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Abstract. The main results of this paper are existence theorems for traveling gravity and cap-
illary gravity water waves in two dimensions, and capillary gravity water waves in three dimensions,
for any periodic fundamental domain. This is a problem in bifurcation theory, yielding curves in the
two dimensional case and bifurcation surfaces in the three dimensional case. In order to address the
presence of resonances, the proof is based on a variational formulation and a topological argument,
which is related to the resonant Lyapunov center theorem.
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1. Introduction. Nonlinear periodic traveling waves on the free surface of an
ideal fluid tend to form hexagonal patterns. This phenomenon is the focus of a number
of recent papers on the subject of water waves, and it is the topic of the present article.
In previous work, various approximations to the evolution equations for free surface
waves are used, in particular the KP system by J. Hammack, N. Scheffner, and H.
Segur [11], and J. Hammack, D. McCallister, N. Scheffner, and H. Segur [12], and
alternatively with certain formal shallow water expansions of the Euler equations by
P. Milewski and J.B. Keller [16]. A natural question is whether similar patterns can
be shown to occur in solutions of the full Euler equations themselves. This is the focus
of a series of papers by the present authors. In [18] and in [20] we report on hexagonal
wave patterns and other phenomena in numerical computations of solutions, which
are shown to satisfy spectral criteria for numerical convergence to solutions of Euler’s
equations. In the present article we describe rigorous existence results for periodic
traveling wave solutions in free surfaces. The goal is to prove the existence of nontrivial
traveling wave solutions to the water wave problem for gravity and capillary gravity
waves in two and three dimensions. In two dimensions this is proven for both gravity
and capillary gravity water waves, constituting a new and relatively straightforward
approach to the theorems of T. Levi-Civita and D. Struik. In three dimensions we
prove the existence of traveling capillary gravity water waves. However, the problem
of gravity waves in three dimensions exhibits the phenomena of small divisors, and it
remains open. The theorem that we prove is given below.

Theorem 1.1. For any spatial period there exist nontrivial periodic traveling
wave solutions of the water wave problem in two dimensions for gravity and capillary
gravity waves, both in deep water and in water of finite depth. In three dimensions,
for any periodic fundamental domain of R2 there exist nontrivial periodic traveling
wave solutions of the water wave problem for capillary gravity waves in infinite depth
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water and for water of finite depth.
We show that in fact there are many small amplitude traveling waves bifurcating

from uniform flow. A solution of the two dimensional problem is of course also a three
dimensional one which is constant in one independent variable. In contrast, for the
three dimensional problem, the solutions asserted by this theorem explicitly give fully
three dimensional wave patterns, as we will see below.

The early rigorous theorems on traveling water waves concern the two dimensional
gravity wave problem, by T. Levi-Civita (1925, [15]) in an infinitely deep fluid, and
with similar complex variable techniques by D. Struik (1926, [27]) for a fluid of finite
depth. When surface tension effects are included, the analogous two dimensional trav-
eling wave problem was addressed by E. Zeidler [31] and H. Beckert and E. Zeidler [2]
for large coefficient of surface tension, and J.T. Beale [1], who also allowed for small
surface tension under conditions of nonresonance. Later J. Reeder and M. Shinbrot
reproduced these results [24], and M. Jones and J. Toland [13], [14] dealt specifically
with the occurrence of resonance.

The only papers of which we are aware1 that give a rigorous analysis of the three
dimensional water wave problem are by J. Reeder and M. Shinbrot [23] and T.Y. Sun
[28], in which they prove an existence theorem for periodic traveling capillary gravity
waves, whose fundamental domain is a “symmetric diamond.” In both papers the
authors remark that the three dimensional gravity wave problem is an example of a
small denominator problem. The proof in [23] applies to most choices of the parame-
ters of the problem (the spatial periods, the acceleration of gravity g, the fluid depth
h, and the Bond number σ/gh2). However, they must explicitly avoid cases in which
a certain linearized operator has a zero eigenvalue of higher multiplicity. These are
situations where more than the generic one or two solutions of the linearized equation
have the same phase velocity. It is easily shown that these exceptional cases are com-
mon, and that they accumulate in parameter space at zero Bond number. The paper
[28] also is restricted in the same way, but is in some ways more general as it also con-
tains results for the case of a pressure disturbance applied to the free surface traveling
at the phase velocity. The paper [23] also reproves the two dimensional theorems for
gravity and for capillary gravity free surface waves, again with the proviso that the
parameters are chosen so that a higher multiplicity null eigenvalue is avoided. The
two dimensional case without such proviso appears in [13], [14]. With regard to the
three dimensional water wave problem without surface tension, see P. Plotnikov [21].

In this paper our proof is based on a reformulation of the capillary gravity wave
problem involving surface integrals, and a variational argument which is similar to
that used by A. Weinstein [29] and J. Moser [17] in their work on the resonant Lya-
punov center theorem. A higher dimensional null space in the free surface problem
compares formally with a case of resonance near an elliptic stationary point of a
Hamiltonian system. Furthermore, the water wave problem is Hamiltonian in our
chosen coordinates, a fact due initially to V.E. Zakharov [30], and this plays a role in
a counting argument via an equivariant cohomological index for a lower bound on the
number of distinct solutions. Our approach is bifurcation theoretic, with the novelty
that for the three dimensional problem the basic parameter is the two dimensional
phase velocity, and solutions occur correspondingly in bifurcation surfaces rather than
curves.

