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THE SUBPOWER MEMBERSHIP PROBLEM FOR SEMIGROUPS

ANDREI BULATOV, MARCIN KOZIK, PETER MAYR, AND MARKUS STEINDL

Abstract. Fix a finite semigroup S and let a1, . . . , ak , b be tuples in a direct
power Sn. The subpower membership problem (SMP) asks whether b can be
generated by a1, . . . , ak. If S is a finite group, then there is a folklore algorithm
that decides this problem in time polynomial in nk. For semigroups this prob-
lem always lies in PSPACE. We show that the SMP for a full transformation
semigroup on 3 or more letters is actually PSPACE-complete, while on 2 letters
it is in P. For commutative semigroups, we provide a dichotomy result: if a
commutative semigroup S embeds into a direct product of a Clifford semigroup
and a nilpotent semigroup, then SMP(S) is in P; otherwise it is NP-complete.

1. Introduction

Deciding membership is a basic problem in computer algebra. For permutation
groups given by generators, it can be solved in polynomial time using Sims’ stabilizer
chains [1]. For transformation semigroups, membership is PSPACE-complete by a
result of Kozen [5].

In this paper we study a particular variation of the membership problem that
was proposed by Willard in connection with the study of constraint satisfaction
problems (CSP) [3, 11]. Fix a finite algebraic structure S with finitely many basic
operations. Then the subpower membership problem (SMP) for S is the following
decision problem:

SMP(S)
Input: {a1, . . . , ak} ⊆ Sn, b ∈ Sn

Problem: Is b in the subalgebra 〈a1, . . . , ak〉 of S
n generated by

{a1, . . . , ak}?

For example, for a one-dimensional vector space S over a field F , SMP(S) asks
whether a vector b ∈ Fn is spanned by vectors a1, . . . , ak ∈ Fn.

Note that SMP(S) has a positive answer iff there exists a k-ary term function t
on S such that t(a1, . . . , ak) = b, that is

(1) t(a1i, . . . , aki) = bi for all i ∈ {1, . . . , n}.

Hence SMP(S) is equivalent to the following problem: Is the partial operation t that
is defined on an n element subset of Sk by (1) the restriction of a term function on
S?

Note that the input size of SMP(S) is essentially n(k + 1). Since the size of
〈a1, . . . , ak〉 is limited by |S|n, one can enumerate all elements in time exponential
in n using a straightforward closure algorithm. This means that SMP(S) is in
EXPTIME for each algebra S. Kozik constructed a class of algebras which actually
have EXPTIME-complete subpower membership problems [6].
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Still for certain structures the SMP might be considerably easier. For S a vector
space, the SMP can be solved by Gaussian elimination in polynomial time. For
groups the SMP is in P as well by an adaptation of permutation group algorithms
[1, 12]. Even for certain generalizations of groups and quasigroups the SMP can be
shown to be in P [7].

In the current paper we start the investigation of algorithms for the SMP of finite
semigroups and its complexity. We will show that the SMP for arbitrary semigroups
is in PSPACE in Theorem 2.1 For the full transformation semigroups Tn on n letters
we will prove the following in Section 2.

Theorem 1.1. SMP(Tn) is PSPACE-complete for all n ≥ 3, while SMP(T2) is

in P.

This is the first example of a finite algebra with PSPACE-complete SMP. As a
consequence we can improve a result of Kozen from [5] on the intersection of regular
languages in Corollary 2.4.

Moreover the following is the smallest semigroup and the first example of an
algebra with NP-complete SMP.

Example 1.2. Let Z1
2 := {0, a, 1} denote the 2-element null semigroup adjoined

with a 1, i.e., Z1
2 has the following multiplication table:

Z1
2 0 a 1
0 0 0 0
a 0 0 a
1 0 a 1

Then SMP(Z1
2 ) is NP-complete. NP-hardness follows from Lemma 5.2 by encoding

the exact cover problem. That the problem is in NP for commutative semigroups
is proved in Lemma 5.1.

Generalizing from this example we obtain the the following dichotomy for com-
mutative semigroups.

Theorem 1.3. Let S be a finite commutative semigroup. Then SMP(S) is in P if

one of the following equivalent conditions holds:

(1) S is an ideal extension of a Clifford semigroup by a nilpotent semigroup;

(2) the ideal generated by the idempotents of S is a Clifford semigroup;

(3) for every idempotent e ∈ S and every a ∈ S where ea = a the element a
generates a group;

(4) S embeds into the direct product of a Clifford semigroup and a nilpotent

semigroup.

Otherwise SMP(S) is NP-complete.

Theorem 1.3 is proved in Section 5. Our way towards this result starts with
describing a polynomial time algorithm for the SMP for Clifford semigroups in
Section 4. In fact in Corollary 4.10 we will show that SMP(S) is in P for every (not
necessarily commutative) ideal extension of a Clifford semigroup by a nilpotent
semigroup.

