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Detecting communities from complex networks has recently triggered great interest. Aiming at this problem, a new ant 
colony optimization strategy building on the Markov random walks theory, which is named as MACO, is proposed in 
this paper. The framework of ant colony optimization is taken as the basic framework in this algorithm. In each iteration, 
a Markov random walk model is employed as heuristic rule; all of the ants’ local solutions are aggregated to a global 
one through an idea of clustering ensemble, which then will be used to update a pheromone matrix. The strategy relies 
on the progressive strengthening of within-community links and the weakening of between-community links. Gradually 
this converges to a solution where the underlying community structure of the complex network will become clearly 
visible. The proposed MACO has been evaluated both on synthetic benchmarks and on some real-world networks, and 
compared with some present competing algorithms. Experimental result has shown that MACO is highly effective for 
discovering communities. 
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1. Introduction 

Many complex systems in the real world exist in the form of networks, such as social networks, 
biological networks, Web networks, etc., which are also often classified as complex networks. 
Complex network analysis has been one of the most popular research areas in recent years due to its 
applicability to a wide range of disciplines [1, 2, 3]. While a considerable body of work addressed basic 
statistical properties of complex networks, such as the existence of “small world effect” [1] and the 
presence of “power laws” in the link distribution [2], another property has also been paid particular 
attention, that is, “community structure”: the nodes in networks are often found to cluster into 
tightly-knit groups with a high density of within-group edges and a lower density of between-group 
edges [3]. The community detection problem (CDP), which is also a network clustering task, is to 
detect and interpret community structures from various complex network data sets. 

The research on community detection in complex networks is of fundamental importance. It has 
both theoretical significance and practical applications in terms of analyzing network topology, 
comprehending network function, unfolding network patterns and forecasting network activities. It has 
been used in many areas, such as terrorist organization recognition, organization management, 
biological network analysis, Web community mining, topic based Web document clustering, search 
engine, link prediction, etc [4]. 

So far, lots of community detection algorithms have been developed. In terms of the basic strategies 
adopted by them, they mainly fall into two main categories: optimization and heuristic based methods. 
The former solves the CDP by transforming it into an optimization problem and trying to find an 
optimal solution for a predefined objective function such as the network modularity employed in 
several algorithms [5, 6, 7, 8, 9]. In contrast, there are no explicit optimization objectives in the 
heuristic based methods, and they solve the CDP based on some intuitive assumptions or heuristic rules, 
such as in the Girvan-Newman (GN) algorithm [3], Clique Percolation Method (CPM) [10], Label 
Propagation Algorithm (LPA) [11], Community Detection with Propinquity Dynamics (CDPD) [12], 
Opinion Dynamics with Decaying Confidence (ODDC) [13], etc. 

As a kind of special heuristic strategy, Markov theory based random walk models have also been 
widely used in this area. For CDP, Dongen [14] proposed Markov Cluster algorithm (MCL) which is 
based on random walks on a graph and uses simple algebraic operations on its associated stochastic 
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matrix. Pons et al. [15] proposed a measure of similarities between network vertices based on random 
walks and developed an agglomerative algorithm to efficiently compute the community structure of 
networks by using this measure. Gunes et al. [16] presented an agent-based community detection 
algorithm by making the agents establish a random walk on a network. Rosvall et al. [17] used the 
probability flow of random walks on a network as a proxy for information flows in the real system and 
decomposed the network into modules by compressing a description of the probability flow. Weinan E 
et al. [18] proposed a strategy along the lines of optimal prediction for the Markov chains associated 
with the dynamics on these networks and developed the necessary ingredients for such an optimal 
partition strategy. For community detection in signed networks, Yang et al. proposed a heuristic signed 
networks clustering algorithm (FEC) based on Markov random walk model [19], and then they found 
that the dynamics of such a stochastic model naturally reflects the intrinsic properties of networks with 
community structures, and proposed a spectral method to detect network community structure based on 
large deviation theory [20]. Algorithm MACO proposed in this paper also belongs to this type of 
algorithms. 

Though there are lots of community detection algorithms which have been presented recently, how 
to further improve the performance is still an open problem. In order to address this problem, a Markov 
random walk theory based ant colony optimization is proposed in this paper enlightened by Ref. 19. In 
the algorithm, each ant detects its own community by using a new random walk model as heuristic rule; 
in each iteration, all the ants collectively produce the current solution via the thought of clustering 
ensemble [21], and update their pheromone matrix by using this solution; at last, after the algorithm has 
converged, the pheromone matrix is analyzed in order to attain the community structure for the target 
network. 

2. Algorithm 

2.1. The main idea 

Let N = (V, E) denote an unweighted and undirected network, where V is the set of nodes (or vertices) 
and E is the set of edges (or links). Let a k-way partition of the network be defined as π = {V1, V2, …, 
Vk}, where V1, V2, …, Vk satisfy 
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within-community edges are dense and between-community edges are sparse, it’s called a well defined 
community structure of this network. 

In view of a stochastic process defined on N, in which an imaginary agent freely walks from one 
node to another along the links between them. When the agent arrives at one node, it will randomly 
select one of its neighbors and move there. Considering the inherent community property of the 
network, the random walk agent should be found it difficult to move outside its own community 
boundary, whereas it should be easy for the agent to reach other nodes within its community, as link 
density within a community should be high, by definition. In other words, the probability of remaining 
in the same community, that is, an agent starts from any node and stays in its own community after 
freely walking by a number of steps, should be greater than that of going out to a different community. 