The organization of the paper is as follows. In section 2 we introduce the

1We have, however, recently received a preprint of the work of M.D. Groves and A. Mielke [10]
on three dimensional capillary gravity waves in channels.
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Dirichlet–Neumann operator, reformulate the water wave problem in a set of co-
ordinates involving surface integrals which we have found useful [8], [19], and outline
the method of Lyapunov–Schmidt. In section 3 we solve the first Lyapunov–Schmidt
equation via the implicit function theorem, and in section 4 we pose the problem as
a variational problem for the extrema of an action integral. We then reduce the vari-
ational problem to a finite dimensional one using the results of section 3, and analyze
its set of solutions. Finally, in section 5 we prove the analyticity of the Dirichlet–
Neumann operator in appropriate function spaces. In many ways this analysis is the
heart of the proof. The method is very similar to the one of W. Craig, U. Schanz,
and C. Sulem [7] and D. Nicholls [19]; however, we modify it in a nontrivial way to
yield the particular estimates which we require.

2. Formulation of the water wave problem. The water wave problem de-
scribes the evolution of an ideal fluid with free surface under the effects of gravity
(gravity waves) or gravity and surface tension (capillary gravity waves). An ideal fluid
is one which is inviscid, incompressible, and irrotational. To begin we will consider an
n dimensional fluid, meaning n− 1 horizontal dimensions and one vertical dimension,
and specialize to two and three dimensions later.

2.1. Classical equations and a surface integral formulation. Consider a
fluid region given by

Sη = {(x, y) ∈ R
n−1 × R | − h ≤ y ≤ η(x, t)},(2.1)

where η(x, t) is the free surface, and 0 < h ≤ +∞. It is well known for an ideal fluid
that inside the fluid domain Sη the fluid velocity u can be expressed as

u = ∇ϕ,(2.2)

since the fluid is irrotational, and further

div [u] = div [∇ϕ] = ∆ϕ = 0,(2.3)

since the fluid is incompressible. For the problem of water of finite depth the boundary
conditions are given by

∂yϕ = 0 at y = −h,(2.4a)

∂tη +∇xϕ · ∇xη − ∂yϕ = 0 at y = η(x, t),(2.4b)

∂tϕ+
1
2 |∇ϕ|2 + gη − σdiv


 ∇xη√

1 + |∇xη|2


 = 0 at y = η(x, t) ,(2.4c)

where in appropriate units the density of the fluid is taken to be one, g is the accel-
eration of gravity, and σ/gh2 is the Bond number of the interface. To consider water
of infinite depth we can replace (2.4a) with the following condition:

∂yϕ → 0 as y → −∞.(2.4d)

The horizontal boundary conditions will be periodic, which is to say that in two
dimensions our surface is parameterized by a circle, and in three dimensions by a
torus; both of these are determined by a lattice Γ ⊆ R

n−1, generated by a nonsingular
matrix A ∈ R

(n−1)×(n−1) acting on vectors j ∈ Z
n−1, which in turn has a conjugate
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lattice Γ′ ⊆ R
n−1 generated by the matrix 2π(AT )−1. We recall that a well-behaved

function f on the torus T (Γ) = R
n−1/Γ can be written in terms of its Fourier series

f(x) =
∑
k∈Γ′

f̂(k)eik·x.(2.5)

The classical formulation of the water wave problem is given in (2.3), (2.4a) (or
(2.4d)), (2.4b), (2.4c) with periodic boundary conditions. We will follow [8], [25],
[19], [18] and recast these equations in a surface integral formulation of the water
wave problem. We begin with the observation that when the free surface η(x, t) and
Dirichlet data at the free surface ξ(x, t) = ϕ(x, η(x, t), t) are specified, we can in
principle solve the full problem, since ϕ satisfies Laplace’s equation with appropriate
boundary conditions. In this way the water wave problem is reduced from one posed
inside the entire fluid to one posed at the free surface alone. V.E. Zakharov [30]
noted this and also made the elegant statement that the surface variables η and ξ
are canonically conjugate variables with which one may formulate the water wave
problem as a Hamiltonian system, with Hamiltonian

H =

∫
T (Γ)

∫ η

−h

1
2 |∇ϕ|2 dy + 1

2gη
2 + σ

(√
1 + |∇xη|2 − 1

)
dx.(2.6)

Of course, the full dependence on η and ξ is complicated and not explicit. However,
W. Craig and C. Sulem [8] found a more convenient representation of the Hamiltonian

by noting that the term
∫
T (Γ)

∫ η

−h
|∇ϕ|2 dy dx is a quadratic form in the quantity ξ

involving the Dirichlet–Neumann operator.
Definition 2.1. The Dirichlet–Neumann operator of the free surface is defined

by

G(η) ξ = ∇ϕ|y=η ·Nη,(2.7)

where the potential function ϕ satisfies (2.3), (2.4a), ϕ(x, η(x)) = ξ(x), and Nη =
(−∇xη, 1)

T is a (nonnormalized) exterior normal.
This operator is the central tool in our analysis and a deep understanding of its

properties is key to the boundary integral formulation. For our purposes its analyticity
in appropriate function spaces is the relevant property which we will state and prove
in section 5. Using the Dirichlet–Neumann operator and the divergence theorem, the
Hamiltonian for the water wave problem can be written as

H =

∫
T (Γ)

1
2ξ(G(η) ξ) +

1
2gη

2 + σ

(√
1 + |∇xη|2 − 1

)
dx.(2.8)

By taking the appropriate variations and interpreting them in the correct fashion,
or simply taking (2.4b), (2.4c) and substituting in the Dirichlet–Neumann operator
in the appropriate way, one arrives at the following formulation of the water wave
problem [5], [7]:

∂tη = G(η) ξ,(2.9a)

∂tξ = −gη − 1

2
(
1 + |∇xη|2

) [
|∇xξ|2 − (G(η) ξ)2(2.9b)

− 2(G(η) ξ)∇xξ · ∇xη + |∇xξ|2 |∇xη|2 − (∇xξ · ∇xη)
2
]
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+ σdiv


 ∇xη√

1 + |∇xη|2


 .