Throughout the rest of the paper, we write [n] := {1, . . . , n} for n ∈ N. Also a
tuple a ∈ Sn is considered as a function a : [n] → S. So the i-th coordinate of this
tuple is denoted by a(i) rather than ai.

2. Full transformation semigroups

First we give an upper bound on the complexity of the subpower membership
problem for arbitrary finite semigroups.

Theorem 2.1. The SMP for any finite semigroup is in PSPACE.
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Proof. Let S be a finite semigroup. We show that

(2) SMP(S) is in nondeterministic linear space.

To this end, let A ⊆ Sn, b ∈ Sn be an instance of SMP(S). If b ∈ 〈A〉, then there
exist a1, . . . , am ∈ A such that b = a1 · · · am.

Now we pick the first generator a1 ∈ A nondeterministically and start with
c := a1. Pick the next generator a ∈ A nondeterministically, compute c := c ·a, and
repeat until we obtain c = b. Clearly all computations can be done in space linear
in n · |A|. This proves (2). By a result of Savitch [9] this implies that SMP(S) is in
deterministic quadratic space. �

The first part of Theorem 1.1 follows from the next result since T3 embeds into
Tn for all n ≥ 3.

Theorem 2.2. SMP(T3) is PSPACE-complete.

Proof. Kozen [5] showed that the following decision problem is PSPACE-complete:
input n and functions f, f1, . . . , fm : [n] → [n] and decide whether f can be obtained
as a composition1 of fi’s. The size of the input for this problem is (m+ 1)n logn.

To encode this problem into SMP(T3) let T3 be the full transformation semigroup
of 0, 1, and ∞. Transformations act on their arguments from the right. We identify
g, an element of T3, with the triple (0g, 1g,∞g) and name a number of elements of
T3:

• 0 = (0, 0,∞) and 1 = (1, 1,∞) are used to encode the functions [n] → [n];
• id = (0, 1,∞), 0 7→ 0 = (0,∞,∞), 0 7→ 1 = (1,∞,∞), and 1 7→ 0 =

(∞, 0,∞) are used to model the composition.

We call an element of T3 bad if it sends 0 or 1 to ∞; and we call a tuple of elements
bad if it is bad on at least one position. Note that all the named elements send ∞
to ∞. So multiplying a bad element on the right by any of the named elements
yields a bad element again.

Let n and f, f1, . . . , fm be an input to Kozen’s composition problem. We will
encode it as SMP on n2+mn positions. We start with an auxiliary notation. Every

function g : [n] → [n] can be encoded by a mapping tuple mg ∈ T n2+mn
3 as follows:

mg(x) :=

{

1 if x ∈ {1g, n+ 2g, . . . , (n− 1)n+ ng},

0 otherwise.

Hence the first n positions encode the image of 1, the next n positions the image of
2, and so on. The final mn positions are used to distinguish mapping tuples from
other tuples that we will define shortly. Note that mapping tuples are never bad.

We introduce the generators of the subalgebra of T n2+mn
3 gradually. The first

generator is the mapping tuple m1 for the identity on [n].
Next, for each fi we add the choice tuple ci defined as

ci(x) :=











id if x ∈ [n2],

0 7→ 1 if x ∈ {n2 + (i − 1)n+ 1, . . . , n2 + (i − 1)n+ n},

0 7→ 0 otherwise.

Multiplying the mapping tuple for g on the right by the choice tuple for fi corre-
sponds to deciding that g will be composed with fi.

Finally, for each fi and j, k ∈ [n] we add the application tuple aijk with the
semantics

apply fi on coordinate j to k.

1We will assume that the identity function can be obtained even from an empty set of functions.
This little twist does not change the complexity of the problem.
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If k 6= kfi , then

aijk(x) :=











1 7→ 0 if x ∈ {(j − 1)n+ k, n2 + (i− 1)n+ j},

0 7→ 1 if x = (j − 1)n+ kfi ,

id otherwise.

If k = kfi , then

aijk(x) :=

{

1 7→ 0 if x = n2 + (i− 1)n+ j,

id otherwise.

Multiplication by the application tuples computes the composition decided by the
choice tuples. More precisely, for g ∈ Tn and fi we have

(3) mgfi = mgciai11g · · · ainng .

Here multiplying mg by ci turns the i-th block of n positions among the last nm
positions of mg to 1. The following multiplication with ai11g · · · ainng resets these
n positions to 0 again. At the same time, in the first n positions of mgci the 1 gets
moved from position 1g to (1g)fi , in the next n positions the 1 gets moved from
n+2g to n+ (2g)fi , and so on. Hence we obtain the mapping tuple of gfi, and (3)
is proved.

