by a single linear second order differential equation

shown by the following equation.

A

(
q̈base
q̈actual

)
+B +G+ JT

cλc =

(
06×1

τcommand

)
(3)

Constraints are formulated as follows. Let ṗc be the velocity of the constrained

dimensions, which we approximate as being completely rigid and therefore yielding

zero velocity on the contact points, as shown by the following equation.

ṗc = Jc

(
q̇base
q̇actual

)
= 0 (4)

Tasks are formulated as follows. Let ṗt be the desired velocity of the task, Jt
be the Jacobian matrix of task t that maps from generalized joint velocity to the

velocity of the task space dimensions, and Nc be the generalized null-space of the

constraint set. Furthermore, let J∗t be the contact consistent reduced Jacobian ma-

trix 2 of task t, i.e., it is consistent with U and Nc. The definition of ṗt is given by

the following equation where operator arg is the dynamically consistent generalized

inverse of arg.

ṗt = Jt

(
q̇base
q̇actual

)
= JtUNcq̇actual

= J∗t q̇actual (5)

Let Λ∗t be the contact-consistent prioritized task-space inertia matrix 2 for task

t, p̈t,ref be the reference, i.e., desired, task-space acceleration for task t, β∗t be the

contact-consistent task-space Coriolis and centrifugal force vector for task t, and γ∗t
be the contact-consistent task space gravity force vector for task t. The force/torque

command of task t, denoted Ft, is given by the following equation.

Ft = Λ∗t p̈t,ref + β∗t + γ∗t (6)

To achieve multi-priority control, let J∗t|prev be the Jacobian matrix of task t that

is consistent with U , Nc, and all higher priority tasks. The equation for τcommand

is the sum of all of the individual task commands multiplied by the corresponding

J∗t|prev matrix as shown by the following equation.

τcommand =
∑
t

J∗Tt|prevFt (7)



June 4, 2015 0:19 main

ControlIt! - A Software Framework for Whole-Body Operational Space Control 7

Finally, when a robot has more than one point of contact with the environment,

there are internal tensions within the robot. By definition, these “internal forces”

are orthogonal to joint accelerations, i.e., they result in no net movement of the

robot. The control structures like the multicontact/grasp matrix that are used to

control these internal forces are documented in previous publications 3. Let L∗ be

the nullspace of (UNc) and τinternal be the reference (i.e., desired) internal forces

vector. The contribution of the internal forces can thus be added to Equation (7)

as shown by the following equation.

τcommand =
∑
t

(
J∗Tt|prevFt

)
+ L∗Tτinternal (8)

4. ControlIt! Software Architecture

There are six guiding principles behind ControlIt!’s development: (i) separate con-

cerns into interface definitions, implementations, and configuration, (ii) support

extensibility and platform-independence through dynamically loadable plu-

gins, (iii) encourage code reuse through plugin libraries, (iv) support systems

integration through parameter binding, events, data introspection services, and

compatibility with a modern software ecosystem, (v) be cognizant of performance

and real- time considerations, and (vi) support two types of end users: de-

velopers who use ControlIt! and researchers who modify ControlIt!.

Section 4.1 contains a discussion of ControlIt!’s software architecture, which de-

scribes the software components within ControlIt’s core. Many of these components

either instantiate plugins or are implemented by plugins. The use of plugins enables

ControlIt! to be extensible in terms of supporting different robots and applications.

Section 4.2 discusses mechanisms for configuring and integrating ControlIt! into a

larger system. This includes the parameter reflection, binding, and event signal-

ing mechanisms, and YAML specification files. Finally, a description of ControlIt!’s

multi-threaded architecture is discussed in section 4.3.

4.1. Software Architecture

The software abstractions that enable ControlIt! to instantiate and integrate general

WBOSC controllers are shown in Figure 1. The abstractions that are extendable via

dynamically loadable plugins are colored gray. They include tasks, constraints, the

whole body controller, the servo clock, and the robot interface. Non-extensible com-

ponents include the compound task, robot model, constraint set, and coordinator.

The coordinator implements the servo loop and uses all of the other abstractions

except for the servo clock, which implements the servo thread and controls when

the coordinator executes the next cycle of the servo loop. The software abstractions

can be divided into three general categories: configuration, whole body control, and

hardware abstraction.

Configuration. Configuration software abstractions include the robot model,

compound task, and constraint set. Their APIs and attributes are shown in Fig-
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Fig. 1. The primary software abstractions within ControlIt! consist of a compound task, con-

straint set, robot model, whole body controller, servo clock, robot interface, and coordinator. The
compound task contains a set of prioritized tasks. Tasks specify operational space or postural

objectives and contain task-space controllers; multiple tasks may have the same priority level.

Constraints specify natural physical constraints that must be satisfied at all times and are effec-
tively higher priority than the tasks. The robot model computes kinematic and dynamic properties

of the robot based on the current joint states. The servo clock and robot interface constitute a
hardware abstraction layer that enables ControlIt! to work on many platforms. The coordinator

is responsible for managing the execution of the whole body controller. Arrows indicate usage
relationships between the software abstractions. Abstractions that are dynamically extensible via
plugins are colored gray.

ure 2. The robot model determines the kinematic and dynamic properties of the

robot and builds upon the model provided by the Rigid Body Dynamics Library

(RBDL) 108, which includes algorithms for computing forward and inverse kinemat-

ics and dynamics and frame transformations. The kinematic and dynamic values

provided by the model are only estimates and may be incorrect, necessitating the

use of a whole body feedback controller. The robot model API includes methods

for saving and obtaining the joint state and getting properties of the robot like the

joint space inertia matrix and gravity compensation vector. There are also methods

for obtaining the joint order within the whole body controller. A reference to the

constraint set is kept within the robot model to determine which joints are vir-

tual (i.e., the 6-DOF free floating joints that specify a mobile robot’s position and
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Fig. 2. This UML diagram specifies the APIs of ControlIt!’s configuration software abstractions.
They are used to specify the objectives and constraints of the whole body controller.

orientation within the world frame), real, and actuated.

The compound task and constraint set contain lists of tasks and constraints, re-

spectively. Tasks and constraints are abstract; concrete implementations are added

to ControlIt! through plugins. Both have names and types for easy identification

and can be enabled or disabled based on context. A task represents an operational

or postural objective for the whole body controller to achieve. Concrete task im-

plementations contain goal parameters that, in combination with the robot model,

produce an error. The error is used by a controller inside the task to generate a

task-space effort commandc, which is accessible through the getCommand() method

and may be in units of force or torque. In addition to the command, a task also

provides a Jacobian that maps from task space to joint space. The compound task

combines the commands and Jacobians of the enabled tasks and relays this informa-

tion to the whole body controller. Specifically, for each priority level, the compound

task vertically concatenates the Jacobians and commands belonging to the tasks

at the priority level. The WBOSC algorithm uses these concatenated Jacobian and

command matrices to support task prioritization and multiple tasks at the same

priority level.

Task Library. To encourage code reuse and enable support for basic applica-

tions, ControlIt! comes with a task library containing commonly used- tasks. The

tasks within this library are shown in Figure 3. There are currently six tasks in

the library: joint position, 2D / 3D Orientation, center of mass, Cartesian position,

and center of pressure. In the future, more tasks can be added to the library by

introducing additional plugins. Of these, the joint position, orientation, and Carte-

sian position tasks have been successfully tested in hardware. The rest have only

been tested in simulation. Note that all of the tasks make use of a PIDController.

This feedback controller generates the task-space command based on the current

cWe use the word “effort” to denote generalized force, i.e., force or torque.
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Fig. 3. This UML class diagram shows the tasks in ControlIt!’s task library and the PID controller
that they use. Combinations of these tasks specify the operational space and postural objectives

of the whole body controller and collectively form the compound task. Concrete tasks are imple-

mented as dynamically loadable plugins. ControlIt! can be easily extended with new tasks via the
plugin mechanism.

error and gains. Alternative types of controllers like sliding mode control may be

provided in the future.

The joint position task directly specifies the goal positions, velocities, and accel-

erations of every joint in the robot. It typically defines the desired “posture” of the

robot, which is not an operational space objective but accounts for situations where

there is sufficient redundancy within the robot to result in non-deterministic behav-

ior when no posture is defined. Specifically, a posture task is necessary when the null

space of all higher priority tasks and constraints is not nil, and the best practice is to

always include one as the lowest priority task in the compound task. The joint posi-

tion task has an input parameter called goalAcceleration to enable smooth tran-

sitions between joint positions. The goal acceleration is a desired acceleration that

is added as a feedforward command to the control law. The currentAcceleration

output parameter is a copy of the goalAcceleration parameter and is used for

debugging purposes.

The 2D and 3D orientation tasks are used to control the orientation of a link on

the robot. They differ in terms of how the orientations are specified. Whereas the

2D orientation is specified by a vector in the frame of the body being oriented, the

3D orientation is specified using a quaternion. The purpose of providing a 2D orien-

tation task even though a 3D orientation could be used is to reduce computational

overhead when only two degrees of orientation control is required. For example, a

2D orientation task is used to control the heading of Trikey, a 3 wheeled holonomic
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mobile robot, as shown in Figure 18, whereas a 3D orientation task is used to control

the orientation of Dreamer’s end effectors, as shown in Figure 19(b). Visualizations

of these two task-level controllers are given in Appendix C. The 2D orientation

task does not include a goalAngularVelocity input parameter because its current

implementation assumes the goal velocity is always zero. This assumption can be

easily removed in the future by modifying the control law to include a non-zero goal

velocity.