Based on the above general observation, in our ant colony optimization strategy, each ant (only 
different from agent in the sense that it can consult and update a “pheromone” variable in each link) 
takes random walk as heuristic rule, and meanwhile, is directed by pheromone to find its solution. In 
each iteration, the solution found by each ant only expresses its local view, while a global solution will 
be attained after aggregating all of the ants’ local solutions to one through a thought of clustering 
ensemble [21], which then will be used to update the pheromone matrix. As the process evolves, the 
community characteristic of the pheromone matrix will gradually become sharper and our algorithm 
MACO converges to a solution where the community structure can be accurately detected. In short, the 
pheromone matrix can be regarded as the final clustering result which aggregates the information of all 
the ants in all iterations within this algorithm. Thus, as we can see, this algorithm may share some 
common features with the basic thought of some clustering ensemble methods. 

In order to further clarify the above idea, an intuitive description is presented as follows. Assume a 
network N with obvious community structure, in which some ants freely crawl along the links. The ants 
have a given life-cycle, and the new ant colony will be generated immediately when all of the former 
ants die. At the beginning of this algorithm, there is yet no impact of the pheromone on network N. 
Only due to the restriction by community structure, the ant’s probability of remaining in its own 
community should be greater than that of going out to other communities, but there is no difference 



between these ants and the random walk agents at the moment since pheromone distribution is still 
homogeneous. As ants move, with the accumulation and volatilization of pheromone left by the former 
ants, the pheromone on within-community links will become thicker and thicker, and the pheromone on 
between-community links will become thinner and thinner. In fact, pheromone is simply a mechanism 
that can register past walks in the network and that leads to more informed decisions for subsequent 
walks. The process strengthens the trend that any ant will more often remain in its own community. At 
last, when the pheromone matrix converges, the community structure of network N will be attained 
naturally. To sum up, the core of our MACO is that, by strengthening within-community links and 
weakening between-community links, an underlying community structure of the network will gradually 
become visible. 

2.2. A local solution by one ant 

In our ant colony optimization framework, guided by heuristic rule and pheromone effect, each ant 
needs to produce its local solution which is actually the community that it is situated. This method 
includes two parts. The goal of the first part is to unfold the ant’s community by calculating its l-step 
transition probability distribution; and the goal of the second one is to extract the emerged community 
by designing a suitable cut strategy. 

2.2.1. Unfold the ant’s community 

Assume that the adjacency matrix of network N is A = (aij)n×n. When we consider the current 
pheromone matrix B = (bij)n×n of the ants, the original unweighted network N will then become a 
pheromone weighted network W, whose adjacency matrix is M = (mij)n×n = (aij⋅bij)n×n. Thus, we only 
consider network W in this section.  

Let an ant freely crawls on network W. Assume that X = {Xt, t ≥ 0} denote the ant’s positions, and 
P{Xt = i, 1 ≤ i ≤ n} denote the probability that the ant arrives at node i after t steps walking. For it ∈ V 
we have P{Xt = it | X0 = i0, X1 = i1, …, Xt-1 = it-1} = P{Xt = it | Xt-1 = it-1}. That is, the next state of the ant 
is completely decided by its previous state, which is called a Markov property. So, this stochastic 
process is a discrete Markov chain and its state space is the node set V. Furthermore, Xt is homogeneous 
because P{Xt = j | Xt-1 = i} = pij, where pij is the transition probability from node i to node j on network 
W. Then the pij is defined as Eq. (1). 
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Let we consider the above Markov model. Given a specific source node s for an ant, let ( )l
s iα  

denotes the probability that this ant starts from node s and eventually arrives at an arbitrary destination 
node i within l steps. The value of ( )l

s iα  can be estimated iteratively by Eq. (2).  
1

1( ) ( )nl l
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Here l
sα  is called the l step transition probability distribution (vector). Note that the sum of the 

probability values arriving at all the nodes from source node s will be 1, that is 1 ( ) 1n l
si iα= =∑ . When 

step number l equals to 0, which means the ant still stays on node s, then 0 ( )s sα  equals to 1 and 
0 ( )s iα  equals to 0 for each i ≠ s. 
As the link density within a community is, in general, much higher than that between communities, 

an ant that starts from the source node s should have more paths to choose from to reach the nodes in 
its own community within l steps, when the value of l is suitable. On the contrary, the ant should have 
much lower probability to arrive at the nodes outside its community. In other words, it will be hard for 
an ant to fall on a community by passing those “bottleneck” links and to leave the existing community. 
Thus, in general, vector l

sα  should meet Eq. (3) well when step number l is suitable. In this equation, 
Cs denotes the community where node s is situated.  
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However, from the experiment we find out that, though the above Markov method is well suitable 
for some simple networks such as the Newman benchmark [3] and some small real networks, it is not 
so effective for some complicated networks, like the Lancichinetti benchmark [22] and some large real 
networks. This also means l

sα  can’t meet Eq. (3) well enough for those relatively complicated 
networks. Furthermore, this method is very sensitive to the choice of the step number l, which will give 
a crucial effect in its performance.  

In order to overcome these drawbacks, a new Markov random walk method combined with a 
constraint strategy based on the annealed network theory [23] is proposed here. The idea of our method 
arises in the intuition that a Markov random process on a network with community structure is different 
from that on its corresponding annealed network without communities. Considering this thought, in 
each step, the probability that an ant starts from a specific source node s and arrives at each destination 
node i will be defined as the difference between its associated probability computed on the community 
network W and that on the corresponding annealed network R. Due to R having no community structure, 
the link density within a community in network W should be much higher than that in R, while the link 
density between communities in W should be much lower than that in R. Thus, under the constraint 
brought by the annealed network, this ant can hardly escape from its associated community and reach 
the nodes outside. This will cause that, the computed probability value of each within community node 
will be high, while that of each outside node will be relatively low and most of them even equal to 0 in 
general. Moreover, its performance is not so sensitive as before to the parameter l. Later, we will offer 
some detailed analysis on this parameter. 