It remains to choose an element which will be generated by all these tuples iff f
is a composition of fi’s. This final element is the mapping tuple for f . We claim

(4) f ∈ 〈f1, . . . , fm〉 iff mf ∈ 〈m1, c1, . . . , cm, a111, . . . , amnn〉.

The implication from left to right is immediate from our observation (3). For the
converse we analyze a minimal product of generator tuples which yields mf and
show that it essentially follows the pattern from (3). Recall that no partial product
starting in the leftmost element of the product can be bad. In particular the leftmost
element itself needs to be m1 – the only generator which is not bad. If m1 occurs
anywhere else, then the product could be shortened as any tuple which is not bad
multiplied by m1 yields m1 again. So we can disregard this case.

The second element from the left cannot be an application tuple as the 1 7→ 0 on
one of the last mn positions would turn the result bad. Thus the only meaningful
option is the choice tuple for some function fi. Multiplying m1 by ci turns n
positions (among the last mn positions) of m1 to 1.

The third element from the left cannot be a choice tuple: a multiplication by a
choice tuple produces a bad result unless the last mn positions of the left tuple are
all 0. So before any more choice tuples occur in our product, all n 1’s in the last
mn positions have to be reset to 0. This can only be achieved by multiplying with
n application tuples of the form aijkj

for j ∈ [n]. Focusing on the first n2 positions
of m1ci, we see that necessarily kj = j for all j. Hence the first n+2 factors of our
product are

m1ciai11 · · ·ainn = mfi .

Note that the order of the application tuples do not matter.
Continuing this reasoning with the mapping tuple for fi (instead of the identity),

we see that the next n+1 factors of our product are some cj followed by n application
tuples aj11fi , . . . , ajnnfi . Invoking (3) we then get the mapping tuple for fifj . In
the end we get a mapping tuple for f iff f can be obtained as a composition of the
fi’s and the identity. This proves (4).

The number of tuples we input into SMP is mn2 + m + 2, so the total size of
the input is O((mn2 +m + 2)(n2 +mn)), that is, polynomial with respect to the
size of the input of the original problem. Thus Kozen’s composition problem has
a polynomial time reduction to SMP(T3) and the latter is PSPACE-hard as well.
Together with Theorem 2.1 this yields the result. �
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Next we show the second part of Theorem 1.1.

Theorem 2.3. SMP(T2) is in P.

Proof. Let the underlying set of T2 be {0, 1} and the constants of T2 be denoted
by 0 and 1 and the non-constants by id and not. For a tuple a ∈ T n

2 the constant

part (or cp) of a is the set of indices i ∈ [n] such that a(i) ∈ T2 is a constant, the
non-constant part (or ncp) are the remaining i’s.

Let a1, . . . , ak, b ∈ T n
2 be an instance of SMP(T2). Before starting the algorithm

we preprocess the input by removing all the ai’s with cp not included in cp of b. It
is clear that the removed tuples cannot occur in a product that yields b. Next we
call the function SMP(a1, . . . , ak, b) from Algorithm 1.

Algorithm 1
Function SMP(a1, . . . , ak, b) solving SMP(T2).

Input: a1, . . . , ak, b ∈ T n
2

Output: Is b ∈ 〈a1, . . . , ak〉?
1: let a1, . . . , aℓ be the ai’s with empty cp
2: and aℓ+1, . . . , ak with non-empty cp
3: if b has empty cp then
4: return b ∈ 〈a1, . . . , aℓ〉 ⊲ instance of SMP(Z2)
5: end if
6: for i = ℓ+ 1 . . . n do
7: ⊲ checks if ai can be the last element of the product with non-empty cp
8: let a′1, . . . , a

′
ℓ be projections of a1, . . . , aℓ to cp of ai

9: let b′ (defined on cp of ai) be b′(j) = id if ai(j) = b(j) and b′(j) = not else
10: if b′ ∈ 〈a′1, . . . , a

′
ℓ〉 then ⊲ instance of SMP(Z2)

11: assume b′ = a′j1 · · · a
′
jm

for j1, . . . , jm ∈ [ℓ]
12: set c := baj1 · · · ajm
13: let a′′1 , . . . , a

′′
k, c

′′ be projections of a1, . . . , ak, c to ncp of ai
14: return SMP(a′′1 , . . . , a

′′
k, c

′′)
15: end if
16: end for
17: return FALSE

We show the correctness of Algorithm 1 by induction on the size of cp of b. Note
that if b has empty cp then, by the preprocessing, each ai has empty cp as well
and the problem reduces to SMP over Z2 (which is solvable in polynomial time by
Gaussian elimination). This is the essence behind lines 3–5 of the algorithm.

If b has non-empty cp, we first assume that b = aj1 · · · ajm , and let ajp be the
last element of the product with non-empty cp. The suffix aj(p+1)

· · · ajm consists
of elements of empty cp which multiply ajp , on its cp, to b. This means that the
condition on line 10 will be satisfied for some i (maybe with i = jp, but maybe
with some other i). Since b is generated by a1, . . . , ak by assumption, then so is
c = baj1 · · · ajm (for any sequence computed in a successful test in line 10). Now
c′′ is just a projection of c, and the recursive call in line 14 will return the correct
answer TRUE by the induction assumption.