The Center Of Mass (COM) task controls the location of the robot’s COM,

which is derived from the robot model. It is useful when balancing since it can

ensure that the robot’s configuration always results in the COM being above the

convex polygon surrounding the supports holding the robot up. The Center Of

Pressure (COP) task controls the center of pressure of a link that is in contact

with the ground. It is particularly useful for biped robots containing feet since

it can help ensure that the COP of a foot remains within the boundaries of the

foot thereby preventing the foot from rolling. The Cartesian position task controls

the operational space location of a point on the robot. Typically, this means the

location of an end effector in a frame that is specified by the user and is by default

the world frame. For example, it is used to position Dreamer’s end effectors in front

of Dreamer as shown in Figure 19. As indicated by the figure, multiple Cartesian

position tasks may exist within a compound task, as long as they control different

points on the robot.

As previously mentioned, the aforementioned tasks are those that are currently

included with ControlIt!. They are implemented as plugins that are dynamically

loaded on-demand during the controller configuration process. Additional tasks may

be added in the future. For example, an external force task may be added that con-

trols a robot to assert a certain amount of force against an external obstacle. In

addition, an internal force task may be added to control the internal tensions be-

tween multiple contact points. A prototype of such a task was successfully used

during NASA JSC DRC critical design reviewd to make Valkyrie to walk in sim-

ulation, as shown in Appendix C, but is not included in the current task library

due to the need for additional testing and refinement. For the walking behavior,

ControlIt!’s compound task included a COM Task, internal tensions task, posture

task, and, for each foot, a COP, Cartesian position, and orientation task.

Constraints. A constraint specifies natural physical limits of the robot. There

are two types of constraints: ContactConstraint and TransmissionConstraint.

Contact constraints specify places where a robot touches the environment. Trans-

mission constraints specify dependences between joints, which occur when, for ex-

dAs a Track A DRC team, NASA JSC was required to undergo a critical design review by DARPA

officials in June 2013, which was in the middle of the period leading up to the DRC Trials in
December 2013. The results of the review determined whether the team would continue to receive
funding and proceed to compete in the DRC Trials as a Track A team. NASA JSC was one of six

Track A teams to pass this critical design review.



June 4, 2015 0:19 main

12 C.-L. Fok, G. Johnson, J. D. Yamokoski, A. Mok, and L. Sentis

ample, joints are co-actuated. The parent Constraint class includes methods for

obtaining the number of DOFs that are constrained and the Jacobian of the con-

straint. Contact constraints have a getJoint() method that specifies the parent

joint of the link that is constrained. Transmission constraints have a master joint

that is actuated and a set of slave joints that are co-actuated with the master

joint. Unlike tasks, constraints do not have commands since they simply specify

the nullspace within which all tasks must operate. Like the compound task, the

constraint set computes a Jacobian that is the vertical concatenation of all the con-

straint Jacobians. In addition, it provides an update method that computes both

the null space projector and UNc (defined in Equation (5)), accessors for these

matrices, and methods for determining whether a particular joint is constrained.

The whole body controller uses this information to ensure all of the constraints are

met. While it is true that contact constraints are mathematically similar to tasks

without an error term, we wanted to distinguish between the two since they serve

significantly different purposes: tasks denote a user’s control objectives while con-

straints denote a robot’s physical limits. We did not want to confuse the API by

using the same software abstraction for both purposes. Furthermore, by separating

tasks and constraints, the API will be easier to extend to support optimization

based controllers with inequality constraints.

Constraint Library. Constraints included in ControlIt!’s constraint library

are shown in Figure 4. Contact constraints include the flat contact constraint, omni

wheel contact constraint, and point contact constraint. The flat contact constraint

restricts both link translation and rotation. The omni wheel contact constraint

restricts one rotational DOF and one translational DOF based on the current ori-

entation of the wheel. Point contact constraint restricts just link translation. One

transmission constraint called CoactuationConstraint is provided that enables

ControlIt! to handle robots with two co-actuated joints, like the torso pitch joints

in Dreamer. It includes a transmission ratio specification to handle situations where

the relationship between the master joint and slave joint is not one-to-one. Currently

only the two-joint co-actuation case is supported, though a more generalized con-

straint that supports more than two co-actuated joints could be trivially added

in the future. Specifically, another child class of TransmissionConstraint can be

added as a plugin to support the co-actuation of more than two joints by adding

more rows to the constraint’s Jacobian. Like the task library, the constraint library

can easily be extended with new constraints via the plugin mechanism used by

ControlIt!.

Whole body control. The class diagrams for the whole body control soft-

ware abstractions are shown in Figure 5. There are two classes: WBC and Com-

mand. WBC is an interface that contains a single computeCommand() method.

This method takes as input the robot model, which includes the constraint set, and

the compound task. It performs the WBC computations that generate a command

for each joint under its control and returns it within a Command object. The Com-

mand object specifies the desired position, velocity, effort, and position controller
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Fig. 4. This UML class diagram shows the constraints in ControlIt!’s constraint library. Combina-
tions of these constraints specify natural physical limits of the robot and constitute the constraint

set. Concrete constraints are implemented as dynamically loadable plugins. Additional constraints

can be easily added via the plugin mechanism.

Fig. 5. The WBC software abstractions within ControlIt! consist of an interface called WBC and a
class called Command. The WBC interface defines a single method called computeCommand that

takes two input parameters, the robot model, which includes the constraint set, and the compound

task. It returns a Command object. The command includes position, velocity, effort, and position
controller gains. Depending on the type of joint controller used, one or more of the member

variables inside the command may not be used. For example, a pure force or torque-controlled
robot will only use the effort specification within the command.

gains. Note that not all of these variables need to be used. For example, a robot

that is purely effort controlled will only use the effort command. The optional fields

within the command are included to support robots with joints that are position

or impedance controlled.

The whole body controller within ControlIt! is dynamically loaded as a plugin

using ROS pluginlib 109. Two plugins are currently available as shown in Figure 6.

They include WBOSC and WBOSC Impedance. The WBOSC plugin implements

the WBOSC algorithm. It computes the nullspace of the constraint set and projects

the task commands through this nullspace. Task commands are iteratively included

into the final command based on priority. The commands of tasks at a particular

priority level are projected through the nullspaces of all higher priority tasks and
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Fig. 6. ControlIt! currently includes two plugins in its WBC plugin library. They consist of WBOSC
and WBOSC Impedance. WBOSC implements the actual WBOSC algorithm that takes a holistic

view of the robot and achieves multiple prioritized task objectives using nullspace projection. It

outputs a pure effort command and is use with effort-controlled robots like Dreamer. The second
plugin, WBOSC Impedance, extends WBOSC with an internal robot model that specifies the

desired joint positions and velocities based on the torque commands generated by WBOSC. This

is useful to support robots with joint impedance controllers, an example of which is NASA JSC’s
Valkryie.

the constraint set. This ensures that all constraints are met and that higher priority

tasks override lower priority tasks. The output of WBOSC is an effort command that

can be sent to effort controlled robots like Dreamer. The member variables within

the WBOSC plugin ensure that memory is pre-allocated, which reduces execution

time jitter and thus increases real-time predictability.

To support impedance-controlled robots, ControlIt! also comes with the

WBOSC Impedance plugin. Unlike effort-controlled robots, impedance-controlled

robots take more than just effort commands. Specifically, in addition to effort,

impedance controllers also take desired position and velocity commands, and option-

ally position controller gains when controller gain scheduling is desired. The benefit

of using impedance control is the ability to attain higher levels of impedance. This is

possible since the position and velocity control loop can be closed by the embedded

joint controller, which typically has a higher servo frequency and lower communi-
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cation latency than the WBC controller. The WBOSC Impedance plugin extends

the WBOSC plugin with an internal model that converts the effort commands gen-

erated by the WBOSC algorithm into expected joint positions and velocities. The

member variables within the WBOSC Impedance plugin that start with “qi ” hold

the internal model’s joint states. The prevUpdateTime member variable records

when this internal model was last updated. Each time computeCommand is called,

WBOSC Impedance computes the desired effort command using WBOSC. It then

uses this effort command along with the robot model to determine the desired accel-

erations of each joint. WBOSC Impedance then updates the internal model based

on these acceleration values, the time since the last update, the previous state of

the internal model, and the actual position and velocity of the joints. The derived

joint positions, velocities, and efforts are saved within a Command object, which is

returned. This control strategy was used on the upper body of NASA JSC’s Valkyrie

robot to perform several DRC manipulation tasks as previously mentioned.

Hardware abstraction. To enable support for a wide variety of robot plat-

forms, ControlIt! includes a hardware abstraction layer consisting of two ab-

stract classes, the RobotInterface and the ServoClock, as shown in Figure 7.

Concrete implementations are provided through dynamically loadable plugins.

RobotInterface is responsible for obtaining the robot’s joint state and sending

the command from the whole body controller to the robot. For diagnostic purposes,

it also publishes the state and command information onto ROS topics using a real-

time ROS topic publisher, which uses a thread-pool to offload the publishing process

from the servo thread. ServoClock instantiates the servo thread and contains a ref-

erence to a Controller, which is implemented by the Coordinator. ServoClock is

responsible for initializing the controller by calling servoInit() and then periodi-

cally executing the servo loop by calling the servoUpdate() method. Initialization

using the actual servo thread is needed to handle situations where certain initial-

ization tasks can only be done by the servo thread. This occurs, for example, when

the servo thread is part of a real-time context meaning only it can initialize certain

real-time resources.

ControlIt! includes libraries of RobotInterface and the ServoClock plugins

as shown in Figure 8. RobotInterface plugins include general ones that commu-

nicate with a robot via three different transport layers: ROS topics (RobotInter-

faceROSTopic), UDP datagrams (RobotIntefaceUDP), and shared memory (Robot-

InterfaceSM). These are meant for general use – ControlIt! includes generic Gazebo

plugins and abstract classes that facilitate the creation of software adapters for al-

lowing simulated and real robots to communicate with ControlIt! using these three

transport layers. Among the three transport layers, shared memory has the lowest

latency and is most reliable in terms of message loss. It uses the ROS shared mem-

ory interface package 110, which is based on boost’s interprocess communication

library.