2.2. A variational principle and the method of Lyapunov–Schmidt.
There is a variational formulation, related to the principle of stationary action, whose
Euler–Lagrange equations give traveling wave solutions of (2.9). Given the lattice
Γ ⊆ R

n−1, consider a class of mappings from the torus T (Γ) = R
n−1
x /Γ to a phase

space X = {u = (η(x), ξ(x))T } (the topology will be specified later). For these
mappings we define n− 1 many action functionals

Ij(η(x), ξ(x)) =

∫
T (Γ)

η(x)∂xj
ξ(x) dx(2.10)

and as well the (averaged) Hamiltonian H(η(x), ξ(x)) given in (2.8). The formal
variational principle is to fix the values of these n − 1 actions Ij = aj , and consider
extremal points of the Hamiltonian H. If such points existed and were sufficiently
regular, they would satisfy the Euler–Lagrange equations

δH =

n−1∑
j=1

cjδIj ,(2.11)

which are traveling wave solutions of system (2.9) with Lagrange multiplier the phase
velocity c = (c1, . . . , cn−1). There is a torus action on the phase space X given by
Tα(η(x), ξ(x)) = (η(x+α), ξ(x+α)), under which Ij and H are invariant, and in this
way every critical point is in fact a member of a torus of critical points in X. These
considerations are, however, purely formal, the level sets of Ij are by no means com-
pact, and without further analytic information about the functionals Ij and H this
procedure does not give rise to actual solutions of the problem, even in finite dimen-
sional settings such as the Lyapunov center theorem. Nonetheless, a reduction that is
related to the method of Lyapunov–Schmidt gives rise to a related finite dimensional
variational problem, also invariant with respect to the torus action, whose critical
points give traveling wave solutions to (2.9). This procedure is analogous to the res-
onant Lyapunov center theorem and the reduction by J. Moser [17] of the variational
problem to a finite dimensional one which is invariant under a circle action.

In order to set up the problem of traveling surface waves, introduce a frame of
reference moving with velocity c, and change variables in (2.9). This leads to the
definition of the functions

F1(η, ξ, c) = gη − c · ∇xξ +
1

2
(
1 + |∇xη|2

) [
|∇xξ|2 − (G(η) ξ)2(2.12a)

− 2(G(η) ξ)∇xξ · ∇xη + |∇xξ|2 |∇xη|2 − (∇xξ · ∇xη)
2
]

− σdiv


 ∇xη√

1 + |∇xη|2


 ,

F2(η, ξ, c) = c · ∇xη +G(η) ξ ,(2.12b)

with which we will abbreviate the problem of traveling waves for the system (2.9) as
F (η, ξ, c) = 0. Let u = (η, ξ)T and F : X × C → Y , where the Banach spaces X, C,
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and Y are to be specified later. A trivial branch of solutions to this problem is given by
(0, c) for all c, and from this trivial branch we produce a nontrivial bifurcation branch
of solutions. We will use the implicit function theorem and hence must understand
the linearization of F about the trivial solution ∂uF (0, c) ≡ A(c). If A(c) from X
to Y is boundedly invertible for some parameter c, then we may refer to the implicit
function theorem to obtain a unique solution in a neighborhood of c, namely, the
trivial one. The possible bifurcation points are those values of c for which A(c) has a
zero eigenvalue. Using the decomposition of Lyapunov–Schmidt, let c0 be a parameter
value for which A(c0) has a nontrivial null space, and let

X1 = null(A(c0)),(2.13a)

Y1 = range(A(c0)),(2.13b)

and X2 and Y2 to be such that X = X1 ⊕X2, Y = Y1 ⊕ Y2. Let P be the orthogonal
projection of Y onto Y1 and Q = I − P . The method of Lyapunov–Schmidt replaces
the problem F (u, c) = 0 by the equivalent pair of equations

PF (v + w, c) = 0,(2.14a)

QF (v + w, c) = 0,(2.14b)

where v ∈ X1 and w ∈ X2. In cases in which the linearized operator admits certain
estimates, the first equation can be solved via the implicit function theorem. In
the two dimensional problems, and in the three dimensional gravity capillary wave
problem, this can be done. In these cases the second equation turns out to be finite
dimensional in character and it will be resolved through a reduced variational problem.

In keeping with the program outlined above we begin by identifying the relevant
Banach spaces, X, C, and Y . We recall the following L2(T (Γ)) based Sobolev spaces:

Hs = {f ∈ L2(T (Γ)) | ‖f‖Hs < ∞} ,(2.15a)

where

‖f‖2
Hs =

∑
k∈Γ′

〈k〉2s
∣∣∣f̂(k)∣∣∣2 ,(2.15b)

and

〈k〉2 = 1 + |k|2 .(2.15c)

We also introduce the spaces Hs
0 = {f ∈ Hs | f̂(0) = 0}. With these in mind we

prove the following lemma.
Lemma 2.2. Suppose that s > n−1

2 . If σ = 0, then F : Hs+1 ×Hs+1 → Hs ×Hs
0

is an analytic transformation. If σ > 0, then F : Hs+2 × Hs+1 → Hs × Hs
0 is an

analytic transformation.
Proof. The proof is straightforward and relies heavily upon two facts: first, the