Given the network W = (V′, E′) with its degree distribution D′, and its corresponding annealed 
network R = (V*, E*) with its degree distribution D*, there should be V′ = V*, D′ = D* and E′ ≠ E*, which 
means W and R have the same degree distribution [23]. Let M = (mij)n×n denote the adjacency matrix of 
network W. There will be D′ = diag(d1′, … dn′), in which i ijjd m′ = ∑  denotes the degree of node i in 

network W. Assume that C = (cij)n×n is the adjacency matrix of R. There will be 1/ n
ij i j rrc d d d=

′ ′ ′= ∑ , 
which denotes the expected number of links between nodes i and j without regard for any community 
structure [23]. Let qij denote the transition probability from node i to node j on graph R. Thus, it will be 
defined as Eq. (4). 
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Considering the constraint generated by this annealed network R, let ( )l
s iβ  denotes the probability 

that this ant starts from the source node s and eventually arrives at an arbitrary destination node i within 
l steps. The value of ( )l

s iβ  can be estimated iteratively by Eq. (5).  
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It’s obvious that 1
1 ( )n l

s rir r pβ −
= ⋅∑  denotes the transition probability from node s to node i within l 

steps on network W, while 1
1 ( )n l

s rir r qβ −
= ⋅∑  denotes that probability computed on annealed network 

R. Furthermore, as negative probability is illogical, we make each ( )l
s iβ  is always a nonnegative 

value. Since the sum of the probability values arriving at all the nodes from source node s should be 1, 
we normalize ( )l

s iβ  after each step. 
Furthermore, as most complex networks have power-law degree distribution, which means there are 

more paths arriving at the nodes with high degrees than those with low degrees. This will give some 
negative effects when unfolding communities. Thus, we take into account the effect of power-law 
degree distribution in complex networks, and propose a further improved l step transition probability 
distribution l

sψ  as defined as (6), where di′ denotes the degree of node i on network W. Note that this 
equation is not iteratively computed as before. 
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Based on this above idea, the method for an ant (denoted by a source node s) to unfold its 
community can be described as follows. This method is called UC (unfolding community) in short. 

S1. Calculate the l step transition probability vector of this ant, which is l
sψ ; 

S2. Rank all the nodes according to their probability values in descending order, which produces the 
sorted node list L. 

S3. Remove the nodes whose associated probability is 0 from L; 
After these three steps, almost all the within community nodes will be ranked on the top of the 

sorted node sequence L, meanwhile, most of the outside community nodes (probability values are 0) 
are removed from L. Thus, the ant’s community has now clearly emerged and is ready for detection. 
Now, by properly setting a cutoff point (to be explained in the next section), we can precisely extract 
the ant’s community. 

Proposition 1. The time complexity of the UC is O(ln2), where l is the step number of the ant and n 
is the numbers of nodes.  

Proof. In S1, It’s obvious that the time to compute l
sψ  by (5) and (6) will be O(ln2). In S2, the time 

to rank l
sψ  will be O(nlogn) in terms of some quick sorting algorithms. In S3, the time is less than 

O(n). Thus, the time complexity of the UC will be O(ln2) at last. 

2.2.2. Extract the ant’s community 

The ant’s community has been emerged from UC by giving a sorted node list L, in which almost all the 
within community nodes have been ranked on the top of L and most of the outside community nodes 
have been removed from L. Here we will design a suitable cutoff criterion to extract the ant’s 
community. As any cut strategy should only make use of the original network structure, we just 
consider the original network N = (V, E) in this section. 

In order to propose an effective cutoff method, a well known conductance function [24] which 
corresponds to the so-called weak definition of community [25] is used here. The conductance can be 
simply thought of as the ratio between the number of edges inside the community and those leaving it. 
Let the degree distribution of network N is D = diag(d1, … dn). Conductance φ(S) of a set of nodes S (S 
⊂ V) can be defined as φ(S) = cS/min(Vol(S), Vol(V \S)), where cS denotes the size of the edge 
boundary, cS = |{(u, v) : u ∈ S, v ∉ S}|, and Vol(S) = ∑u∈S du, where du is the degree of node u in 
network N. Thus, more community-like sets of nodes have lower conductance. Moreover, this 
community function has some local characteristics, which is right suitable to extract the emerged 
community in this section. 

Based on the ranked node list L obtained from UC, here the emerged community can be easily 
distilled by finding the cut position which corresponds to the minimum conductance value, and taking 
it as the cutoff point along this ranked list of nodes. At last, the method to extract the emerged 
community is summarized as follows. This method is called EC (extract community) in short. 