In addition to general RobotInterface plugins, ControlIt! also includes two

robot-specific plugins, one for Dreamer (RobotInterfaceDreamer), and one for
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Fig. 7. ControlIt! employs a hardware abstraction layer that consists of a RobotInterface and
a Clock. The RobotInterface has two methods: read and write. The read method returns a

RobotState object that includes details about the robot joint positions, velocities, accelerations,
and efforts. The write method takes as input a Command object and issues the command to the

robot joints.

Fig. 8. The robot interface plugins that are currently available include support for the following

transport protocols: ROS Topic, UDP, and shared memory. There are also specialized robot inter-
faces for Dreamer and Valkyrie. The servo clocks provided include support for std::chrono, ROS

time, and RTAI time.

Valkyrie (RobotInterfaceValkyrie). RobotInterfaceDreamer interfaces with a

RTAI real-time shared memory segment that is created by the robot’s software

interface called the M3 Server. It also implements separate PID controllers for

robot joints that are not controlled by WBC. They include the finger joints

in the right hand, the left gripper joint, the neck joints, and the head joints.
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In the current implementation, these joints are fixed from WBC’s perspective.

RobotInterfaceValkyrie interfaces with shared memory segment created by

Valkyrie’s software interface. This involves integration with a controller manager

provided by ros control 6 to gain access to robot resources.

ControlIt! includes several ServoClock plugins to enable flexibility in the

way the servo thread is instantiated and configured to be periodic. The current

ServoClock plugin library includes plugins for supporting servo threads based on a

ROS timer, a C++ std::chrono timer, or an RTAI timer. Support for additional

methods can be included in the future as additional plugins.

4.2. Configuration and Integration

Support for configuration and integration is important because as a software frame-

work ControlIt! is expected to be (1) used in many different applications and hard-

ware platforms that require different whole body controllers and (2) just one com-

ponent in a complex application consisting of many components. In addition, Con-

trolIt!’s configuration and integration capabilities directly impacts the software’s

usability, which must be high to achieve the goal of widespread use. ControlIt!

supports integration through four mechanisms: (1) parameter reflection, which

exposes controller parameters to other objects within ControlIt! and is used by the

other two mechanisms, (2) parameter binding, which enables the parameters to

be connected to external processes through an extensible set of transport layers,

(3) events, which enable parameter changes to trigger the execution of external

processes without the use of polling, and (4) services, which enable external pro-

cesses to query information about the controller. ControlIt! supports configuration

through scripts that enable users to specify the structure of the compound task

and constraint set, the type of whole body controller and hardware interface to use,

the initial values of the parameters, the parameter bindings, and the events. These

scripts are interpreted during ControlIt!’s initialization to automatically instanti-

ate the desired whole body controller and integrate it into the rest of the system.

Details of ControlIt!’s support for configuration and integration are now discussed.

Parameter Reflection. Parameter reflection was originally introduced in

Stanford-WBC. It defines a ParameterReflection parent class through which child

class member variables can be exposed to other objects within ControlIt!. The API

and class hierarchy of the ParameterReflection class is shown in Figure 9 (a). Pa-

rameter reflection enables internal control parameters to be exposed to other objects

within ControlIt!. It consists of an abstract parent called ParameterReflection that

provides methods for declaring and looking up parameters. When a parameter is de-

clared, it is encapsulated within a Parameter object, which contains a name, pointer

to the actual variable, a list of bindings, and a method to set the parameter’s value.

Subclasses of ParameterReflection are able to declare their member variables as pa-

rameters and thus make them compatible with ControlIt’s parameter binding and

event mechanism.
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Parameter Binding. Parameter binding enables the integration of ControlIt!

with other processes in the system by connecting parameters to an extensible set of

transport layers. Its API and class hierarchy is shown in Figure 9 (b). The classes

that constitute the parameter binding mechanism consist of a BindingManager that

maintains a set of BindingFactory objects that actually create the bindings, and a

BindingConfig object that specifies properties of a binding. The required properties

include the binding direction (either input or output), the transport type, which is a

string that must match the name of a Binding provided by a BindingFactory plugin,

and a topic to which the parameter is bound. The BindingConfig also contains an

extensible list of name- value properties that is transport protocol specific. For

example, transport- specific parameters for ROS topic output bindings include the

publish rate, the queue size, and whether the latest value published should be

latched.

During the initialization process, BindingConfig objects are stored as param-

eters within a ParameterReflection object, which is passed to the BindingMan-

ager. The BindingManager searches through its BindingFactory objects, which are

dynamically loaded via plugins, for factories that are able to create the desired

binding. The current bindings in ControlIt’s binding library include input and out-

put bindings for ROS topics and shared memory topics. More can be easily added

in the future via the plugin architecture. The newly created Binding objects are

stored in the parameter’s Parameter object. When a parameter’s value is set via

Parameter.set(), the new value is transmitted through output bindings to which

the parameter is bound. This enables changes in ControlIt! parameters to be pub-

lished onto various transport layers and topics notifying external processes of the

latest values of the parameters. Similarly, when an external process publishes a value

onto a transport layer and topic to which a parameter is bound via an input bind-

ing, the parameter’s value is updated to be the published value. This enables, for

example, external processes to dynamically change a task’s references or controller

gains, which is necessary for integration.

Events. Events contain a logical expression over parameters that are interpreted

via muParser 111, an open-source math parser library. Its API is shown in Figure 9

(c). Events are stored in the ParameterReflection parent class. The servo thread

calls ParameterReflection.emitEvents() at the end of every servo cycle. The names

of events whose condition expression evaluates to true are published on ROS topic

/[controller name]/events. Events contain a boolean variable called “enabled”

that is used to prevent an event from continuously firing when the condition expres-

sion remains true since this would likely flood the events ROS topic. Instead, events

maintain a fire-once semantic meaning they only fire when the condition expression

changes from false to true.

Service-based controller introspection capabilities. To further assist Con-

trolIt! integration, into a larger system, ControlIt! also includes a set of service-

based introspection capabilities. Unlike ROS topics, which are asynchronous uni-

directional, ROS services are bi-directional and synchronous. ControlIt! uses this
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Fig. 9. ControlIt! includes three mechanisms for integration: parameter reflection, parameter bind-
ing, and events. Sub-figure (a) shows the parameter reflection mechanism that enables parameters

to be exposed to other objects within ControlIt! including the parameter binding and event mech-

anisms. Sub- figure (b) shows the parameter binding mechanism that enables parameters to be
bound to an extensible set of transport layers, which enables them to be accessed by external

processes. Sub-figure (c) shows an event definition. Events are stored within ParameterReflection

objects and are emitted at the end of the servo loop. They enable external processes to be no-
tified when a logical expression over a set of parameters transitions from being false to true and

eliminates the need for external processes to poll for state changes within ControlIt!.

capability to enable external processes to query certain controller properties

as it is running. For example, two often- used services include /[controller

name]/diagnostics/getTaskParameters, which returns a list of all tasks in the

compound task, the parameters, and their parameter values, and /[controller

name]/diagnostics/getRealJointIndices, which returns the ordering of all real

joints in the robot. This is useful to determine the joint order when updating the

reference positions of a posture task or interpreting the meaning of the posture

task’s error vector. A full list of ControlIt’s service-based controller introspection

capabilities is provided in Appendix C.

Script-based configuration and initialization. As previously mentioned,

ControlIt! supports script-based configuration specification and initialization en-

abling integration into different applications and platforms without being recom-

piled. This is necessary given the plethora of properties that must be defined and
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the wide range of anticipated applications and hardware platforms. To instantiate

a whole body controller using ControlIt!, the user must specify many things includ-

ing the compound task, constraint set, whole body controller, robot interface, servo

clock, initial parameter values, parameter bindings, and events. In addition, there

are numerous controller parameters as defined in Appendix Appendix B. ControlIt!

enables users to define the primary WBC configuration and integration abstractions

including tasks, constraints, compound tasks, constraint set, parameter bindings,

and events via a YAML file whose syntax is given in Appendix Appendix D. The

remaining parameters are defined through the ROS parameter server, which can

also be initialized via another YAML file that is loaded via a ROS launch file 112.

ROS launch is actually a powerful tool for loading parameters and instantiating pro-

cesses. ControlIt! leverages this capability to enable users to initialize and execute

a ControlIt! whole body controller using a single command.

4.3. Multi-threaded Architecture

Higher servo frequencies can be achieved by decreasing the amount of computation

in the servo loop. The amount of computation can be reduced because robots typ-

ically move very little during one servo period, which is usually 1ms. Thus, state

that depends on the robot configuration like the robot model and task Jacobians

often do not need to be updated every servo cycle. ControlIt! takes advantage of this

possibility by offloading the updating of the robot model and the task states, which

include the task Jacobians, into child threads. Specifically, ControlIt! uses three

threads as shown in Figure 10. They include (1) a Servo thread that executes the

actual servo loop, (2) a ModelUpdater thread that is responsible for updating the

robot model, which includes the kinematics, inertia matrix, gravity compensation

vector, the constraint set, and the virtual linkage model, and (3) a TaskUpdater

thread that is responsible for updating the states of each task in the compound

task, which includes the task Jacobians. The Servo thread is instantiated by the

ServoClock and can thus be real-time when, for example, ServoClockRTAI is used.

ModelUpdater and TaskUpdater are child threads that do not operate in a real-

time manner. From a high-level perspective, Servo provides ModelUpdater with the

latest joint states. The ModelUpdater uses this information to update the robot

model in parallel with the Servo thread, and provides the updated robot model to

the Servo when complete. Whenever the robot model is updated, the Servo thread

provides the updated model to the TaskUpdater thread, which updates the task

states. These updated task states are then provided to the Servo thread. Details

on how this process is achieved in a manner that is non-blocking and safe are now

discussed.