Sobolev inequality for s > n−1
2 ,

‖uv‖Hs ≤ C ‖u‖Hs ‖v‖Hs ;(2.16)

second is the fact that the Dirichlet–Neumann operator is a bounded linear function
as a function of ξ from Hs+1 → Hs, and an analytic function of η for η, ξ ∈ Hs+1.
This assertion will be proven in section 5. We note that in the case σ > 0 there is a
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second order derivative acting on η, while in the case σ = 0 there are only first order
derivatives acting on η; this accounts for the two different spaces in the statement
of the theorem. The fact that the target space of the second component of F is Hs

0

rather than Hs is a result of the following calculation:

F̂2(0) =

∫
T (Γ)

c · ∂xη +G(η) ξ dx

=

∫
T (Γ)

(∇ϕ|η) ·Nη dx

=

∫
T (Γ)

∫ η

−h

∆ϕ dy dx

= 0,

which is true by the divergence theorem for w = w(v, c) and the fact that ϕ is
harmonic. Finally, analyticity is proven by the fact that the Dirichlet–Neumann
operator is analytic, and that all other appearances of η and ξ are in an analytic
fashion.

We note that a corollary of this result is the following.

Corollary 2.3. Suppose that s > n−1
2 . If σ = 0, then A(c) : Hs+1 × Hs+1

0 →
Hs ×Hs

0 is bounded. If σ > 0, then A(c) : Hs+2 ×Hs+1
0 → Hs ×Hs

0 is bounded.

We now set X = Hs+2 ×Hs+1
0 for the case σ > 0, X = Hs+1 ×Hs+1

0 for the case
σ = 0, and Y = Hs ×Hs

0 in either case. In the case of the two dimensional problem
we let C = R, and in the case of the three dimensional problem we let C = R

2.

2.3. The linearized operator. At this point we will analyze the problem (2.12)
linearized around the trivial solution (u, c) = (0, c). In particular we will restrict
ourselves to the cases n = 2 and n = 3, and we identify the set of parameters
c ∈ R (respectively, c ∈ R

2) for which A(c) has a nontrivial null space. Linearizing
the system (2.12a) about (u, c) = (0, c) involves the Dirichlet–Neumann operator
G(0) = G0 = |D| tanh(h|D|).

Theorem 2.4. The linearization of F about the trivial solution (0, c) is given by

A(c) = ∂uF (0, c) =

(
g − σ∆x −c · ∇x

c · ∇x G0

)
.(2.17)

Furthermore, given k ∈ Γ′, the null eigenvalues of A(c) on X occur when c ∈ R
n−1

is such that

∆σ(c, k) = (g + σ |k|2) |k| tanh(h |k|)− (c · k)2 = 0 .(2.18)

Given c0 satisfying (2.18) for some k0 ∈ Γ′, the null space of A(c0) is even dimen-
sional, and it is generically two dimensional. It is spanned by the eigenfunctions

v1
k(x) = ((c0 · k) cos(k · x), (g + σ |k|2) sin(k · x))T ,(2.19a)

v2
k(x) = (−(c0 · k) sin(k · x), (g + σ |k|2) cos(k · x))T(2.19b)

for k ∈ Γ′ in the set of solutions of (2.18).

Proof. The proof is a straightforward calculation, but the role of the function
∆σ(c, k) perhaps needs some explanation. We will always work in function spaces
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smooth enough to admit Fourier expansions of our functions η(x) and ξ(x); therefore

A(c)

(
η(x)
ξ(x)

)
=

∑
k∈Γ′

(
g + σ |k|2 −ic · k

ic · k |k| tanh(h |k|)
)(

η̂(k)

ξ̂(k)

)
eik·x

=
∑
k∈Γ′

Âk(c)

(
η̂(k)

ξ̂(k)

)
eik·x .

The operator A(c) is singular if one of the 2 × 2 blocks of Â(c) is singular, which
occurs precisely when the determinant ∆σ(c, k) of the kth 2 × 2 block is zero, with
null vectors determined by the null vector of the singular 2 × 2 blocks. The 2 × 2
block Â0(c) has different character, and for all c ∈ R

n−1 it has the null eigenvector

(0, ξ̂(0)). It is precisely for this reason that we work in the space X = Hs+ρ ×Hs+1
0 ,

so that the one dimensional subspace {(η, ξ) = γ(0, ξ̂(0))} does not contribute to
the null space of A(c) on X. Regarding the dimension of the null space, if Âk(c) has
a null eigenvector, then so does Â−k(c); hence the null space of A(c) is even dimen-
sional.

The relation (2.18) describes the dispersion relation between a wave number k
and its phase velocity ck. The set of solutions of (2.18) can now be described, starting
with the two dimensional problem. For k ∈ Γ′\{0} ⊆ R fixed, a phase velocity c = ck

can always be defined through the relation

c2k2 = (g + σk2)k tanh(hk);(2.20)

in both cases σ > 0 and σ = 0. Therefore, for any specified spatial period Λ there is a
phase velocity c such that ∆σ(c, k) = 0 for k = 2π/Λ, giving a solution to the linearized
system with period Λ. Of course both ±k correspond to the same phase velocity c. It
is also possible that for a given c = ck0 there is another k1 ∈ Γ′ which satisfies (2.20).
Physically this corresponds to the situation where a linear gravity wave of lower wave
number has the same phase velocity c as one of higher wave number. This situation
can occur only if the Bond number satisfies σ/gh2 < 1/3, where the relation (2.20)
has two roots for choices of c such that mink{(g+ σk2)k tanh(hk)} < c2 < gh. These
two roots both satisfy 0 ≤ k <

√
g/σ. The phase velocity ck0 is chosen so that one

of these roots k0 lies in the lattice Γ
′. When both roots are in Γ′, there is another

linear solution with the specified spatial period, and the null space of A(ck0) is four
dimensional.