S1. Compute the conductance value of the community corresponding to each cut position of L; 
S2. Take the community corresponding to the minimum conductance as the extracted one. 
Proposition 2. The time complexity of the EC is smaller than O(dn2), where d is the average degree 

of all the nodes in network N. 
Proof. It’s obvious that S1 is the most computationally costly step in EC. Let we employ the 

incremental method to calculate the conductance value for each cut pos in the nodes list L. When the 
cut pos equals to 1, there is S1 = {L(1)} where L(1) denotes the first node in the sorted nodes list L, cS

1 
= dL(1), Vol(S1) = dL(1), and Vol(V \S1) = m − Vol(S1) where m is the number of edges in the network. 
When the cut pos equals to k, there should be Sk = Sk-1 ∪ {L(k)}, cS

k = cS
k-1 + dL(k) − 2⋅|Sk ∩ NL(k)| where 

NL(k) denotes the neighbors set of node L(k), Vol(Sk) = Vol(Sk-1) + dL(k), and Vol(V \Sk) = m − Vol(Sk). 
It’s obvious that, for each cut pos k, Sk ∩ NL(k) is the most computationally costly step, whose time 
complexity is |Sk|⋅|NL(k)| = k⋅dL(k). Due to k is in the range of 1≤ k ≤ kmax where kmax << n, thus the time 
complexity of EC should be max

( )1
k

L kk k d= ⋅∑ , which is much smaller than O(dn2). 
Please refer to “Appendix A” in order to observe the process in which an arbitrary ant produces its 

solution at each generation. It’s obvious that, in each iteration, the UC subroutine can clearly unfold the 
ant’s local community, meanwhile, the EC subroutine is effective to extract this community. 



2.3. Algorithm MACO 

After offering the sub-method used by each ant to produce its local solution, here we present the 
complete MACO algorithm which is described as two parts. The first part is called exploration phase. It 
employs the framework of ant colony optimization so as to finally produce the converged pheromone 
matrix, which can clearly take on the community feature of the targeted network. The second part is 
called partition phase, which adopts a simple cut strategy on the converged pheromone matrix to attain 
the partition of this network. 

The exploration phase algorithm (EPA) of the first part is given as follows. Note that this method is 
described by using the format of Matlab pseudocode. 

 
Procedure EPA 
Input: A, T, S, l, ρ /* A is the adjacent matrix of the network N, T is the limitation of iteration number, S is the size of ant 
colony, l is the step number of each ant, ρ is the updating rate of pheromone matrix */ 
Output: B /* denotes the pheromone matrix */ 
Begin 
1 B←ones(n, n)*n; /* initialize the pheromone matrix */ 
2 For i=1: T 
3   solution ←zeros(n, n); /* initialize the global solution */ 
4   For j=1: S 
5     s ← rand(n); /* generate a random number s as source node*/ 
6     com ← one_ant(A, B, s, l); /* generate a local solution (community) by one ant */ 
7     solution(com, com) ← solution(com, com) + 1;  
8   End /* aggregate local solutions of all ants to a global one */ 
9   B← ρ*B + solution; /* update the pheromone matrix by using the global solution*/ 
10 End 
End 
 

As we can see from EPA, the framework of ant colony optimization is taken as the basic algorithm 
framework. In each iteration, each ant detects its local solution (or called its community) via the 
Markov method proposed in Sec 2.2 (step 6); then the local solutions of all the ants are aggregated to a 
global one through the thought of clustering ensemble [21] (step 7); and then the global solution is used 
to update pheromone matrix (step 9). This process stops until the algorithm converges at last. 

At the beginning of this algorithm, as no or very little pheromone is left, the solutions of all ants are 
produced mainly due to the restriction of community structure, and then they will be used to update 
pheromone matrix. This will make the guiding role of pheromone matrix better targeted, which allows 
the following ants to produce better solutions. With the increase of iterations, the pheromone matrix is 
gradually evolving, which makes the ants more and more directed, and the trend that any ant stays in its 
own community more and more obvious. When the algorithm finally converges, the pheromone matrix 
can be regarded as the final clustering result which aggregates the information of all the ants in all 
iterations. 

The next step is how to analyze the converged pheromone matrix got by EPA in order to attain the 
final clustering solution of the network. Because of the convergence property of ant colony 
optimization, the community characteristic shown by this matrix is very obvious. Thus, to analyze this 
matrix, a simple partition method is adopted here, so that the community structure of the network will 
be naturally attained. The description of the partition phase algorithm (PPA) is given as follows. 

 
Procedure PPA 
Input: B /* pheromone matrix after algorithm converging */ 
Output: labels /*final clustering solution, or called community structure */ 
Begin 
1 labels ← zeros(1, n); 
2 For i=1: n 
3   If labels(i)==0 
4     V ← B(i, :); /* get the i-th row of pheromone matrix B */ 
5     community ← find(V > ε); /* attain the community of node i; ε is sum(V)/n */ 
6     labels(community) ← i;  
7   End 
8 End 
End 



 
Because of the convergence properties of the exploration phase algorithm EPA, we can develop 

such a simple method PPA as partition phase algorithm. After the EPA converges at last, in the 
pheromone matrix B, each community will mix together and the rows which correspond to the nodes in 
the same community will be equal. Thus, by choosing any row from B, we can identify a community 
by using the average value ε as a cutoff value to divide this row. 

Proposition 3. The time complexity of our algorithm MACO is O(TSln2), where T is the limitation 
of iteration number, S is the size of ant colony, l is the step number of each ant, and n is the numbers of 
nodes.  

Proof. It’s obvious that, the most computationally costly step of our method MACO is the 6-th step 
in its EPA subroutine, which generates each ant’s local community in each iteration. The time 
complexity of this step is O((l+d)n2) known from proposition1 and proposition2. As there are T 
iterations and each iteration produces S ants, thus the time complexity of the MACO will be 
O(TS(l+d)n2). Since the average degree d in network N is regarded as a constant because most complex 
networks are sparse graphs, thus the time complexity of the MACO can be also given as O(TSln2). 

Please refer to “Appendix B” in order to observe the execution process of algorithm MACO. It’s 
obvious that the EPA subroutine converges well in this example, and thus, the PPA subroutine can 
easily partition the converged pheromone matrix so as to attain the communities of this network. 