Two key requirements of the multi-threaded architecture are (1) the Servo

thread must not block and (2) there must not be any race conditions between

threads. The first requirement implies that the servo thread cannot call the block-

ing lock() method on the mutexes protecting the shared states between it and the
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Fig. 10. To achieve higher servo frequencies, ControlIt! employs a multi- threaded architecture

consisting of three threads: (a) Servo, (b) ModelUpdater, and (c) TaskUpdater. Servo is a real-
time thread whereas ModelUpdater and TaskUpdater are non-real- time threads. The names are

self-descriptive. This figure shows the behavior and interactions of these threads. At a high level,

Servo gives ModelUpdater the latest joint states and receives an updated robot model. It also gives
TaskUpdater an updated robot model and receives updated state for each task, which includes

the task Jacobians. To prevent Servo from blocking due to contention between it and the other

threads, which is necessary for real-time operation, ControlIt! maintains two copies of the robot
model and two copies of the state for each task – an “active” one and an “inactive” one. Active

versions are used solely by Servo. Inactive versions are updated by the child threads. To get
updates from the child threads, Servo swaps the active and inactive versions when it can be done

in a non-blocking and safe manner. It does this by calling the non-blocking tryLock() operation
on the mutex protecting the inactive version of the robot model and only performing the swap
when it successfully obtains the lock. The swapping of task state is kept non-blocking and safe
through FSM design – a task will only indicate it has updated state after the TaskUpdater thread

is done updating it. To prevent contention between the child threads, the inactive and active
robot models can only be swapped when TaskUpdater is idle. To further reduce unnecessary

computations, TaskUpdater only executes after the robot model is swapped.

child threads. Instead, it can only call the non-blocking try lock() method, which

returns immediately if the lock is not obtainable. ControlIt!’s multi-threaded ar-

chitecture is thus structured to only require calls to try lock() within the Servo

thread. To prevent race conditions between threads, two copies of the robot model

and task state are maintained: an “active” copy that is used by the Servo thread,

and an “inactive” one that is updated by the non-servo threads. Updates from the
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child threads are provided to the Servo thread by swapping the active and inactive

states. This swapping is done by the Servo thread in a non-blocking and oppor-

tunistic manner.

Figures 10 (a) and (b) show how the Servo thread passes the latest joint state

information to the ModelUpdater thread and trigger it to execute. After obtaining

the latest joint states by calling RobotInterface.read() and checking for updates

from the child threads by executing the CheckForUpdates FSM, the Servo thread

attempts to obtain the lock on the mutex protecting the inactive robot model by

calling ModelUpdater.tryLock(). If it is able to obtain the lock on the mutex,

it saves the latest joint states in the inactive robot model and then triggers the

ModelUpdater thread to execute by calling ModelUpdater.unlockAndUpdate().

As the name of this method implies, the Servo thread also releases the lock on the

inactive model thereby allowing the ModelUpdater thread to access and update the

inactive robot model. If the Servo thread fails to obtain the lock on the inactive

model, the ModelUpdater thread must be busy updating the inactive model. In this

situation, the Servo thread continues without updating the inactive model.

To prevent race conditions between the Servo thread and the child thread, up-

dates from child threads are opportunistically pulled by the Servo thread. This is

because the child threads operate on inactive versions of the robot model and task

states, and only the Servo thread can swap the active and inactive versions. There

are two points in the servo loop where the Servo thread obtains updates from the

child threads. This is shown by the two “CheckForUpdates” states in left side of

Figure 10 (a). They occur immediately after obtaining the latest joint states by

calling RobotInterface.read(), and immediately after triggering the ModelUpdater

thread to run or failing to obtain the lock on the inactive robot model. More checks

for updates could be interspersed throughout the servo loop but we found these two

placements to be sufficient.

The operations of the CheckForUpdates state are shown in the upper-right cor-

ner Figure 10. The Servo thread first obtains task state updates and then checks

whether the TaskUpdater thread is idle. If it is idle, the Servo thread again checks

for updated task states. This is to account for the following degenerate thread in-

terleaving during the previous check for updated task states that would result in

the permanent loss of updated task state:

(1) The Servo thread begins to check some of the tasks for updated states.

(2) TaskUpdater thread updates all of the tasks including those that were just

checked by the Servo thread and returns to idle state. Note that this is pos-

sible even if the Servo thread is real-time and has higher priority since the

TaskUpdater may be executing on a different CPU core.

(3) The Servo thread completes checking the remainder of the tasks for updates.

In the above scenario, the tasks that were checked in step 1 would have updated

states that would be lost without the Servo-thread re-checking for them after it

confirms that the TaskUpdater is idle. In a worst-case scenario, the TaskUpdater
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thread may update all of the tasks after the Servo thread checks for updates but

before it checks whether the TaskUpdater is idle, resulting in the loss of updated

state from every task. The loss of updated task state is not acceptable despite the

presence of future update rounds since it is theoretically possible for the updated

states of the same tasks to be continuously lost during every update round. While

seemingly improbable, this “task update starvation” problem was actually observed

and thus discovered while testing ControlIt! on Valkyrie.

After verifying that the TaskUpdater thread is idle and ensuring all of the

updated task states were obtained, the Servo thread next checks for an updated

robot model by calling ModelUpdater.checkUpdate(). This method switches to

the updated robot model if one is available. If the model was updated, the

Servo thread then calls TaskUpdater.updateTasks() passing it the updated robot

model. This method is non-blocking since the TaskUpdater must be idle. It trig-

gers the TaskUpdater to update the states of each task in the compound task.

Note that if the robot model was not updated, the Servo thread does not call

TaskUpdater.updateTasks() since task state updates are based on changes in the

robot model.

The current implementation does not consider the possibility that the active

robot model or task states become excessively stale. This can occur if the robot

moves so quickly that the model changes significantly since the last time it was

updated. ControlIt’s multi-threaded architecture can be easily modified to monitor

difference between the current robot state and the robot state that was used to

update the currently-active robot model and task states. If the difference exceeds

a certain threshold, the Servo loop can update the active model itself to prevent

excessive staleness. We currently do not implement this because our evaluations did

not indicate the need for it.

Sometimes a multi-threaded architecture is not necessary when the robot has

a limited number of joints, the control computer is particularly fast, and the com-

pound task is structured to reduce computational complexity (e.g., by using simpler

tasks or limiting the number of tasks that share the same priority level). In this

case, ControlIt!’s multi-threaded architecture can be disabled by setting two ROS

parameters, single threaded model and single threaded tasks, to be true prior

to starting ControlIt!. Details of these parameters are given in Table 7, which is

in Appendix B. When these parameters are set to true, the servo loop updates the

model and task states each cycle of the servo loop.

Regardless of whether a multi-threaded architecture is used, the servo loop must

be executed in a real-time manner. To help facilitate this, no dynamic memory al-

location can occur once the servo loop starts. The initialization process consists of

instantiating all objects using their constructors and then calling init() methods

on all of the objects. All necessary memory is allocated during either the construc-

tion or initialization phases. To ensure no memory is being dynamically allocated

in the linear algebra operations that are extensively used in WBOSC, we tested

the code by defining the EIGEN RUNTIME NO MALLOC preprocessor macro prior to
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Fig. 11. This sequence of snapshots show the movements of Dreamer performing a product disas-

sembly task. Initially a metal pipe with a rubber valve is in front of Dreamer. To disassemble the

product, Dreamer grabs the pipe with her right hand while using her left gripper to remove the
valve. The pipe and valve are then placed into separate containers for storage. This demonstrates

the integration of ControlIt! with a robot and an application, and the fact that the task and

constraint libraries are sufficiently expressive to accomplish this task.

including the Eigen headers.

5. Evaluation

We integrate ControlIt! with Dreamer, a dual-arm humanoid upperbody made by

Meka Robotics, which was purchased by Google in December 2013. Dreamer’s arms

and torso contains series elastic actuators and high fidelity torque control. The robot

is modeled as a (16 + 6 = 22) DOF robot where 16 are the physical joints and the

remaining 6 DOFs represent the floating DOFs.e

5.1. Product Disassembly Application

Using ControlIt!, we developed an application that makes Dreamer disassemble

a product. A sequence of snapshots showing Dreamer performing the task using

ControlIt! is given in Figure 11. The task is to take apart an assembly consisting of

a metal pipe with a rubber valve installed at one end. To remove the valve, Dreamer

is programed to grab and hold the metal pipe with her right hand while using her

left gripper to detach the valve. Once separated, Dreamer places the two pieces into

separate storage containers.

Two compound task configurations were used to achieve the product disassembly

task:

(1) single priority level containing a joint position task

(2) dual priority level containing two higher priority Cartesian position tasks and

two 2D orientation tasks (one for each wrist) and a lower priority posture task.

The benefits of the second configuration are shown by demonstrating how chang-

ing just three controller parameters, i.e., the Cartesian position of the product, en-

ables the controller to adapt to changes in the product’s location while continuously

eWBOSC by default always assumes a floating base. In the case when the robot is fixed in place,
it is represented in WBOSC as a constraint. This enables ControlIt! to be more generic in terms

of supporting both mobile and fixed robots.
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Fig. 12. ControlIt! is integrated into a larger system consisting of three major components: Con-

trolIt!, the application, and a data logger. Each of these components run as a separate process but

communicate over ROS topics, which are represented by the arrows. The ROS topics are bound
the variables within ControlIt!. The WBOSC configuration consists of two priority levels within

the compound task is shown. Higher priority numbers correspond to higher priority tasks. The
other components within ControlIt! are not shown since they do not have any bound parameters
in this application.

minimizing the squared error of the posture task. This is in the spirit of WBC where

changes in a low-dimensional space (three Cartesian dimensions) results in desirable

changes in a larger dimensional space (e.g., the number of DOFs in the robot).