The three dimensional case is only a little more complex. Given a dual lattice
Γ′ ∈ R

2 and any two generators k1, k2 of Γ
′, there is always a phase velocity c0 ∈ R

2

which will satisfy relation (2.18) for both. Indeed, given k1, by the discussion of the
previous paragraph we may always choose some c1 ∈ R

2 which is parallel to k1 such
that (2.18) holds. Of course any other c such that c1 · k1 = c · k1 will also do, giving a
line of solutions of (2.18) through c1 perpendicular to k1. The same holds for k2, and
these two lines cannot be parallel; their meeting point is the common solution that we
seek. Given this common phase velocity c0, it may be that relation (2.18) is satisfied
by other wave numbers k ∈ Γ′ as well as for k1 and k2, although this situation is not
generic. Indeed the relation (2.18) defines a curve in R

2 which intersects k1 and k2

and possibly other points k3, k4, . . . ∈ Γ′. This curve is symmetric about the origin,
so the solutions of (2.18) appear in pairs ±k�. We will normalize by the choice that
k� · c0 > 0. Note that by the above discussion the situation k� perpendicular to c0
does not occur. We have shown the following.
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Proposition 2.5. Given any two generators k1, k2 of the lattice Γ′, there is
a phase velocity c0 satisfying ∆σ(k�, c0) = 0, k� · c0 > 0 for 0 = 1, 2, and therefore
dim ker A(c0) ≥ 4.

A second preliminary result is as follows.

Proposition 2.6. When σ > 0 and c0 ∈ R
2 is fixed, the number of lattice points

k ∈ Γ′ satisfying ∆σ(k, c0) = 0 is finite.

Proof. The asymptotic behavior of the dispersion relation is that ω(k)2 = (g +
σ|k|2)|k| tanh(h|k|) ∼ σ|k|3, while |c · k|2 ≤ C|k|2, and therefore the set of root
of (2.18) is bounded. Notice that this finiteness result no longer holds when σ =
0.

This paper does not address the three dimensional case with σ = 0, for the reason
that it is a situation in which the phenomenon of small divisors is present. Our
analysis depends upon the boundedness properties of the operator A(c)−1 between
appropriate Banach spaces. When n ≥ 3 and σ = 0 there is a dense set of values
of c ∈ R

n−1 for which A(c) has a nontrivial null space, which can even be infinite
dimensional. In general, the invertibility properties of the inverse operator, even
projected orthogonally to its null space, change sensitively and discontinuously with
respect to c. It may be that this problem can be solved with methods related to
the Nash–Moser implicit function theorem; however, there is at present no published
complete proof. Among other things, these are elements of the program outlined
in [21]. To describe the phenomenon of small divisors quantitatively, we give the
following result.

Theorem 2.7. The point spectrum of the operator A(c) consists of the set

{
µ±(k) = 1

2 (g + |k| tanh(h|k|))± 1
2

√
(g − |k| tanh(h|k|))2 + 4(c · k)2

}
k∈Γ′

.(2.21)

For every choice of the parameters g, h, and c ∈ R
2\{0} this set accumulates at µ = 0.

Proof. Under the Fourier transform the operator A(c) is 2 × 2 block diagonal,
with eigenvalues those of the individual blocks. With σ = 0,

det(Â(c)k − µI) = µ2 − (g + |k| tanh(h|k|))µ+ (g|k| tanh(h|k|)− (c · k)2)(2.22)

and the roots of this relation are the eigenvalues given above. Small divisors will
occur when ∆0(c, k) = det Â(c)k, k ∈ Γ′ satisfies |∆0(c, k)| < |k|1/2. In this case we
call k ∈ Γ′ a singular site in the dual lattice. The associated small eigenvalue is

µ−(k) = 1
2 (g + |k| tanh(h|k|))− 1

2

√
(g − |k| tanh(h|k|))2 + 4(c · k)2

= 1
2 (g + |k| tanh(h|k|))− 1

2

√
(g + |k| tanh(h|k|))2 − 4∆0(c, k)

∼ ∆0(c, k)

(g + |k| tanh(h|k|)) ,

and the latter quantity is O(|k|−1/2) for large and singular k ∈ Γ′.
It remains to be shown that there exist singular sites in Γ′ with arbitrarily large

norm. For this it suffices to consider the problem for deep water (h = +∞), since
g|k| tanh(h|k|) − g|k| ∼ O(|k|e−2h|k|), and thus large singular sites for h infinite are
effectively ones for finite h. For any c ∈ R

2\{0} choose a sequence nj ∈ Γ′ which
obeys an estimate |c · nj | < d0; this is possible in any lattice. Additionally choose
m = m(nj) ∈ Γ′ such that |c ·m| ∼ O(|c||m|), |m| < d0|nj |1/2, and |m ·nj | < O(|nj |).
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With this

g|nj +m| = g(|nj |2 + 2nj ·m+ |m|2)1/2

= g|nj |
(
1 +O

(
1

|nj |
))

and

(c · (nj +m))2 = (c ·m)2 +O(|m|) .(2.23)

For these choices |nj +m| = O(|nj |),
g|nj +m| − (c · (nj +m))2 = g|nj | − ((c ·m)2 +O(|m|)) ,(2.24)

and by further adjustment ofm ∈ Γ′ by choosing it such that g|nj+m′|−(c·(nj+m′))2

changes sign for some m′ adjacent to m (this lies within the above constraints) we
can ensure that |g|nj | − (c ·m)2| < O(|m|) itself. This choice gives rise to a sequence
of lattice sites kj = nj +m(nj) such that |kj | → ∞ and µ−(kj) ∼ O(|kj |−1/2), which
is more than enough to prove the statements of the theorem.