Next assume that b is not generated by a1, . . . , ak. Seeking a contradiction we
suppose that the algorithm returns TRUE. That is, the recursive call in line 14,
in the loop iteration at some i, answers TRUE. Consequently b′ = a′j1 · · · a

′
jm

for
some j1, . . . , jm ∈ [ℓ] by line 11 and c′′ = a′′i1 . . . a

′′
ip

for some i1, . . . , ip ∈ [k] by the

induction assumption. We claim that

(5) b = ai1 · · · aipaiaiaj1 · · ·ajm .
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Indeed on indices from the cp of ai only the last m+ 1 elements matter and they
provide proper values by the choice of the sequence j1, . . . , jm computed by the
algorithm. For the ncp of ai the recursive call provides c. Since aiai is id on ncp
of ai and aj1 · · · ajmaj1 · · · ajm is a tuple of id’s (since all the tuples in the product
have empty cp’s) we obtain b on ncp of ai as well. This proves (5) and contra-
dicts our assumption that b is not generated by a1, . . . , ak. Hence the algorithm
returns FALSE in this case.

The complexity of the algorithm is clearly polynomial: The function SMP works
in polynomial time, and the depth of recursion is bounded by n as during each
recursive call we loose at least one coordinate. �

For proving that membership for transformation semigroups is PSPACE-complete,
Kozen first showed that the following decision problem is PSPACE-complete [5].

AUTOMATA INTERSECTION PROBLEM
Input: deterministic finite state automata F1, . . . , Fn with common

alphabet Σ
Problem: Is there a word in Σ∗ that is accepted by all of F1, . . . , Fn?

Using the wellknown connection between automata and transformation semigroups
we obtain the following stronger version of Kozen’s result.

Corollary 2.4. The Automata Intersection Problem restricted to automata with 3
states is PSPACE-complete.

Proof. The Automata Intersection Problem is in PSPACE by [5]. For PSPACE-
hardness we reduce SMP(T3) to our problem. Let T3 act on {0, 1,∞}, and let
a1, . . . , ak, b ∈ T n

3 be the input of SMP(T3).
For each position i ∈ [n] we introduce three automata F 0

i , F
1
i , and F∞

i each with
the set of states {0, 1,∞}. These automata are responsible for storing the image of
0, 1, and ∞, respectively, under the transformation on position i. The initial state
of F j

i is j, its accepting state jb(i). The alphabet of the automata is {a1, . . . , ak}.

For the automaton F j
i the letter aℓ maps the state x to xaℓ(i).

Now all the 3n automata accept a common word ai1 . . . aip over {a1, . . . , ak}

iff jai1 ...aip (i) = jb(i) for all i ∈ [n], j ∈ {0, 1,∞}. The latter is equivalent to
b ∈ 〈a1, . . . , ak〉. Thus SMP(T3) reduces to the Automata Intersection Problem for
automata with 3 states which is then PSPACE-hard by Theorem 2.2. �

3. Nilpotent semigroups

Definition 3.1. A semigroup S is called d-nilpotent for d ∈ N if

∀x1, . . . , xd, y1, . . . , yd ∈ S : x1 · · ·xd = y1 · · · yd.

It is called nilpotent if it is d-nilpotent for some d ∈ N. We let 0 := x1 · · ·xd denote
the zero element of a d-nilpotent semigroup S.

Definition 3.2. An ideal extension of a semigroup I by a semigroup Q with zero
is a semigroup S such that I is an ideal of S and the Rees quotient semigroup S/I
is isomorphic to Q.

Theorem 3.3. Let T be an ideal extension of a semigroup S by a d-nilpotent
semigroup N . Then Algorithm 2 reduces SMP(T ) to SMP(S) in polynomial time.

Proof. Correctness of Algorithm 2. Let A ⊆ T n, b ∈ T n be an instance of SMP(T ).
Case b 6∈ Sn. Since T/S is d-nilpotent, a product that is equal to b cannot have

more than d− 1 factors. Thus Algorithm 2 verifies in lines 2 to 8 whether there are
ℓ < d and a1, . . . , aℓ ∈ A such that b = a1 · · · aℓ. In line 5, Algorithm 2 returns true
if such factors exist. Otherwise false is returned in line 9.
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Algorithm 2
Reduce SMP(T ) to SMP(S) for an ideal extension T of S by d-nilpotent N .