Developing the product disassembly application required writing new

RobotInterface and ServoClock plugins that enable ControlIt! to work with

Dreamer. This is because Dreamer comes with the M3 software that is designed

specifically for robots built by Meka. The M3 software includes the M3 Server,

which instantiates an RTAI shared memory region through which ControlIt! can

transmit torque commands and receive joint state information. In addition, the

M3 Server also implements the transmissions that translate between joint space

and actuator space and the protocol for setting the modes and gains of the joint

controllers executing on the robot’s DSPs. Other useful tools provided by the M3

software include applications for tuning and calibrating individual joints. The Con-
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(a)

Property Control PC Application PC

CPU Intel Core i7-4771 @ 3.56GHz Intel Core i7-4771 @

3.56GHz

Motherboard Zotac H87 JetWay JNF9J-Q87

OS Ubuntu 12.04 server, 32-bit, kernel

2.6.32.20, RTAI 3.9, EtherCAT 1.5.1

Ubuntu 14.04 desktop,

64-bit, Kernel 3.13.0-44

Middleware and

Applications

ROS Hydro, ControlIt!, M3 Server ROS Indigo, demo

applications, Gazebo

(b)

Fig. 13. The system consists of a humanoid robot that’s connected to a control PC over a 100Mbps
EtherCAT network. The control PC runs ControlIt! and is connected to an application PC over

a two-hop 1Gbps Ethernet network. The application PC runs the application, which remotely

interacts with ControlIt! via ROS topics. Details of the hardware and software on the control and
application PCs are given in the table. Note that the control PC runs an older operating system

and older middleware than the application PC despite having similar hardware. This is because

configuring the control PC for real-time operation while remaining compatible with the robot
hardware is difficult. Allowing applications to run on a separate PC enables them to operate in

a more up-to- date software environment and reduces the likelihood of interference between the

applications and the controller.

trolIt! robot interface we developed for Dreamer is called RobotInterfaceDreamer.

It uses the shared memory region created by the M3 Server to connect the WBOSC

controller to the robot, and implements separate simpler controllers for the joints

that are not controlled by WBOSC. These joints include the finger joints in the

right hand, the left gripper joint, the neck joints, and the head joints (eyes and

ears). In the current implementation, these joints are fixed in place from WBOSC’s

perspective. While this is not true, they are located at the robot’s extremities and

are attached to relatively small masses; the feedback portion of the WBOSC con-

troller is able to sufficiently account for these inaccuracies as demonstrated by the

successful execution of the application.

Because Dreamer’s M3 software is designed to work with RTAI we cre-

ated an RTAI-enabled servo clock called ServoClockRTAI, which instantiates a

RTAI real-time thread for executing the servo loop within ControlIt!. Whereas

RobotInterfaceDreamer is specific to Dreamer, ServoClockRTAI can be re-used

on any robot that is RTAI-compatible to get real-time execution semantics.

Since Dreamer contains a 2-DOF torso and two 7-DOF arms, we use a compound
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task containing a Cartesian position and orientation task for each of the two end

effectors, and a lower priority joint position task for defining the desired posture.

The constraint set contains two constraints: a FlatContactConstraint for fixing

the robot’s base to the world and a CoactuationConstraint for the upper torso

pitch joint that is mechanically connected to the lower torso pitch joint by a 1:1

transmission. This results in the positions and velocities of the two joints to always

be the same. The Jacobian of the CoactuationConstraint consists of one row and a

column for each DOF in the robot’s model. The column representing the slave joint

contains a 1 and the column representing the master joint contains the negative of

the transmission ratio. Details of these types of constraints were discussed in 27.

Finally, the goal state and error of every task in the compound task are bound

to ROS topics so they can be accessed by the application. A data logger based on

ROSBag 113 is used to record experimental data. Figure 12 shows how the various

components are connected. Kinesthetic teaching is used to obtain the trajectories

for performing the task, which consists of manually moving the robot along the de-

sired trajectories while taking snapshots of the robot’s configuration. Cubic spline

is used to interpolate intermediate points between snapshots. Note that the appli-

cation is open-loop in that the robot does not sense where the metal pipe and valve

assembly is located. We manually reposition the metal pipe and valve assembly at

approximately the same location prior to executing the application.

Before the application can be successfully executed, calibration and gain tuning

must be done for every joint and controller in the system. We calibrated and tuned

one joint at a time starting from those in the robot’s extremities (e.g., wrist yaw

joints) and moving inward to joints with increasing numbers of child joints. Once

all of the joints were calibrated and torque controller gains tuned, we proceeded

to tune the task-level gains in the following order: joint position task, Cartesian

position tasks, and finally orientation tasks. The gains used are given in Appendix

E. Note that these gains are dependent on ControlIt’s servo frequency, which we

set to be 1kHz, and the end-to-end communication latency between the whole body

controller and the joint torque controllers, which is about 7ms.

The system architecture is shown in Figure 13. It consists of the robot, the

control PC, and the application PC. The robot communicates with the control PC

over a 100Mbps EtherCAT link. The control PC communicates with an application

PC via a 2-hop 1Gbps Ethernet network. The control PC runs ControlIt! on an

older but real-time patched version of Linux relative to the application PC. This

is because upgrading the operating system on the control PC while maintaining

compatibility with RTAI and necessary drivers like EtherCAT and ensuring accept-

able real-time performance is a difficult and time consuming process that requires

extensive testing. The product disassembly application could run directly on the

Control PC, but we chose to run in on a different application PC to emphasize the

ability to integrate ControlIt! with remote processes and to allow the application to

make use of a newer operating system, middleware, and libraries. In addition, run-

ning the application on a separate PC reduces the likelihood that the application
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Fig. 14. Performance data collected from one execution of the product disassembly application.

would interfere with the whole body controller especially if the application includes

a complex GPU-accelerated GUI.

The application PC includes the dynamics simulator Gazebo 114. When devel-

oping the product disassembly application, we always tested the application in sim-

ulation prior to on real- hardware, reducing the number of potentially-catastrophic

problems encountered on hardware. For example, on the real hardware, if the ap-

plication crashes while the arms are above the table, the arms may slam into the

table with enough force to result in damage to the robot and perhaps the table.

Testing the application in simulation enabled us to evaluate application stability.

We implemented the application in Python (see Appendix F for an example code

fragment), which further increases the importance of simulation testing since there’s

no compilation stage to identify potential problems. Note that the application could

have been written in any programming language supported by ROS 115. Because

ControlIt! has a hardware abstraction layer consisting of a RobotInterface plugin

and a ServoClock plugin, switching between testing the application in simulation

versus on the real hardware is simple and does not require any changes to the code.

After tuning the controllers, we were able to repeatedly execute the application

in a reliable manner. Figure 14 shows performance data collected from one of the

many executions of the application. The data was collected from ROS topics to

which internal controller parameters were bound. Average statistics are given in

Table 2. The results show average servo computational latencies of about 0.5ms,

which is the amount of time the servo thread takes to compute one cycle of the servo

loop and is an order of magnitude faster than the 5ms achieved by UTA-WBC.

Table 3 shows the results of an experiment that obtains a detailed breakdown of

the latencies within the servo loop by instrumenting the servo loop with timers. The
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Statistic Sample Size Average Units

Right Hand Cartesian Error 49,137 2.79 ± 0.56 cm

Right Hand Orientation Error 55,735 3.72 ± 3.12 degrees

Left Hand Cartesian Error 43,026 1.91 ± 0.67 cm

Left Hand Orientation Error 50,381 4.86 ± 2.23 degrees

Servo Frequency 67,225 1005.43 ± 15.68 Hz

Servo Compute Latency 64,118 0.487 ± 0.0335 ms

Table 2. Average statistics of the performance data from one execution of the product disassembly

task using the 22-DOF Dreamer model. The average range is the standard deviation of the data
set. The results indicate that average Cartesian position error of the end effectors are about 2-3cm

and average orientation is about 3-5 degrees. The servo frequency is slightly above the desired

1kHz and there is jitter despite running within an RTAI real-time context. The servo compute
latency indicates that on average it only takes about 0.5ms to perform all computations in one

cycle of the servo loop, which is significantly faster than the 5ms required by UTA-WBC.

values are the average over 1000 executions of the servo loop. The vast majority

of the servo loop’s computational latency is from executing the WBOSC algorithm

to get the next command. Multi-threading significantly decreases the latency of

updating the model and slightly decreases the latency of computing the command.

The slightly higher average total latency in the multi-threaded case in Table 3

relative to the servo computational latency in Table 2 is most likely due to the

additional instrumentation that was addded to the servo loop to obtain the detailed

latency breakdown information.

The results in Table 2 also show Cartesian positioning errors of up to 5cm

and orientation errors of up to 30 degrees, though the errors are much less on

average. Note that the Cartesian position and orientation errors are both model-

based meaning they are derived from the joint states and the robot model and not

from external sensors like a motion capture system. Thus, the accuracy of these error

values depend on the accuracy of the robot’s model and should not be considered

absolute. However, they do represent the errors that the whole body controller sees

and attempts to eliminate but cannot because the feedback gains cannot be made

sufficiently high to remove the errors.

Figures 14(c) and 14(f) indicate a problem with achieving real-time semantics

on the control PC since the servo frequency and computational latency occasionally

suffers excessively low and high spikes. The lowest servo frequency measured in this

sample execution is only 195.3Hz, the maximum is 2.254kHz, and the average is

1.01 ± 0.016kHz. Coincident with the large spikes in the servo frequency are large

spikes in the servo compute latency. This indicates that something in the operating

system or underlying hardware occasionally prevented ControlIt!’s real-time servo

thread from executing as expected. Despite the violations in real-time semantics

and errors in Cartesian position and orientation, the ControlIt! is still able to make



June 4, 2015 0:19 main

30 C.-L. Fok, G. Johnson, J. D. Yamokoski, A. Mok, and L. Sentis

Step in Servo Loop Multi-Threaded Latency Single-Threaded Latency

Read Joint State 0.020 ± 0.0020 0.020 ± 0.0026

Publish Odometry 0.014 ± 0.0041 0.0147 ± 0.00526

Update Model 0.0075 ± 0.00256 0.272 ± 0.00235

Compute Command 0.470 ± 0.0128 0.497 ± 0.0120

Emit Events 0.0036 ± 0.00028 0.0041 ± 0.00027

Write 0.0116 ± 0.00075 0.0125 ± 0.00119

Total 0.528 ± 0.0144 0.820 ± 0.0145

Table 3. A breakdown of the latencies incurred within one cycle of the servo loop for both the
single and multi-threaded scenarios using a 22 DOF robot model. All values are in milliseconds

and are the average and standard deviation over one thousand samples. Most of the latency is

spent computing the command, which includes executing the WBOSC algorithm. The benefits of
multi-threading are apparent in the latency of updating the model.