We have now identified our function spaces, the types of solutions which we seek,
and the possible values of c where such bifurcation branches can be found. We must
now solve the two bifurcation equations and we begin with the P equation.

3. Existence of solutions to the P equation. In this section we use the
implicit function theorem on Banach spaces to solve the P equation of the method
of Lyapunov–Schmidt. We have already established that our map F : X × C → Y
is analytic and that the linearized operator A(c) is bounded from X into Y . It is
clear that the projection P , being a bounded operator with finite dimensional null
space, will not change either of these properties and so the only condition yet to be
satisfied in order to use the implicit function theorem is the boundedness of the inverse
operator. In the same way that we consider the range of A(c) by operating by P , we
also consider X2 as our domain by viewing X1 as part of the parameter space with
C. This results in a solution

w = w(v, c),(3.1)

such that PF (v+w(v, c), c) = 0. With this in mind it remains to prove the following
theorem.

Theorem 3.1. (P∂wF (0, c))−1 is a bounded linear operator from Y1 to X2.
Proof. We begin by identifying a likely candidate to be the inverse operator. If

we considered a value of c such that ∆σ(c, k) �= 0 for all k ∈ Γ′, then an inverse can
be found by inverting the 2× 2 blocks on the Fourier side resulting in

Â(c)−1
k =

1

∆σ(c, k)

( |k| tanh(h |k|) ic · k
−ic · k g + σ |k|2

)
.(3.2)

This is well defined for all k ∈ Γ′\{0}. At k = 0, Â(c)k is singular, but since the
second component of F has k = 0 mode equal to zero we can define an inverse in the
following way:

Â(c)−1
0

(
v̂(0)
0

)
≡
(

v̂(0)
g

0

)
.(3.3)
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We break up the rest of the proof into three parts, corresponding to each of the three
cases which we are considering, since each requires a slightly different analysis.

We begin by studying the case of two dimensions, σ = 0, and a two dimensional
null space. In this case X = Hs+1 × Hs+1. Assume that Â(c0)±k0 is singular. By
the discussion of the previous section, all other Â(c)k, k �= ±k0 are nonsingular. Let
Γ̃′ = Γ′\{±k0}, Γ̃′

0 = Γ′\{0,±k0}, and consider the estimate∥∥∥∥(P∂wF (0, c))−1

(
u1

u2

)∥∥∥∥
2

X2

=

∣∣∣∣ û1(0)

g

∣∣∣∣
2

+
∑
k∈Γ̃′

0

〈k〉2(s+1)

∣∣∣∣ |k| tanh(h |k|)û1(k) + ic0kû
2(k)

∆0(c0, k)

∣∣∣∣
2

+
∑
k∈Γ̃′

0

〈k〉2(s+1)

∣∣∣∣−ic0kû
1(k) + gû2(k)

∆0(c0, k)

∣∣∣∣
2

≤
∣∣∣∣ û1(0)

g

∣∣∣∣
2

+ 2
∑
k∈Γ̃′

0

〈k〉2(s+1) (|k| tanh(h |k|))2 ∣∣û1(k)
∣∣2 + (c0k)2 ∣∣û2(k)

∣∣2
∆0(c0, k)2

+ 2
∑
k∈Γ̃′

0

〈k〉2(s+1) (c0k)
2
∣∣û1(k)

∣∣2 + g2
∣∣û2(k)

∣∣2
∆0(c0, k)2

=

∣∣∣∣ û1(0)

g

∣∣∣∣
2

+ 2
∑
k∈Γ̃′

0

〈k〉2s
〈k〉2

[
(|k| tanh(h |k|))2 ∣∣û1(k)

∣∣2 + (c0k)2 ∣∣û2(k)
∣∣2]

∆0(c0, k)2

+ 2
∑
k∈Γ̃′

0

〈k〉2s
〈k〉2

[
(c0k)

2
∣∣û1(k)

∣∣2 + g2
∣∣û2(k)

∣∣2]
∆0(c0, k)2

.

Now, by using the fact that we can bound ∆0(c0, k) from below by K1 +K2〈k〉2 we
continue the estimate,∥∥∥∥(P∂wF (0, c))−1

(
u1

u2

)∥∥∥∥
2

X2

≤
∣∣∣∣ û1(0)

g

∣∣∣∣
2

+ C1

∑
k∈Γ̃′

0

〈k〉2s
∣∣û1(k)

∣∣2 + C2

∑
k∈Γ̃′

0

〈k〉2s
∣∣û2(k)

∣∣2

≤ C


∑

k∈Γ̃′

〈k〉2s
∣∣û1(k)

∣∣2 + ∑
k∈Γ̃′

0

〈k〉2s
∣∣û2(k)

∣∣2



= C

∥∥∥∥
(

u1

u2

)∥∥∥∥
2

Y1

.

The case of σ > 0 in two dimensions is very similar, and proceeding in the same way
as before we can produce an estimate of the form∥∥∥∥(P∂u2F (0, c))

−1

(
u1

u2

)∥∥∥∥
2

X2
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≤
∣∣∣∣ û1(0)

g

∣∣∣∣
2

+ 2
∑
k∈Γ̃′

0

〈k〉2s
〈k〉4

[
(|k| tanh(h |k|))2 ∣∣û1(k)

∣∣2 + (c0k)2 ∣∣û2(k)
∣∣2]

∆σ(c0, k)2

+ 2
∑
k∈Γ̃′

0

〈k〉2s
〈k〉2

[
(c0k)

2
∣∣û1(k)

∣∣2 + (g + σ |k|2)2 ∣∣û2(k)
∣∣2]

∆σ(c0, k)2
.