2.4. Parameters setting 

There are four parameters: T, S, ρ, l in this algorithm, which denote iteration number limitation, the size 
of ant colony, the updating rate of the pheromone matrix and the step number limitation, respectively. 
The first three parameters can be easily determined, which is set at T = 20, S = 100 and ρ = 0.6 
according to our experience and some experiment results. However, a suitable setting of parameter l is 
much more important and difficult. Here we give some qualitative analysis on the step number l, and 
later we will also offer some quantitative analysis on this parameter in the experimental section. 

Obviously, the value of l should not be too small because walking only for a few steps will prevent 
the ant from properly exploring the network. One reasonable choice for l can be made with the aid of 
the average distance of a network. The distance between two nodes refers to the number of links along 
the shortest path connecting them. As most social networks are small-world networks, the average 
distance between two nodes was shown to be around 6, according to the theory of “six degrees of 
separation” [26]. For scale-free networks, the average distance is usually small too. The World Wide 
Web is one of the biggest scale-free networks that we have found so far. However, the average distance 
of such a huge network is actually about 19 [27]; that is, we can get to anywhere we want through 19 
clicks on the average. Thus, based on the above general observations, a good option for the value of l 
that we propose should be l = 20.  

It is noteworthy that, according to the parameters setting above, here the time complexity of our 
algorithm MACO can be also given by O(n2). 

3. Experiments 

In order to evaluate the performance of our algorithm MACO, we tested it on benchmark 
computer-generated networks as well as some widely used real-word networks. We conclude by 
analyzing the step number parameter l, which is defined in this algorithm. 

In the experiment, our MACO is compared with four representative community detection algorithms, 
in which FN [5] and FUA [7] are optimization based method, while FEC [19] and LPA [11] are 
heuristic based method. Note that algorithm FUA has been regarded as one of the most effective 
method for community detection by the survey of Fortunato [28]. 

All experiments are done on a single Dell Server (Intel(R) Xeon(R) CPU 5130 @ 2.00GHz 
2.00GHz processor with 4Gbytes of main memory), and the source code of all the algorithms used here 
can be obtained from [29]. 

3.1. Computer-generated networks 

We adopt two kinds of randomly-generated synthetic networks (by both Newman model [3] and 
Lancichinetti model [22]) with a known community structure to evaluate the performance of the 



algorithms. Moreover, here we employ a widely used accuracy measure so called Normalized Mutual 
Information (NMI) [30]. The NMI measure which makes use of information theory is regarded as a 
more fair metric compared with the other ones [30]. 

The first type of synthetic networks employed here is that proposed by Newman at al. [3]. For this 
benchmark, each graph consists of n = 128 vertices divided into 4 groups of 32 nodes. Each vertex has 
on average zin edges connecting it to members of the same group and zout edges to members of other 
groups, with zin and zout chosen such that the total expected degree zin+zout = 16, in this case. As zout is 
increased from the small initial values, the resulting graphs pose greater and greater challenges to the 
community detection algorithms. In figure 1(a), we show the NMI accuracy attained by each algorithm 
as a function of zout. As we can see, our algorithm MACO outperforms all the other four methods in 
terms of NMI accuracy on this benchmark. 

In order to further evaluate the accuracy of these algorithms, a new type of benchmark proposed by 
Lancichinetti et al. [22] is also adopted here. It has some properties such as the heterogeneous 
distributions of degree and community size which has been found in most real networks. Like the 
experiment designed by Lancichinetti et al. in [22], the parameters setting for the Lancichinetti 
benchmark is as follows. The network size n is 1000, the average degree d is 15, the maximum degree 
dmax is 50, the exponent for the degree distribution τ1 is 2, the exponent for the community size 
distribution τ2 is 1, the minimum community size cmin is 20, and the maximum community size cmax is 
50; while the mixing parameter μ (each vertex shares a fraction μ of its edges with vertices in other 
communities) varies from 0 to 0.6 with interval 0.05. In figure 1(b), we show the NMI accuracy 
attained by each algorithm as a function of the mixing parameter μ. As we can see, our algorithm 
MACO is just a bit worse than the FUA, while it outperforms the other three methods in terms of NMI 
accuracy on this more challenging benchmark. 

Computing speed is another very important criterion to evaluate the performance of an algorithm. 
Time complexity analysis for the MACO has been given by proposition3 and refined in Sec. 2.4. 
Nevertheless, here we show the actual running time of the MACO from an experimental angle in order 
to further evaluate its efficiency. Here we also adopt synthetic networks based on Newman model [3]. 
For this application, each graph consists of n = 100C vertices divided into C groups of 100 nodes. Each 
vertex has on average zin = 10 edges connecting it to members of the same group and zout = 6 edges to 
members of other groups. The only difference between the networks used here and the former ones is 
that, now zout is fixed while the communities number C is changeable. Figure 1(c) shows the actual 
running time of the MACO. Figure 1(d) show the square root of the running time by MACO, which is 
nearly proportional to the number of nodes in the network. It’s obvious that, the experiment can 
validate the correctness of the analysis on the time complexity for MACO, which is O(n2) when the 
parameters are all set at constant.  
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Fig. 1. (Color online) Test the performance of the MACO on artificial networks by both Newman model and Lancichinetti model. 
Each point is an average result over 50 graphs. (a) Compare MACO with FN, FEC, LPA and FUA in terms of NMI accuracy on 
Newman benchmark. (b) Compare MACO with FN, FEC, LPA and FUA in terms of NMI accuracy on Lancichinetti benchmark. 
(c) The actual running time of the MACO as a function of the network scale. (d) The square root of the running time by the 
MACO as a function of the network scale. 