Input: A ⊆ T n, b ∈ T n.
Output: Is b ∈ 〈A〉?
1: if b 6∈ Sn then
2: for ℓ ∈ [d− 1] do
3: for a1, . . . , aℓ ∈ A do
4: if b = a1 · · · aℓ then
5: return true
6: end if
7: end for
8: end for
9: return false

10: else
11: B := {a1 · · · ak ∈ Sn | k < 2d, a1, . . . , ak ∈ A}
12: return b ∈ 〈B〉 ⊲ instance of SMP(S)
13: end if

Case b ∈ Sn. Let B be as defined in line 11. We claim that

(6) b ∈ 〈A〉 iff b ∈ 〈B〉.

The “if”-direction is clear. For the converse implication assume b ∈ 〈A〉. Then we
have ℓ ∈ N and a1, . . . , aℓ ∈ A such that b = a1 · · · aℓ. If ℓ < 2d, then b ∈ B and
we are done. Assume ℓ ≥ 2d in the following. Let q ∈ N and r ∈ {0, . . . , d − 1}
such that ℓ = qd + r. For 0 ≤ j ≤ q − 2 define bj := ajd+1 · · ·ajd+d. Further
bq−1 := a(q−1)d+1 · · · aℓ. Since T/S is d-nilpotent, any product of d or more elements
from A is in Sn. In particular b0, . . . , bq−1 are in B. Since

b = b0 · · · bq−1,

we obtain b ∈ 〈B〉. Hence (6) is proved.
Since Algorithm 2 returns b ∈ 〈B〉 in line 12, its correctness follows from (6).
Complexity of Algorithm 2. In lines 2 to 8, the computation of each product

a1 · · · aℓ requires n(ℓ − 1) multiplications in S. There are |A|ℓ such products of

length ℓ. Thus the number of multiplications in S is at most
∑d−1

ℓ=2 n(ℓ − 1)|A|ℓ.
This expression is bounded by a polynomial of degree d−1 in the input size n(|A|+1).

Similarly the size of B and the effort for computing its elements is bounded by
a polynomial of degree 2d− 1 in n(|A|+1). Hence Algorithm 2 runs in polynomial
time. �

Corollary 3.4. The SMP for every finite nilpotent semigroup is in P.

Proof. Immediate from Theorem 3.3 �

4. Clifford semigroups

Clifford semigroups are also known as semilattices of groups. In this section
we show that their SMP is in P. First we state some well-known facts on Clifford
semigroups and establish some notation.

Lemma 4.1 (cf. [2, p. 12, Proposition 1.2.3]). In a finite semigroup S, each s ∈ S
has an idempotent power sm for some m ∈ N, i.e., (sm)2 = sm.

Definition 4.2. A semigroup S is completely regular if every s ∈ S is contained in
a subsemigroup of S which is a also a group. A semigroup S is a Clifford semigroup
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if it is completely regular and its idempotents are central. The latter condition may
be expressed by

∀e, s ∈ S : (e2 = e ⇒ es = se).

Definition 4.3. Let 〈I,∧〉 be a semilattice. For i ∈ I let 〈Gi, ·〉 be a group. For
i, j, k ∈ I with i ≥ j ≥ k let φi,j : Gi → Gj be group homomorphisms such that

φj,k ◦ φi,j = φi,k and φi,i = idGi
. Let S := ˙⋃

i∈IGi, and

for x ∈ Gi, y ∈ Gj let x ∗ y := φi,i∧j(x) · φj,i∧j(y).

Then we call 〈S, ∗〉 a strong semilattice of groups.

Theorem 4.4 (Clifford, cf. [2, p. 106–107, Theorem 4.2.1] ). A semigroup is a

strong semilattice of groups iff it is a Clifford semigroup.

Note that the operation ∗ extends the multiplication of Gi for each i ∈ I. It is
easy to see that {Gi | i ∈ I} are precisely the maximal subgroups of S. Moreover,
each Clifford semigroup inherits a preorder ≤ from the underlying semilattice.

Definition 4.5. Let S be a Clifford semigroup constructed from a semilattice I
and disjoint groups Gi for i ∈ I as in Definition 4.3. For x, y ∈ S define

x ≤ y if ∃i, j ∈ I : i ≤ j, x ∈ Gi, y ∈ Gj .

Lemma 4.6. Let S be a Clifford semigroup and x, y, z ∈ S. Then

(1) x ≤ yz iff x ≤ y and x ≤ z,
(2) xyz ≤ y, and
(3) x ≤ y and y ≤ x iff x and y are in the same maximal subgroup of S.

Proof. Straightforward. �

The following mapping will help us solve the SMP for Clifford semigroups.

Definition 4.7. Let S be a finite Clifford semigroup constructed from a semilattice
I and disjoint groups Gi for i ∈ I as in Definition 4.3. Let

γ : S →
∏

i∈I

Gi such that γ(s)(i) :=

{

s if s ∈ Gi,

1Gi
otherwise

for s ∈ S and i ∈ I.

Here
∏

denotes the direct product and 1Gi
the identity of the group Gi for i ∈ I.