Now using the fact that we can produce constants K3 and K4 such that |∆σ| ≥
K3 +K4〈k〉3 we again obtain the estimate desired. The proofs in the cases of higher
dimensional null spaces and three dimensions (σ > 0) are almost the same as the
previous except that one has to account for a possibly larger null space for the lin-
earized operator A(c). The sums are over Γ̃′

0 = Γ′\{0,±kj}N
j=1, which serves to omit

from them any of the wave numbers kj such that ∆σ(c, kj) = 0. Again, the constants
K3 and K4 can be produced due to the fact that for |k| large enough, ∆σ(c, k) >
0.

With these estimates in hand it is easy to prove the following theorem.
Theorem 3.2. The equation PF (v + w, c) = 0 has a solution

w = w(v, c)(3.4)

for all (v, c) in a ball Bε(0, c0) which is locally unique, such that

PF (v + w(v, c), c) = 0,(3.5a)

w(0, c) = 0.(3.5b)

Furthermore, w is analytic as a function of (v, c), ‖w(v, c)‖X ≤ C‖v‖2
X , and it is

equivariant under the torus action Tαw(v, c) = w(Tαv, c).
Proof. We use the implicit function theorem in conjunction with Theorem

3.1.

4. The reduced variational problem. With the choice of u = v + w(v, c)
(2.14a) is solved, and we focus on solutions (v, c) which will also result in a solution
of (2.14b). The approach that we use is close to that of J. Moser [17], with the
novelty that the problem is equivariant with respect to the action of a torus T

2.
The variational problem that we solve is equivalent to finding critical points of the
Hamiltonian function H(u) of (2.8), when restricted to the subset of phase space
{u ∈ X : I1(u) = a1, I2(u) = a2}. This is not feasible by direct variational methods.
Instead, following [17], we pose a reduced variational problem in the finite dimensional
space X1, whose solutions will solve (2.14b). In preparation for this we make an astute
choice of c = c(v). The function u = v + w(v, c) solves (2.14a); therefore

(δH − c · δI)(v + w(v, c)) = q(v, c) ∈ Y2 .(4.1)

Let {±k1, . . .±kN} = K ⊆ Γ′ be the collection of wave numbers for which ∆(c0, kp) =
0, which are normalized so that c0 · kp > 0. We also choose the norm |v| so that it is
invariant under the torus action v → Tαv.

Lemma 4.1. Suppose that the vector a = (a1, a2) is not collinear with any kp ∈ K,
and that |(a1, a2)| < δ for sufficiently small δ. On the set {(v, c) : I1(v + w(v, c)) =
a1, I2(v + w(v, c)) = a2} ⊆ X1 × R

2 we can make a choice of c = c(v) to satisfy∫
T (Γ)

(q(v, c) , δuIj(v + w(v, c))) dx = 0 , j = 1, 2 .(4.2)
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Furthermore, c(v) is invariant under the action Tα of the torus, c(Tαv) = c(v); |c(v)−
c0| = O(|v|2); and for v �= 0 c(v) is real analytic in v.

We will defer the proof of this for several pages, for the sake of continuity of the
argument. Using both c(v) and w(v, c(v)), define the functionals

IQ
j (v) = Ij(v + w(v, c(v))) , j = 1, 2 ,(4.3)

and

HQ(v) = H(v + w(v, c(v))) .(4.4)

These functionals are invariant under the torus action Tα : X1 → X1. For a = (a1, a2)
not collinear with any of the set K, and for |a| < δ sufficiently small, consider the
subset of the space X1

S(a) = {v ∈ X1 : IQ
1 (v) = a1 , IQ

2 (v) = a2} .(4.5)

Clearly S(a) is also invariant under Tα, and it is a smooth submanifold of X1, to
which Lemma 4.1 applies. Finally define the reduced action functional

A(v) = HQ(v)− c(v) · (IQ(v)− a) .(4.6)

Theorem 4.2. When δvI
Q
1 and δvI

Q
2 are linearily independent at all v ∈ S(a),

then S(a) is a submanifold of X1 of codimension 2. In this case, critical points of A(v)
on S(a) correspond to solutions u = v + w(v, c(v)), c(v) of the bifurcation equation
QF = 0 of (2.14b).

Proof. Choices of (v, c) such that q(v, c) = 0 correspond precisely to solutions of
the desired equation (2.14b). The choice of c(v) prescribed in Lemma 4.1 is so that q
is orthogonal in X1 to the subspace of normal vectors Nv(S(a)). Indeed with q ∈ X1,

and a basis of Nv(S(a)) given by {δvI
Q
1 , δvI

Q
2 },∫

T (Γ)

(q, δvI
Q
j )dx =

∫
T (Γ)

(q,QδuIj(v + w(v, c)))dx

=

∫
T (Γ)

(q, δuIj)dx

= 0 .

Now suppose that v is a critical point on S(a) of the functional A(v). For any
δv ∈ Tv(S(a)) the tangent space, we have the calculation

∂vA(v) · δv =
∫

T (Γ)

Q(δuH(v + w)− c(v) · δuI(v + w))δv dx

+

∫
T (Γ)

P (δuH(v + w)− c(v) · δuI(v + w))(∂vw · δv) dx
= 0,

where the term containing ∂vc(v) has dropped out as the expression is evaluated on
S(a). Furthermore (∂vw ·δv) ∈ X2, and we have resolved the first bifurcation equation
(2.14a), so that the second term is zero as well. Thus for v ∈ S(a) and δv ∈ Tv(S(a)),
∂vA(v) · δv =

∫
T (Γ)

(q, δv)dx, and at critical points it vanishes. Since c = c(v) is

chosen so that
∫
T (Γ)

(q, δv)dx = 0 for all δv ⊥ Tv(S(a)) as well, indeed critical points
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correspond to zeros of q = q(v, c(v)). Because A(v) is invariant under the action Tα,
so is the set of critical points on S(a).