(a) (b)

Fig. 15. Histograms of the servo frequency and computational latency measured during one exe-

cution of the product disassembly application. The vast majority of the measurements were at the
desired 1KHz frequency and expected 0.5ms computational latency.

Dreamer reliably perform the task. This is probably because the spikes are rare as

shown by the histograms of the same data as shown in Figure 15.

5.2. Latency Benchmarks

The results in Table 2 indicate that the servo loop spends about 0.487 ± 0.0335 ms

computing the next command. This is for a specific compound task with two priority

levels and 2D orientation tasks and with multi-threading enabled. We now vary the

compound task configuration in terms of both number of priority levels (which

affects the number of tasks per priority level) and types of orientation task used.

We also evaluate both multi-threaded and single-threaded execution of ControlIt!.

All tests involve five tasks: a Cartesian position task for each of the two end
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Priority Levels / Task
Allocation

Orientation
Task

Thread-
ing

Latency (ms)

2 priority levels 2D multi 0.528 ± 0.0144

4 tasks at higher priority single 0.820 ± 0.0145

1 task at lower priority 3D multi 0.999 ± 0.0261

single 1.289 ± 0.0218

3 priority levels 2D multi 0.494 ± 0.0161

2 tasks at highest priority single 0.764 ± 0.0217

2 tasks at middle priority 3D multi 0.788 ± 0.0212

1 task at lowest priority single 1.068 ± 0.0207

5 priority levels 2D multi 0.477 ± 0.0155

1 task at each level single 0.744 ± 0.0386

3D multi 0.603 ± 0.0166

single 0.882 ± 0.0168

Table 4. The servo loop’s computational latency when configured with several different compound
tasks and running in both multi-threaded and single-threaded mode using a 22-DOF model. All

latencies are the average over 1000 consecutive measurements and the intervals are the standard

deviations. The results show that the servo loop’s computational latency can be significantly
decreased using by using multi-threading and placing fewer tasks at each priority level.

effectors, an orientation task for each of the two end effectors, and a posture task.

Two types of orientation tasks are used: 2D and 3D. When 2D orientation tasks

are used, only 5 DOFs of each end effector are controlled by the orientation and

position tasks; the sixth DOF is controlled by a lower priority posture task. When

3D orientation tasks are used, all 6 DOFs of each end effector are controlled by the

orientation and position tasks.

Three configurations of the compound task are evaluated. The first configuration

uses two priority levels and assigns all four Cartesian position and orientation tasks

to be at the higher priority level. The posture task is located at the lower priority

level. The second configuration uses three priority levels and assigns the Cartesian

position tasks to be at the highest priority level and the orientation tasks to be

in the middle priority level. This is possible since the orientation tasks operate

within the nullspace of the Cartesian position tasks. Like the first configuration,

the posture task is located at the lowest priority level. The third configuration uses

5 priority levels. The two Cartesian position tasks are placed in the top two priority

levels. The two orientation tasks are placed in the next two priority levels. Finally,

the posture task is located in the lowest priority level.

The results are shown in Table 4. The use of multi-threading significantly de-

creases computational latency by about 0.2-0.3 ms. Interestingly, distributing the

tasks across more priority levels decreases computational latency. In this case, plac-
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ing the orientation tasks and Cartesian position tasks at different priority levels

results in a significant decrease in servo computational latency. This is because the

Jacobians and commands of all tasks within the same priority level are concate-

nated into a large matrix and, in this case, performing operations on large matrices

takes more time than performing multiple operations and nullspace projections us-

ing smaller matrices.

Note that ControlIt! can maintain a 1kHz servo frequency in many of the com-

pound task configurations even when running in single-threaded mode. Specifically,

when 2D orientation tasks are used, 1kHz servo frequencies are achieved in all

compound task configurations. When 3D orientation tasks are used, 1kHz servo fre-

quencies can be achieved when the five tasks are spread across five priority levels.

The 0.882± 0.0168 ms that’s achieved in this case is similar to the 0.9± 0.045 ms

that’s achieved using an optimized quadratic programming WBC algorithm 61.

5.3. Flexible End Effector Repositioning

As previously mentioned, the product disassembly application operates open- loop

and requires the product to be placed at approximately the same location at the be-

ginning of each execution of the application. For the application to be more robust,

additional sensors need to be integrated that can determine the actual location of

the product and communicate this information to the application. Such a sensor

could be easily integrated since the application is a ROS node meaning it can sim-

ply subscribe to the ROS topic onto which the sensor publishes the actual location

of the product. Once the application knows where the product is located, it can

generate the Cartesian space trajectories to allow the end effectors to disassemble

the product.

To demonstrate the ability for ControlIt! to make Dreamer follow different Carte-

sian space trajectories based on a sensed Cartesian goal coordinate, we created an

application that makes Dreamer’s right hand move to random Cartesian positions

while keeping the lower priority joint position task unchanged. The results are

shown in Figure 16. Note that the right hand is able to move into a wide range

of Cartesian positions and that the whole body of the robot moves to help achieve

the goal of the right hand’s Cartesian position task. The elevated error values that

periodically appear in Figures FlexibleCartesianPositioning (c) and (d) are due to

the goal Cartesian position being moved beyond the robot’s workspace. Note that

despite this problem the controller remains stable. This demonstrates ControlIt’s

ability to be integrated into different applications and WBOSC’s ability to handle

robot redundancies in a predictable and reliable manner.

6. Discussion

In this section, we provide a brief history of ControlIt’s development followed by

future research directions.
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Fig. 16. This figure shows two different perspectives of the same execution of Dreamer changing

the Cartesian position of her right hand while keeping the lower priority joint position task un-
changed. It demonstrates WBOSC’s ability to handle changes in the goal Cartesian position while
predictably handling robot redundancies. The error plots show periodically elevated errors when

the goal Cartesian position is moved beyond the robot’s workspace. The errors are square-shaped
because of a 5-second pause inserted between successive Cartesian trajectories. The controller

remains stable despite this problem.

6.1. History of ControlIt!’s Development

Prior to integration with Dreamer, ControlIt! was initially developed for NASA

JSC’s Valkyrie humanoid robot (now called R5) 116. Software and hardware devel-

opment commenced simultaneously in October 2012. Since hardware development

took nearly a year, the first year of developing and testing ControlIt! involved using

a simulated version of Valkyrie in Gazebo 114. During this phase, ControlIt! was

initially used to control individual parts of the robot, e.g., each individual limb,

the lower body, the upper body, and finally the whole robot. By the summer of

2013, ControlIt! was used to control 32-DOFs of Valkyrie in simulation (6 DOFs
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per leg, 7 DOFs per arm, 3 DOFs in the waist, and 3 DOFs in the neck). Compound

tasks consisting of up to 15 tasks were employed. They include Cartesian position

and orientation tasks for the wrists, feet, and the head, an orientation task for the

chest, a center of mass task and posture task for the whole robot, and center of pres-

sure tasks for the feet. Contact constraints for the hands and feet were configured,

though not always enabled, depending on whether contact with the environment

was being made. Management of all of these tasks and constraints were done using a

higher-level application called Robot Task Commander (RTC) 99, which provided a

graphical user interface for operators to instantiate and configure controllers based

on ControlIt!, integrate these controllers with planners and other processes via ROS

topics (locomotion was done using a phase space planner 117), and sequence their

execution within a finite state machine. Integration of ControlIt! with Valkyrie in

simulation was successful. We were able to do most of the DRC tasks including

valve turning, door opening, power tool manipulation, ladder and stair climbing,

water hose manipulation, and vehicle ingress. This enabled us to pass the DRC

critical design review in June 2013 and continue to participate in the DRC Trials

as a Track A team.

By the end of Summer 2013, Valkyrie’s hardware development was nearing com-

pletion. At this point we began integrating ControlIt! with actual Valkyrie hardware.

After using ControlIt! to control parts of the robots individually, we attempted to

control all 32 DOFs but ran into problems where gains could not be increased high

enough to sufficiently reduce errors due to modeling inaccuracies. The robot could

stand under joint position control but it was not sufficiently stiff to locomote and

certain joints like the knees and ankles would frequently overheat. We later hypoth-

esized that one problem was likely due to the communication latencies between

ControlIt! and the joint-level controllers being too high. We have since developed a

strategy called embedded damping to help maintain stability despite the high com-

munication latency 118. Since we could not control all 32 DOFs in time for the DRC

Trials in December 2013, we resorted to use ControlIt! on Valkyrie’s upper body to

perform several DARPA Robotics Challenge tasks including opening a door, using

a power tool, manipulating a hose, and turning a valve. Laboratory tests of Con-

trolIt! being used to make Valkyrie turn a valve and integrated with the RTC-based

operator interface is shown in Figure 17.

It is important to note that the currently-demonstrable capabilities of WBOSC

on real hardware is a subset of the capabilities we’ve been able to achieve in sim-

ulation. For example, while preparing for the DRC critical design review in June

2013, we were able to use ControlIt! to make a simulated Valkyrie walk using a

phase-space locomotion planner and a compound task that controls the center of

pressures of the feet, the center of mass location, and the internal tensions be-

tween the feet. We will continue to strive to demonstrate these capabilities using

ControlIt! on real hardware. Recent results showing an application-specific imple-

mentation of WBOSC controlling Hume, a point-foot biped, and making it walk in
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Fig. 17. This figure shows Valkyrie’s upper body being controlled by an early version of ControlIt!.
Using a compound task consisting of Cartesian position and orientation tasks for each hand, and

a flat contact constraint for the torso, a human operator uses Valkyrie to turn an industrial valve.