Note that the mapping γ is not necessarily a homomorphism.

Algorithm 3

For a Clifford semigroup S = ˙⋃
i∈IGi, reduce SMP(S) to SMP(

∏

i∈I Gi).

Input: A ⊆ Sn, b ∈ Sn.
Output: True if b ∈ 〈A〉, false otherwise.
1: Set {a1, . . . , ak} := {a ∈ A | ∀i ∈ [n] : a(i) ≥ b(i)}
2: Set e to the idempotent power of b.
3: if ∃i ∈ [n] : e(i) /∈ 〈a1(i), . . . , ak(i)〉 then
4: return false
5: end if
6: return γ(b) ∈ 〈γ(a1e), . . . , γ(ake)〉 ⊲ instance of SMP(

∏

i∈I Gi)

Theorem 4.8. Let S be a finite Clifford semigroup with maximal subgroups Gi for

i ∈ I. Then Algorithm 3 reduces SMP(S) to SMP(
∏

i∈I Gi) in polynomial time.

The latter is the SMP of a group.
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Proof. Correctness of Algorithm 3. Assume S = 〈 ˙
⋃

i∈IGi, ·〉 as in Definition 4.3.
Fix an instance A ⊆ Sn, b ∈ Sn of SMP(S). Let a1, . . . , ak be as defined in line 1
of Algorithm 3.

First we claim that

(7) b ∈ 〈A〉 iff b ∈ 〈a1, . . . , ak〉.

To this end, assume that b = c1 · · · cm for c1, . . . , cm ∈ A. Fix j ∈ [m]. Lemma
4.6(1) implies that b(i) ≤ cj(i) for all i ∈ [n]. Thus cj ∈ {a1, . . . , ak}. Since j was
arbitrary, we have c1, . . . , cm ∈ {a1, . . . , ak} and (7) follows.

Let e be the idempotent power of b. If the condition in line 3 of Algorithm 3 is
fulfilled, then neither e nor b are in 〈a1, . . . , ak〉. In this case false is returned in line
4. Now assume the condition in line 3 is violated, i.e.,

∀i ∈ [n] : e(i) ∈ 〈a1(i), . . . , ak(i)〉.

We claim that

(8) e ∈ 〈a1, . . . , ak〉.

For each i ∈ [n] let di ∈ 〈a1, . . . , ak〉 such that di(i) = e(i). Further let f be the
idempotent power of d1 · · · dn. We show f = e. Fix i ∈ [n]. Since di(i) = e(i), we
have f(i) ≤ e(i) by Lemma 4.6(2). On the other hand, e(i) ≤ b(i) ≤ aj(i) for all
j ≤ k. Hence e(i) ≤ f(i) by multiple applications of Lemma 4.6(1). Thus f(i) and
e(i) are idempotent and are in the same group by Lemma 4.6(3). So e(i) = f(i).
This yields e = f and thus (8) holds.

Next we show

(9) b ∈ 〈a1, . . . , ak〉 iff b ∈ 〈a1e, . . . , ake〉.

If b = c1 · · · cm for c1, . . . , cm ∈ {a1, . . . , ak}, then b = be = c1 · · · cme = (c1e) · · · (cme)
since idempotents are central in Clifford semigroups. This proves (9).

Next we claim that

(10) b ∈ 〈a1e, . . . , ake〉 iff γ(b) ∈ 〈γ(a1e), . . . , γ(ake)〉.

Fix i ∈ [n]. By Lemma 4.6(3) the elements a1e(i), . . . , ake(i), and b(i) all lie in the
same group, say Gl. Note that γ|Gl

: Gl →
∏

i∈I Gi is a semigroup monomorphism.
This means that the componentwise application of γ to 〈a1e, . . . , ake, b〉, namely

γ|〈a1e,...,ake,b〉 : 〈a1e, . . . , ake, b〉 → (
∏

i∈I

Gi)
n,

is also a semigroup monomorphism. This implies (10).
In line 6, the question whether γ(b) ∈ 〈γ(a1e), . . . , γ(ake)〉 is an instance of

SMP(
∏

i∈I Gi), which is the SMP of a group. By (7), (9), and (10), Algorithm 3
returns true iff b ∈ 〈A〉.

Complexity of Algorithm 3. Line 1 requires at most O(n|A|) calls of the relation
≤. For line 2, let (s1, . . . , s|S|) be a list of the elements of S and let v ∈ N minimal
such that (s1, . . . , s|S|)

v is idempotent. Then e = bv. Since v only depends on S
but not on n or |A|, computing e takes O(n) steps. Line 3 requires O(n|A|) steps.
Altogether the time complexity of Algorithm 3 is O(n|A|). �

Corollary 4.9. The SMP for finite Clifford semigroups is in P.