3.2. Real-world networks 

As real networks may have some different topological properties from the synthetic ones, here we 
adopt several widely used real-world networks to further evaluate the performance of these algorithms. 
These networks that we use, and their sources and sizes, are listed in Table 1. 

 
Table 1. Real-world networks used here. 

Networks |V| |E| Descriptions 
karate 34 78 Zachary’s karate club [31] 
dolphin 62 160 Dolphin social network [32] 
polbooks 105 441 Books about US politics [33] 
football 115 613 American College football [3] 
jazz 198 2,742 Jazz musicians network [34] 
email 1,133 5,451 Email network of human interactions [35] 

 
Because the inherent community structure for real networks is usually unknown, here we adopt the 

most commonly used network modularity function (Q) [36] to evaluate the performance of these 
algorithms. Table 2 shows the average result (over 50 runs) that compares our method MACO with FN, 
FEC, LPA and FUA in terms of function Q on the real-world networks described in Table 1. As we can 
see, the clustering quality of our method MACO is competitive with that of the FUA, and better than 
that of the other three algorithms. 
 

Table 2. Compare MACO with FN, FEC, LPA and FUA in terms of function Q on real networks. 
Q-value karate dolphin polbooks football jazz  email  
FN 0.3807 0.5104 0.5020 0.5497 0.4389 0.5037 
FEC 0.3744 0.4976 0.4904 0.5697 0.4440 0.5173 
LPA 0.3646 0.4802 0.5006 0.5865 0.3422 0.3706 
FUA 0.4188 0.5268 0.4986 0.6046 0.4431 0.5406 
MACO 0.4188 0.5081 0.5047 0.5917 0.4409 0.5490 

3.3. Parameters analysis 

Step number l is a very important parameter in algorithm MACO, especially in its UC subroutine. Sec. 
2.4 has given a reasonable indication on the choice of step number l. Here we also offer some 
quantitative analysis on this parameter from experimental angle. 

In the UC, after each step, the transition probability vector l
sψ  will be updated and, thus, the 

ranking of all nodes will be changed according to the probability values of arriving at them from source 
node s. As long as l

sψ  is stationary, or say all members of the source community are put on the top of 
the sorted nodes sequence, it will be good enough for our purpose to unfold a community. 

Thus, the convergence of UC can be evaluated based on the convergence of the transition 
probability vector, or that of the sorted node sequence. Fig. 2 shows the convergence process of the UC 
with the increase of step number l. In Fig. 2(a), the x-axis refers to the l-value, and the y-axis refers to 
the difference between the two consecutive transition probability vectors, which is defined as the 
Euclidean distance between them. In Fig. 2(b), the x-axis still refers to the l-value, while the y-axis 
refers to the difference between the two consecutive sorted nodes lists L1 and L2, defined as nnz(L1−L2), 
which counts the number of non-zeros of a given vector. 

We have tested different l values in the range of 1 ≤ l ≤ 50 for all real networks mentioned in the 
paper. It’s obvious that the transition probability vector and the sorted nodes list can both converge 
well within 20 steps on each of the networks, and the UC’s performance is insensitive to the choice of 
the parameter l when it is greater than 20.  
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Fig. 2. (Color online) The sensitivity analysis of parameter l on all the real networks used in this paper. For each network, the 
node with maximum degree is selected as source node s here. (a) The convergence process of the transition probability vector 
with the increase of step number l. (b) The convergence process of the sorted node sequence with the increase of step number l. 

4. Conclusion 

A community detection algorithm MACO is proposed in this paper. The framework of ant colony 
optimization is employed as its basic algorithm framework. In each iteration, each ant detects its own 
community by a new Markov method with the aid of pheromone; all of the ants’ local solutions are 
aggregated to a global one through a thought of clustering ensemble, which then will be used to update 
the pheromone matrix. As iteration proceeds and gathered knowledge on the past walks is registered on 
the network, the pheromone on within-community links becomes thicker, and that on 
between-community links becomes thinner. This process makes the ants’ movement decision become 
more and more intelligent, and the trend that any ant remains in its own community becomes 
increasingly obvious. Once the algorithm converges, the community structure of the network will be 
obtained naturally from the pheromone distribution. 

The main contribution of this paper is to propose a community detection algorithm MACO which 
possesses high clustering quality, while its efficiency is still not ideal to deal with some large-scale 
networks, such as WWW, Internet etc. Thus, the efficiency of our MACO should be further improved 
by exploring some potential optimization angles. Moreover, in our future work we intend to apply our 
method MACO in some interesting research areas, such as biological networks analysis, Web 
community mining, etc., and try to uncover and interpret the significative community structure that is 
expected to be found on them. 

Acknowledgment 

This work was supported by National Natural Science Foundation of China under Grant Nos. 
60873149, 60973088, the National High-Tech Research and Development Plan of China under Grant 
No. 2006AA10Z245, the Open Project Program of the National Laboratory of Pattern Recognition, and 
the Erasmus Mundus Project of European Commission. 

Appendix A. The process that an arbitrary ant produces its solution in each iteration. 

In order to illustrate the process by which each ant produces its solution in each iteration within 
algorithm MACO, a Newman benchmark network [3] is used here. This graph contains n = 128 
vertices which divided into 4 groups of 32 nodes. Its expected within-community degree of each node 
is zin = 9, and its expected between-community degree of each node is zout = 7. It’s obvious that the 
community structure of this network is a little ambiguous. Without loss of generality, we always select 
the ant whose source node is 1 here. For the ant, we record three groups of results in each iteration. 
These results include: “the l-step transition probability vector ψ ”, “the cutoff position corresponding to 
the minimum conductance”, and “this ant’s local solution”. A detailed description of them is given by 
Fig. A.1. Because of limited space, this figure only shows the results at the 1st generation, the 5th 
generation, the 10th generation, the 15th generation and the 20th generation, and denote them by using 
(a), (b), (c), (d) and (e) respectively. As we can see, our UC subroutine can clearly unfold the ant’s 
local community, and the EC subroutine is effective to extract this community. Moreover, with the time 



passing, which means the pheromone on within-community links becomes thicker and thicker and the 
pheromone on between-community links becomes thinner and thinner, the local community detected 
by this ant becomes more and more precise. 