Parameter binding is used to integrate ControlIt! with the operator’s command and visualization
applications.

two dimensions is promising 117.

6.2. Future Research Directions

As an open-source framework that supports whole body controllers, we hope that

ControlIt! will be adopted by the research community and serve as a common

platform for developing, testing, and comparing whole body controllers. As a stan-

dalone system that works in both simulation and on real hardware, ControlIt! opens

numerous avenues of research. For example, ControlIt! currently allows tasks and

constraints to be enabled and disabled and to change priority levels at run-time. We

tested this on hardware by using a joint position task to get the robot into a ready

state and then switching on higher priority Cartesian position and orientation tasks

to perform a manipulation application. The transition resulted in a discontinuity

in the torque signal going to the robot, which is not a problem for an upper body

manipulation task, but will likely be a problem for legged locomotion.

We are currently considering two ways to enable smooth WBOSC configuration

changes. The first method is to gradually introduce the effects of a new task configu-

ration. In this option, the task acceleration or force command is gradually increased

to reach its actual value. The second method consists of projecting the difference

between a current compound task’s torque command and the next one in task

space and adjusting for the difference in a feed-forward manner. This feed-forward

adjustment can be gradually eliminated to ensure smooth transition between tasks.

We recently used this technique on Hume, a biped robot, to smoothly transition
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between contact and non-contact states of the feet 117.

While ControlIt! is designed to support multiple WBC algorithms via plug-

ins, we currently only have two WBC plugins and both are based on WBOSC.

Other successful WBC algorithms incorporate quadratic programming 25,57,61,119.

Unlike WBOSC that analytically solves the WBC problem, quadratic program-

ming is an optimization method that more naturally supports inequality con-

straints. While quadratic programming is computationally intensive, recent progress

on methods to simplify quadratic programming-based whole body controllers have

enabled them to execute in less than 1ms on robots with two fewer joints than

Dreamer 61. As future work, it would be interesting to determine (1) whether

quadratic programming-based whole body controllers could be implemented as a

plugin within ControlIt!’s architecture and (2) the pros and cons of WBOSC rel-

ative to quadratic programming-based whole body controllers. Note that others

have developed formulations similar to WBOSC that include support for inequal-

ity constraints and solve them using quadratic programming 17. The integration of

on-line optimization techniques to allow the incorporation of inequality constraints

is an area of future work and may require modifying the current constraint API to

include a specification of whether the constraint is negative or positive.

To the best of our knowledge, there are no other multi-threaded open source

implementations of WBOSC or other forms of whole body controllers. We are cur-

rently unable to prove that our multi-threaded design consisting of a real-time servo

thread with two child threads is optimal. Other choices certainly exist. For example,

the two child threads could be combined into a single child thread that updates both

the model and the tasks. Going in the opposite direction, a separate child thread

could be instantiated for each task where there is one thread per task. Performing a

more detailed analysis on the ideal multi-threaded architecture is a future research

direction.

One consequence of adopting a multi-threaded strategy is the robot model is

no longer updated synchronously with the servo thread and thus can become stale.

We currently do not use any metric to determine when the model has become

excessively stale. A child thread simply updates the model as quickly as possible.

For our product disassembly task, the child thread was able to update the model

fast enough to enable WBOSC to reliably complete the task. An interesting research

direction is to formally investigate how stale a model can be before it negatively

impacts robot performance. The answer will likely depend on the robot’s current

configuration.

A given constraint can have an infinite number of null space projectors. The

one we use in ControlIt! is the Dynamically Consistent Null Space Projector 120.

The nullspace projector is currently derived within the constraint set. Given the

existence of alternative null space projectors, a potential improvement to ControlIt!

would be to make the constraint set extensible via plugins. The default plugin will

use the current Dynamically Consistent Null Space Projector. However, the user
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can easily override this by providing a constraint set plugin that provides another

null space projector.

The results in Section 5.1 show that the control PC occasionally has latency

spikes that violate the desired servo frequency. Learning why the latency spikes

occur is useful since eliminating them will likely increase system reliability or at

least predictability. However, we have yet to notice the latency spikes causing any

problem during our extensive use of Dreamer. It’s worth noting that Dreamer is a

COTS robot and its control PC was configured by the robot’s manufacturer. Given

that the control PC was pre-configured for us, from our perspective, it is somewhat

of a “black box”. If the need arises (i.e., the latency spikes actually prevent us from

executing a particular task), we will investigate the latency spikes using a two-

pronged approach. First, we will instrument the Linux kernel with debug messages

that help track down when the latency spikes occur. Second, we will remove all

unnecessary kernel modules and disable all unnecessary hardware until the latency

spikes no longer occur. We will then slowly add hardware and software modules

re-testing for latency spikes after each addition. Once the latency spikes return, we

know which hardware or software module caused it and can investigate it further.

In this paper, we did not explicitly account for singularities but they did not

pose a problem in our tests even when the arms are fully stretched out as described

in Section 5.3. This is probably due to our choice of the tolerances for computing

pseudo-inverses within the controller. However, we have not performed a detailed

study on adequate tolerances nor on handling singularity thus far.

Other future research areas include how to add adaptive control capabilities that

continuously improve the robot model based on observed robot behavior, which

should enable the resulting WBOSC commands to have an increasingly high feed-

forward component and lower feedback component, and the integration of ControlIt!

with external sensors to enable, for example, visual servoing.

7. Conclusions

With the increasing availability of sophisticated multi-branched highly-redundant

robots targeted for general applications, whole body controllers will likely become

an essential component in advanced human-centered robotics. ControlIt! is an open-

source software framework that defines a software architecture and set of APIs for

instantiating and configuring whole body controllers, integrating them into larger

systems and different robot platforms, and enabling high performance via multi-

threading. While it is currently focused on facilitating the integration of controllers

based on WBOSC, the software architecture is highly extensible to support addi-

tional WBC algorithms and control primitives.

This paper provided a software framework that enables the quick instantiation

and configuration of WBOSC behaviors for practical applications such as a product

disassembly task using a 22-DOF humanoid upperbody robot. The experiments

demonstrated high performance with servo computational latencies of about 0.5ms.
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In summary, WBC is a rich and vibrant though fragmented research area today

with numerous algorithms and implementations that are not cross-compatible and

thus difficult to compare in hardware. We present ControlIt! as a software frame-

work for supporting the development and study of whole body operational space

controllers and their integration into useful advanced robotic applications.
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Appendix A. ControlIt! Dependencies

Dependency Ver-

sion

Purpose

g++ 4.8.2

or

4.6.3

Compiler for C++11 programming language

Eigen 3.0.5 Linear algebra operations

RBDL 2.3.2 Robot modeling, forward and inverse kinematics and

dynamics

URDF 1.11.6 Parsing robot model descriptions

ROS Hy-

dro

or In-

digo

Component-based software architecture, useful

libraries like pluginlib, runtime support like a

parameter server and roslaunch bootstrapping

capabilities

RTAI 3.9 Real-time execution semantics (only required when

using Dreamer or other RTAI-compatible robot)

Gazebo 5.1.0 Test controller in simulation prior to on real hardware

Table 5. ControlIt! dependencies.



June 4, 2015 0:19 main

40 C.-L. Fok, G. Johnson, J. D. Yamokoski, A. Mok, and L. Sentis

Appendix B. ControlIt! Parameters

Tables 6-7 contains additional ControlIt! parameters that can be loaded onto the

ROS parameter server. They must be namespaced by the controller’s name.

Name Description

coupled joint groups Specifies which groups of joints should be coupled.
Effectively modifies the model to decouple group of
joints from each other. This is useful for debugging
purposes or to account for modeling inaccuracies. It is
an array of array of strings.

enforce effort limits Whether to enforce joint effort limits. These limits are
specified in the robot description. If true, effort
commands exceeding the limits will be truncated at the
limit and a warning message will be produced. It is an
array of Boolean values.

enforce position limits Whether to enforce joint position limits. These limits
are specified in the robot description. If true, position
commands exceeding the limits will be truncated at the
limit and a warning message will be produced. It is an
array of Boolean values.

enforce velocity limits Whether to enforce joint velocity limits. These limits
are specified in the robot description. If true, velocity
commands exceeding the limits will be truncated at the
limit and a warning message will be produced. It is an
array of Boolean values.

gravity compensation mask Specifies which joints should not be gravity
compensated. This is useful when certain joints have so
much friction that gravity compensation is not
necessary. It is an array of joint name strings.

log level The log level, which can be DEBUG, INFO, WARN,
ERROR, or FATAL. This controls how much log
information is generated during run-time. It is a string
value.

Table 6. ControlIt! parameters (1 of 2).
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Name Description

log fields Specifies the optional fields that are in a log message’s
prefix. Possible values include:
package - the ROS package containing the message
file - file containing the message
line - the line number of the message.
function - the method producing the message
pid - the process ID of the thread producing the
message
It is an arry of strings.

max effort command Specifies the maximum effort that should be
commanded for each joint. A warning is produced if
this is violated. It is an arry of integers.

parameter binding factories The names of the plugins containing the parameter
binding factories to use. It is an array of strings.

robot description Contains the URDF description of the robot. This is
used to initialize ControlIt’s floating model. It is a
string value.

robot interface type The name of the robot interface plugin to use. It is a
string.

servo clock type The name of the servo clock plugin to use. It is a string
value.

servo frequency The desired servo loop frequency in Hz. Warnings will
be published if this frequency is not achieved. It is an
integer value.

single threaded model Whether to use the servo thread to update the model.
It is a Boolean value.

single threaded tasks Whether to use the servo thread to update the task
states. It is a Boolean value.

whole body controller type The name of the WBC plugin to use. It is a string
value.

world gravity Specifies the gravity acceleration along the X, Y, and Z
axis of the world frame. Defaults to 〈0, 0,−9.81〉. This
is useful for debugging or when working in worlds
where the gravity does not pull in negative Z axis
direction. It is an integer array.