Proof. Let S be a finite Clifford semigroup. Fix an instance A ⊆ Sn, b ∈ Sn of
SMP(S). Algorithm 3 converts this instance into one of the SMP of a group with
maximal size of |S||S| in O(n|A|) time. Both instances have input size n(|A| + 1).
The latter can be solved by Willard’s modification [11] of the concept of strong
generators, known from the permutation group membership problem [1]. This re-
quires O(n3 + n|A|) time according to [12, p. 53, Theorem 3.4]. Hence SMP(S) is
decidable in O(n3 + n|A|) time. �
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Corollary 4.10. Let S be a finite ideal extension of a Clifford semigroup by a

nilpotent semigroup. Then SMP(S) is in P.

Proof. By Theorem 3.3 and Corollary 4.9. �

In the next lemma we give some conditions equivalent to the fact that a semigroup
is an ideal extension of a Clifford semigroup by a nilpotent semigroup.

Lemma 4.11. Let S be a finite semigroup. Then the following are equivalent:

(1) S is an ideal extension of a Clifford semigroup C by a nilpotent semigroup

N ;

(2) the ideal I generated by the idempotents of S is a Clifford semigroup;

(3) all idempotents in S are central, and for every idempotent e ∈ S and every

a ∈ S where ea = a the element a generates a group;

(4) S embeds into the direct product of a Clifford semigroup C and a nilpotent

semigroup N .

Proof. (1) ⇒ (2): We show I = C. Since S\C cannot contain idempotent elements,
all idempotents are in the ideal C. Thus we have I ⊆ C. Now let c ∈ C. Let e ∈ I
be the idempotent power of c. Then c = ce ∈ I. So C ⊆ I.

(2) ⇒ (3): First we claim that all idempotents are central in S. To this end, let
e ∈ S be idempotent and a ∈ S. Then

ae = (ae)e

= e(ae) since e, ae ∈ I and e is central in I,

= (ea)e

= e(ea) since e, ea ∈ I and e is central in I,

= ea.

Next assume that ea = a. Since ea ∈ I, we have that 〈a〉 = 〈ea〉 is a group.
(3) ⇒ (4): Let k ∈ N such that xk is idempotent for each x ∈ S. For x ∈ S and

an idempotent e ∈ S we have

(11) ex = (ex)k+1 = exk+1

since 〈ex〉 is a group and idempotents are central. We claim that

(12) α : S → S, x 7→ xk+1 is a homomorphism with α2 = α.

For x, y ∈ S,

(xy)k+1 = (xy)kxy

= (xy)kxk+1y by (11) since (xy)k is idempotent,

= (xy)kxk+1yk+1 by (11) since xk is idempotent,

= (xy)k+1xkyk since xk, yk are central,

= xyxkyk by (11) since xk is idempotent,

= xk+1yk+1 since xk, yk are central.

Also,

(xk+1)k+1 = xk2+2k+1 = xk+1.
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This proves (12). Let C := α(S). We claim that C is an ideal. For x, y ∈ S ∪ {1}
and zk+1 ∈ C,

xzk+1y= xzyzk since zk is central,

= (xzy)k+1zk by (11),

= (xzk+1y)k+1 since zk is central and idempotent,

∈ C.

Now consider the Rees quotient N := S/C. We claim that

(13) N is |N |-nilpotent.

Let n1, . . . , n|N | ∈ S. First assume

(14) ∃i, j ∈ {1, . . . , |N |}, i < j : n1 · · ·ni = n1 · · ·nj .

Then ni+1 · · ·nj is a right identity of n1 · · ·ni. Thus

n1 · · ·ni = n1 · · ·ni(ni+1 · · ·nj)
k+1 ∈ C

since C is an ideal. So n1 · · ·n|N | ∈ C.
If (14) does not hold, then n1, n1n2, . . . , n1 · · ·n|N | are |N | distinct elements and

at least one of them is in C. Again n1 · · ·n|N | ∈ C by the ideal property of C. This
proves (13). Now let

β : S → C ×N, s 7→ (α(s), s/C).

Apparently β is a homomorphism. It remains to prove that β is injective. Assume
β(x) = β(y) for x, y ∈ S. If x /∈ C, then also y /∈ C. Now x/C = y/C implies
x = y. Assume x ∈ C. Then x = α(x) = α(y) = y since α2 = α. We proved item
(4) of Lemma 4.11.

(4) ⇒ (1): Assume S ≤ C × N . Then J := S ∩ (C × {0}) is an ideal of S. At
the same time J is a subsemigroup of a Clifford semigroup. By Definition 4.2 also
J is a Clifford semigroup. It is easy to see that the Rees quotient N1 := S/J is
nilpotent. Thus S is an ideal extension of the Clifford semigroup J by the nilpotent
semigroup N1. �

5. Commutative semigroups

The main result of Section 4 was that ideal extensions of Clifford semigroups
by nilpotent semigroups have the SMP in P. In this section we show that if a
commutative semigroup does not have this property, then its SMP is NP-complete.
This will complete the proof of our dichotomy result, Theorem 1.3.