 

0 20 40 60 80 100 120 140
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

the ID number of each node

th
e 

tra
ns

iti
on

 p
ro

ba
bi

lit
y 

di
st

rib
ut

io
n 
ψ

 

 

within community nodes
outside community nodes
cutoff position

 the ID number of each node

th
e 

ID
 n

um
be

r o
f e

ac
h 

no
de

 

 

20 40 60 80 100 120

20

40

60

80

100

120
0

0.2

0.4

0.6

0.8

1

 
(a1)                                           (a2) 

 

0 20 40 60 80 100 120 140
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

the ID number of each node

th
e 

tra
ns

iti
on

 p
ro

ba
bi

lit
y 

di
st

rib
ut

io
n 
ψ

 

 

within community nodes
outside community nodes
cutoff position

 the ID number of each node

th
e 

ID
 n

um
be

r o
f e

ac
h 

no
de

 

 

20 40 60 80 100 120

20

40

60

80

100

120
0

0.2

0.4

0.6

0.8

1

 
(b1)                                           (b2) 

0 20 40 60 80 100 120 140
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

the ID number of each node

th
e 

tra
ns

iti
on

 p
ro

ba
bi

lit
y 

di
st

rib
ut

io
n 
ψ

 

 

within community nodes
outside community nodes
cutoff position

 the ID number of each node

th
e 

ID
 n

um
be

r o
f e

ac
h 

no
de

 

 

20 40 60 80 100 120

20

40

60

80

100

120
0

0.2

0.4

0.6

0.8

1

 
(c1)                                           (c2) 

0 20 40 60 80 100 120 140
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

the ID number of each node

th
e 

tra
ns

iti
on

 p
ro

ba
bi

lit
y 

di
st

rib
ut

io
n 
ψ

 

 

within community nodes
outside community nodes
cutoff position

 the ID number of each node

th
e 

ID
 n

um
be

r o
f e

ac
h 

no
de

 

 

20 40 60 80 100 120

20

40

60

80

100

120
0

0.2

0.4

0.6

0.8

1

 
(d1)                                           (d2) 



0 20 40 60 80 100 120 140
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

the ID number of each node

th
e 

tra
ns

iti
on

 p
ro

ba
bi

lit
y 

di
st

rib
ut

io
n 
ψ

 

 

within community nodes
outside community nodes
cutoff position

 the ID number of each node

th
e 

ID
 n

um
be

r o
f e

ac
h 

no
de

 

 

20 40 60 80 100 120

20

40

60

80

100

120
0

0.2

0.4

0.6

0.8

1

 
(e1)                                           (e2) 

Fig. A.1. (Color online) The process that an arbitrary ant produces its solution in each iteration within algorithm MACO. Figures 
(a1)-(e1) show the ant’s l-step transition probability vector and the corresponding cutoff position at the 1st generation, the 5th 
generation, the 10th generation, the 15th generation and the 20th generation respectively. Figures (a2)-(e2) show the ant’s local 
solution at the 1st generation, the 5th generation, the 10th generation, the 15th generation and the 20th generation respectively. 

 

Appendix B. The execution process of algorithm MACO. 

Again, in order to illustrate the execution process of our method MACO, and similar to the experiment 
conducted in Appendix A, we record two groups of results in each iteration. These results include: “the 
current global solution which aggregates the local solutions of all ants”, and “the current pheromone 
matrix”. A detailed description of them is given by Fig. B.1. This figure shows the results at the 1st 
generation, the 5th generation, the 10th generation, the 15th generation and the 20th generation, and 
denote them by using (a), (b), (c), (d) and (e) respectively. As we can see, our EPA subroutine can 
converge very well in this example, and thus, the PPA subroutine can easily partition the converged 
pheromone matrix so as to attain the communities of this network. 
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Fig. B.1. (Color online) A run of algorithm MACO. Note that Fig. A.1 and Fig. B.1 comes from a same run of the MACO. 
Figures (a1)-(e1) show the aggregated global solution at the 1st generation, the 5th generation, the 10th generation, the 15th 
generation and the 20th generation respectively. Figures (a2)-(e2) show the pheromone matrix at the 1st generation, the 5th 
generation, the 10th generation, the 15th generation and the 20th generation respectively. 

 

References 

[1] Watts, D. J. and Strogatz, S. H., Collective dynamics of small-world networks, Nature 393 (1998) 440-442. 
[2] Barabási, A. L., Albert, R., Jeong, H. and Bianconi G., Power-law distribution of the World Wide Web, 
Science 287 (2000) 2115a. 
[3] Girvan, M. and Newman, M. E. J., Community structure in social and biological networks, Proc. Natl. Acad. 
Sci. 9 (2002) 7821-7826. 
[4] Santo, F., Community detection in graphs, Physics Reports 486 (2010) 75-174. 
[5] Newman, M. E. J., Fast algorithm for detecting community structure in networks, Phys. Rev. E. 69 (2004) 
066133. 
[6] Guimera, R. and Amaral, L. A. N., Functional cartography of complex metabolic networks, Nature 433 (2005) 
895-900. 
[7] Blondel, V. D., Guillaume, J. L., Lambiotte, R. and Lefebvre, E., Fast unfolding of communities in large 
networks, J. Stat. Mech. (2008) P10008. 
[8] Shi, C., Yan, Z., Wang, Y., Cai, Y. and Wu, B., A genetic algorithm for detecting communities in large-scale 
complex networks, Adv. Complex Systems 13 (2010) 3-17. 