Table 7. ControlIt! parameters (2 of 2).
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Appendix C. ControlIt! Introspection Capabilities

This appendix describes ControlIt!’s introspection capabilities, which enable users

to gain insight into the internal states of the controller.

Task-based introspection capabilities. Tasks can configured to publish ROS

visualization msgs/MarkerArray

and visualization msgs/InteractiveMarkerUpdate messages onto ROS topics

that show the current and goal states of the controller. These messages can be visu-

alized in RViz to understand what the task-level controller is trying to achieve. For

example, Figure 18 shows the marker array messages published by a 2D orientation

task. The green arrow shows the goal heading whereas the blue arrow shows the

current heading. Figure 19 shows visualizations of 2D and 3D orientation tasks and

Cartesian position tasks.

Figure 20 shows visualizations of the actual and desired center of pressures and

the current center of mass projected onto the ground. This information is useful to

visually determine the stability of the current posture.

ROS service-based introspection capabilities. Table 8 lists the various

service-based controller introspection capabilities that are provided by ControlIt!.

These services can be called by external processes and are useful for integrating

ControlIt! into a larger system. All services are namespaced by the controller’s

name enabling multiple instances of ControlIt! to simultaneously exist.

ROS topic-based introspection capabilities. Table 9 lists the various topic-

Fig. 18. When integrated with Trikey, ControlIt! can be configured to publish ROS
visualization msgs/MarkerArray messages containing the current and goal headings of the robot.

These marker messages can be visualized in RViz. The green arrow is the goal heading, whereas
the blue arrow is the current heading. In this screenshot, ControlIt! is in the process of rotating
Trikey counter clockwise when viewed from above.
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(a)

(b)

Fig. 19. Two Cartesian position tasks and two orientation tasks are used to position and orient
Dreamer’s end effectors in the world. The orientation and Cartesian position tasks are higher

priority than a joint position task that defines the robot’s posture. (a) Shows the current and goal

2DOF orentations. (b) Shows how ROS 6-DOF interactive markers denote the current position
and orientation of the wrists. The interactive markers can be dynamically and visually changed
by the user to update the goal positions and orientaions of the robot’s wrists.

based controller introspection capabilities that are provided by ControlIt!. These

topics can be subscribed to by external processes and are useful for integrating

ControlIt! into a larger system. All topics are namespaced by the controller’s name

enabling multiple instances of ControlIt! to simultaneously exist.
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Fig. 20. This is a screenshot from a Gazebo simulation where ControlIt! was used to make an early

prototype of Valkyrie walk six steps. ControlIt’s compound task consisted of a Center-Of-Mass
(COM) task, posture task, Cartesian position task for the hip height, prototype internal tensions

task, and, for each foot, a Cartesian position task, orientation task, and Center- of-Pressure (COP)
task. The red balls mark the goal COP locations of the feet, yellow balls are the current COP
locations, and the blue ball is the COM projected onto the ground. Note that in this screenshot

the yellow balls, which represent the actual COPs, are on the left edge of the feet, meaning the
feet are very close to rolling clockwise when viewed from the front.
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Service Description

diagnostics/getActuableJointIndices Provides the order of every

actuable joint in the robot model

(omits joints that are real but

not actuable)

diagnostics/getCmdJointIndices Provides the order of the joints in

the command issued by

ControlIt! to the robot.

diagnostics/getConstraintJacobianMatrices Provides the Jacobian matrices

belonging to the constraints in

the constraint set.

diagnostics/getConstraintParameters Provides a list of every constraint

parameter and its current value.

diagnostics/getControlItParameters Provides the current values of the

ControlIt! parameters defined in

Appendix A.2.

diagnostics/getControllerConfiguration Provides the current state of the

compound task and constraint

set.

diagnostics/getRealJointIndices Provides the order of every real

joint in the robot model.

diagnostics/getTaskParameters Provides a list of every task

parameter is its current value.

Table 8. ControlIt!’s ROS service-based controller introspection capabilities.
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Service Description

diagnostics/RTTCommLatency Publishes the latest round-trip

communication time between ControlIt!

and the joint-level controllers. This is

done by transmitting sequence numbers to

the joint-level controllers, which are

reflected back through the joint state

data. ControlIt! monitors the time

between transmitting a particular

sequence number and receiving it back.

diagnostics/command Publishes the latest command issued by

ControlIt! to the robot.

diagnostics/errors Publishes any run-time errors that are

encountered. An example error is when

the command includes NaN values.

diagnostics/gravityVector Publishes the current gravity

compensation vector.

diagnostics/jointState Publishes the latest joint state

information.

diagnostics/modelLatency Publishes the staleness of the currently

active model. The model latency is the

time since the model was last updated.

diagnostics/servoComputeLatency Publishes the amount of time it took to

execute the computations within one cycle

of the servo loop.

diagnostics/servoFrequency Publishes the instantaneous servo

frequency.

diagnostics/warnings Publishes any run-time warnings that are

encountered. An example warning is when

the joint position or velocity exceeds

expected limits.

Table 9. ControlIt!’s ROS topic-based controller introspection capabilities.
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Appendix D. ControlIt! Configuration File

ControlIt! enables user to specify the controller configuration using a YAML con-

figuration file. The syntax of this file is shown below. By enabling YAML-based

configuration, ControlIt! can be made to work with a wide variety of applications

without modifying the source code and recompiling.

Task specification:

tasks:

- name: [task name] # user defined

type: [task type] # must match plugin name

... # task-specific parameters and their values

... # additional tasks

Constraint specification:

constraints:

- name: [constraint name] # user defined

type: [constraint type] # must match plugin name

... # constraint-specific parameters and their values

... # additional constraints

Compound task specification:

compound_task:

- name: [task name]

priority: [priority level]

operational_state: [enable or disable]

... # additional tasks

Constraint set specification:

constraint_set:

- name: [constraint name]

type: [constraint type]

operational_state: [enable or disable]

... # additional constraints

Binding Specification:

bindings:

- parameter: [parameter name] # must match real parameter name

direction: [input or output]

topic: [topic name]

transport_type: [transport type] # must match plugin name

properties:

- [transport-specific property]
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... # additional transport-specific properties

... # additional bindings

Event Specification:

events:

- name: [event name] # user defined

expression: [logical expression over parameters]

... # additional events
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Appendix E. Controller Gains

The following tables provide the gains used by the various controllers in the product

disassembly application using Dreamer. The negative joint position controller gains

are strange but were configured as such by Meka Robotics, the robot’s manufacturer

(Meka Robotics has since been bought by Google). We don’t know for sure why

some gains are negative since we are unable to access the details of the joint-level

controllers. It’s possible that the direction of the encoder is opposite of the motor

resulting in the need for negative gains. Regardless, these were the functioning

settings used in the development and testing of ControlIt! on Dreamer.

The reason why the left and right arms have different gains is because the left

arm is about three years newer than the right arm and internally the mechatronics

of the left arm are significantly different from that of the right arm.

Controller Kp Ki Kd

torso lower pitch -3 0 0

left shoulder extensor 10 1 0

left shoulder abductor 10 1 0

left shoulder rotator 10 1 0

left elbow 10 1 0

left wrist rotator 50 0 0

left wrist pitch 15 0 1

left wrist yaw 15 0 1

right shoulder extensor 7 0 0

right shoulder abductor 6 0 0

right shoulder rotator 5 0 0

right elbow 5 0 0

right wrist rotator -3 0 1

right wrist pitch -15 0 -1

right wrist yaw -15 0 -1

Table 10. Dreamer joint torque controller gains.
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Task Kp Ki Kd

Joint Position Task 60 0 3

Left Hand Orientation 60 0 3

Right Hand Orientation 60 0 3

Left Hand Position 64 0 3

Right Hand Position 64 0 3

Table 11. ControlIt! Task-level controller gains used to control Dreamer.



June 4, 2015 0:19 main

ControlIt! - A Software Framework for Whole-Body Operational Space Control 51

Appendix F. Example Application Code

Figure 21 contains an example code fragment from the product disassembly . The

application is written in the Python programming language, though any program-

ming language supported by ROS could be used including C++. The code fragment

shows how the Cartesian position trajectory is generated for moving the right hand

into a position where it can grab the metal tube. Lines 548-552 specify the Carte-

sian (x, y, z) waypoints that the hand is expected to traverse. For brevity, only

one waypoint is shown. Line 555 creates a cubic-spline interpolator, which is used

on line 559 to generate the intermediate points between the waypoints. The while

loop starting on line 564 obtains the current goal Cartesian position based on the

elapsed time (line 572) and transmits this goal via a ROS topic (line 576). The goal

parameter of the right hand Cartesian position task within ControlIt! is bound to

this ROS topic enabling ControlIt! to follow the desired Cartesian trajectory. The

trajectory is transmitted at 100Hz, based on line 579. Once the trajectory is done,

line 583 issues a command to close the fingers in the right hand is issued via another

bound ROS topic.
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Fig. 21. Code fragment from product disassembly application
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Appendix G. ControlIt! SMACH FSM Integration

The following screenshot is a visualization of the product disassembly finite state

machine provided by ROS SMACH Visualizer. It is updated in real-time as the

application in running. This particular screenshot shows that Dreamer is in the

“GrabValveState” which is when her left gripper is being positioned to grab the

valve.

Fig. 22. This figure shows a visualization of the FSM used by the product disassembly application.
The ROS package SMACH is used to both implement the FSM logic and visualize its execution.
The green arrow indicates the current state of the demo.
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