First we give an upper bound on the complexity of the SMP for commutative
semigroups.

Lemma 5.1. The SMP for a finite commutative semigroup is in NP.

Proof. Let {a1, . . . , ak} ⊆ Sn, b ∈ Sn be an instance of SMP(S). Let x :=
(s1, . . . , s|S|) be a list of all elements of S, and r := |〈x〉|. Now 〈x〉 = {x1, . . . , xr},

and for each ℓ ∈ N there is some m ∈ [r] such that xℓ = xm. Since x contains all
elements of S, we have

∀y ∈ Sn ∀ℓ ∈ N ∃m ∈ [r] : yℓ = ym.

If b ∈ 〈a1, . . . , ak〉, then there is a witness (ℓ1, . . . , ℓk) ∈ {0, . . . , r}k such that
b = a1

ℓ1 · · · ak
ℓk . The size of this witness is O(k log(r)). Note that r depends

only on S and not on the input size n(k + 1). Given ℓ1, . . . , ℓk we can verify
b = a1

ℓ1 · · ·ak
ℓk in time polynomial in n(k + 1). Hence SMP(S) is in NP. �

Lemma 5.2. Let S be a finite semigroup, e ∈ S be idempotent, and a ∈ S. Assume

that ea = ae = a and 〈a〉 is not a group. Then SMP(S) is NP-hard.
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Proof. We reduce EXACT COVER to SMP(S). The former is one of Karp’s 21
NP-complete problems [4].

EXACT COVER
Input: n ∈ N, sets C1, . . . , Ck ⊆ [n]
Problem: Are there disjoint sets D1, . . . , Dm ∈ {C1, . . . , Ck} such that

⋃m

i=1 Di = [n]?

Fix an instance n,C1, . . . , Ck of EXACT COVER. Now we define characteristic
functions c1, . . . , ck, b ∈ Sn for C1, . . . , Ck, [n], respectively. For j ∈ [k], i ∈ [n], let

b(i) := a and cj(i) :=

{

a if i ∈ Cj ,

e otherwise.

Now let {c1, . . . , ck} ⊆ Sn, b ∈ Sn be an instance of SMP(S). We claim that

b ∈ 〈c1, . . . , ck〉 iff ∃ disjoint D1, . . . , Dm ∈ {C1, . . . , Ck} :
m
⋃

i=1

Di = [n].

”⇒”: Let d1, . . . , dm ∈ {c1, . . . , ck} such that b = d1 · · · dm. Let D1, . . . , Dm be
the sets corresponding to d1, . . . , dm, respectively. Then

⋃m

i=1 Di = [n]. The union
is disjoint since a /∈ {a2, a3, . . .}.

”⇐”: Fix D1, . . . , Dm whose disjoint union is [n]. Let d1, . . . , dm ∈ {c1, . . . , ck}
be the characteristic functions of D1, . . . , Dm, respectively. Then b = d1 · · · dm. �

Corollary 5.3. Let S be a finite commutative semigroup that does not fulfill one

of the equivalent conditions of Lemma 4.11. Then SMP(S) is NP-hard.

Proof. The semigroup S violates condition (3) of Lemma 4.11. Since the idempo-
tents are central in S, there are e ∈ S idempotent and a ∈ S such that ea = ae = a
and 〈a〉 is not a group. Now the result follows from Lemma 5.2. �

Now we are ready to prove our dichotomy result for commutative semigroups.

Proof of Theorem 1.3. The conditions in Theorem 1.3 are the ones from Lemma
4.11 adapted to the commutative case. Thus they are equivalent. If one of them is
fulfilled, then SMP(S) is in P by Corollary 4.10.

Now assume the conditions are violated. Then SMP(S) is NP-complete by
Lemma 5.1 and Corollary 5.3. �

6. Conclusion

We showed that the SMP for finite semigroups is always in PSPACE and pro-
vided examples of semigroups S for which SMP(S) is in P, NP-complete, PSPACE-
complete, respectively. For the SMP of commutative semigroups we obtained a
dichotomy between the NP-complete and polynomial time solvable cases. Further
we showed that the SMP for finite ideal extensions of a Clifford semigroup by a
nilpotent semigroup is in P. For non-commutative semigroups there are several
open problems.

Problem 6.1. Is the SMP for every finite semigroup either in P, NP-complete, or
PSPACE-complete?

Bands (idempotent semigroups) are well-studied. Still we do not know the fol-
lowing:

Problem 6.2. What is the complexity of the SMP for finite bands?2 More gener-
ally, what is the complexity in case of completely regular semigroups?

2While this paper was under review, Markus Steindl showed that SMP for any finite band is
either in P or NP-complete [10].
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