[9] Jin, D., He, D., Liu, D. and Baquero, C., Genetic algorithm with local search for community mining in complex 
networks, in Proc. IEEE Int. Conference on Tools with Artificial Intelligence (ICTAI'10) (Arras, France, 2010), pp. 
105-112. 
[10] Palla, G., Derenyi, I., Farkas, I. and Vicsek, T., Uncovering the overlapping community structures of complex 
networks in nature and society, Nature 435 (2005) 814-818. 
[11] Raghavan, U. N., Albert, R. and Kumara, S., Near linear-time algorithm to detect community structures in 
large-scale networks, Phys. Rev. E. 76 (2007) 036106. 
[12] Zhang, Y., Wang, J., Wang, Y. and Zhou, L., Parallel community detection on large networks with 
propinquity dynamics, in Proc. ACM Int. Conference on Knowledge Discovery and Data Mining (KDD’09) (Paris, 
France, 2009), pp. 997-1005. 
[13] Morãrescu, C. I. and Girard, A., Opinion dynamics with decaying confidence: application to community 
detection in graphs, IEEE Trans. Automat. Contr. (in press). 
[14] Stijn van Dongen, Graph clustering by flow simulation, Ph.D. thesis, University of Utrecht, Utrecht, 
Netherlands (2000). 
[15] Pons, P. and Latapy, M., Computing communities in large networks using random walks, J. Graph Algorithms 
Appl. 10 (2006) 191-218. 
[16] Gunes, I. and Bingol, H., Community detection in complex networks using agents, in Int. Conference on 
Autonomous Agents and Multiagent Systems (AAMAS’07) (Honolulu, Hawaii, USA, 2007). 
[17] Rosvall, M. and Bergstrom, C. T., Maps of random walks on complex networks reveal community structure, 
Proc. Natl. Acad. Sci. 105 (2008) 1118-1123. 
[18] E, W., Li, T. and Vanden-Eijnden, E., Optimal partition and effective dynamics of complex networks, Proc. 
Natl. Acad. Sci. 105 (2008) 7907. 
[19] Yang, B., Cheung, W. K. and Liu, J., Community mining from signed social networks, IEEE Trans. on 
Knowledge and Data Engineering 19 (2007) 1333-1348. 
[20] Yang, B., Liu, J., Feng, J. and Liu, D., On modularity of social network communities: the spectral 
characterization, in Proc. IEEE/WIC/ACM Int. Conference on Web Intelligence (WI’08) (Sydney, Australia, 2008), 
pp. 127-133. 
[21] Strehl, A. and Ghosh, J., Cluster ensembles – a knowledge reuse framework for combining partitionings. in 
Proc. AAAI Conference on Artificial Intelligence (AAAI’02) (California, USA, 2002), pp. 93-98. 
[22] Lancichinetti, A., Fortunato, S. and Radicchi, F., Benchmark graphs for testing community detection 
algorithms, Phys. Rev. E 78 (2008) 046110. 
[23] Newman, M. E. J., Strogatz, S. H. and Watts, D. J., Random graphs with arbitrary degree distributions and 
their applications, Phys. Rev. E 64 (2001) 026118. 
[24] Leskovec, J., Lang, K. J. and Mahoney, M. W., Empirical comparison of algorithms for network community 
detection, in Proc. 19th International World Wide Web Conference (WWW’10) (Raleigh, North Carolina USA 
2010), pp. 631-640. 
[25] Radicchi, F., Castellano, C., Cecconi, F., Loreto, V. and Parisi, D., Defining and identifying communities in 
networks, Proc. Natl. Acad. Sci. 101 (2004) 2658-2663. 
[26] Milgram, S., The small world problem, Psychology Today 1 (1967) 60-67. 
[27] Albert, R., Jeong, H. and Baraba´si, A. L., Diameter of the World Wide Web, Nature 401 (1999) 130-131. 
[28] Lancichinetti, A. and Fortunato, S., Community detection algorithms: A comparative analysis, Phys. Rev. E 
80 (2009) 056117. 
[29] The software used in this paper can be found in ftp://jindijlu:dd@59.72.0.62/ 
[30] Danon, L., Duch, J., Diaz-Guilera, A. and Arenas, A., Comparing community structure identification, J. Stat. 
Mech. (2005) P09008. 
[31] Zachary, W. W., An information flow model for conflict and fission in small groups, J. Anthropological 
Research. 33 (1977) 452-473. 
[32] Lusseau, D., The emergent properties of a dolphin social network, Proc Biol Sci. 270 (2003) S186-8. 
[33] Newman M. E. J., Modularity and community structure in networks, Proc. Natl. Acad. Sci. 103 (2006) 
8577-8582. 
[34] Gleiser P. M. and Danon L., Community structure in jazz, Adv. Complex Systems 6 (2003), 565-573. 
[35] Guimerà, R., Danon, L., Diaz-Guilera, A., Giralt, F. and Arenas, A., Self-similar community structure in a 
network of human interactions, Phys. Rev. E 68 (2003) 065103. 
[36] Newman, M. E. J. and Girvan, M., Finding and evaluating community structure in networks. Phys. Rev. E. 69 
(2004) 026113. 
 