At this point in the argument, any choices of a such that S(a) is compact will
yield at least one solution of the Euler equations (2.9) (S(a) is a point when m = 2).
We will, however, be able to use the topology of the quotient space S(a)/T

2 to obtain
a more precise and generally larger lower bound on the number of critical orbits of
A(v) on S(a).

4.1. Application of a T 2 equivariant cohomological index. Parameterize
v ∈ X1 by C

N by setting z = (r1e
iϕ1 , . . . , rNeiϕN ), and

v =

N∑
p=1

rp(cos(ϕp)v
1
kp
+ sin(ϕp)v

2
kp
) .(4.7)

The torus action Tα on X1 is defined by

Tαv =

N∑
p=1

rp(cos(ϕp + kp · α)v1
kp
+ sin(ϕp + kp · α)v2

kp
),(4.8)

which in C
N is efficiently described as Tαz = (rpe

(iϕp+kp·α))Np=1. A calculation yields
that

IQ
j (v) =

1

2

∫
T (Γ)

(v, J∂xjv) dx =

N∑
p=1

kj
pr

2
p(c0 · kp(g + σ|kp|2))|T (Γ)|(4.9)

for j = 1, 2 where J = ( 0 1
−1 0

). Note that we have previously normalized wave

numbers so that c0 · kp > 0, 1 ≤ p ≤ N . We will use the notation c(p) = c0 · kp(g +
σ|kp|2)|T (Γ)|.

Let us start the discussion with the nonresonant case N = 2, with k1, k2 ∈ Γ′ not
collinear. Choose a 2×2 change of basisM so thatMk1 = (1, 0)T andMk2 = (0, 1)T .
This gives an equivalent definition of S(a) = {v ∈ X1 : MI =Ma = b} and modifies
the torus action to a product action Tβz = (z1e

iβ1 , z2e
iβ2), where MTβ = α. Clearly

S(a) is the two dimensional torus

S(a) = {v : r2
1c

′(1) = b1 , r2
2c

′(1) = b2}(4.10)

for positive constants c′(p) =
∑

q Mpqc(q), and the orbit under Tβ of any point of
S(a) consists of the whole set. Therefore the Hamiltonian H is constant on the set,
and we have proved the following result.

Theorem 4.3. In case N = 2 and k1, k2 not collinear, whenever a is not collinear
with either k1 or k2, and |a| < δ, each submanifold S(a) ∈ X1 corresponds to a
solution of (2.9) and its translates by Tα. Furthermore the family of solutions u = v+
w(v, c(v)) ∈ X, v �= 0, is locally real analytic, forming a four dimensional bifurcation
manifold which is invariant under the action of Tα.

The theorem is the analogue of the original Lyapunov center theorem, in which
there are no allowances for resonances. The statement of analyticity is an immediate
consequence of the regularity results of Theorem 3.2 and Lemma 4.1, stemming ulti-
mately from the implicit function theorem. In the particular case that k1 = (k1

1, k
2
1),

and k2 = (k1
1,−k2

1), with k1
1 �= k2

1, the curve {a1 = a2} ∈ S(a) consists of the sym-
metric diamond solutions of the three dimensional water wave problem in J. Reeder
and M. Shinbrot [23].
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Now turn to the resonant case N ≥ 2. We will consider two possibilities sepa-
rately, either (i) N > 2, for which necessarily there are two noncollinear wave vectors
among {kp}N

p=1, or else (ii) N = 2 and k1 and k2 are linearly dependent. The latter
case corresponds to the two dimensional resonant problem, with resonant interaction
between periodic gravity waves and capillary waves with the same phase velocity; this
was previously discussed in M. Jones and J. Toland’s work [13], [14]. In case (ii)
we will give an independent proof of the existence of at least two distinct periodic
solutions; the proof will be put off until the end of the present section.

In case (i) of the preceding paragraph, in which N > 2, the wave vectors {kp}N
p=1

involved in the kernel X1 lie within the cone {c0 · k > 0}. Choose k1 to be the
leftmost of this collection, kN to be the rightmost. In case either or both of these
are collinear with another from the collection (from our discussion of the dispersion
relation in section 2.3, at most two wave vectors can be collinear), take k1 and/or kN

to be the smaller, and k2 and/or kN−1 to be the bigger. As in the nonresonant case
we may make a change of basis M so that k1 = (1, 0)T and kN = (0, 1)T ; without
changing notation assume that this is so. Then all other wave vectors are expressed
as kp = k1

pk1 + k2
pkN for rationals k�

p > 0, except that in case of collinearity it may

be that k2 = (k1
2, 0)

T and/or kN−1 = (0, k2
N−1)

T . All of the other coefficients are
positive from this exercise, as kp lie in the positive cone of the new basis {k1, kN}.
We also order the remaining wave vectors kp = (k1

p, k
2
p)

T in terms of increasing slope;
k2

p/k
1
p ≤ k2

p+1/k
1
p+1. It again follows from section 2.3 that at most two wave vectors

can have a common slope.
Theorem 4.4. Suppose that for all 1 ≤ p ≤ N , k2

p/k
1
p �= a2/a1, and that |a| < ε2

for sufficiently small ε. Then the set S(a) = {v ∈ X1 : I1 = a1, I2 = a2} is a
compact submanifold of X1.

Proof. From the form (4.9) of the action integrals IQ
j , it is clear that the gradients

δvI
Q
1 and δvI

Q
2 are independent except when (a1, a2) is taken so that two semiaxes

of the cylindrical ellipsoids {IQ
1 = a1} and {IQ

2 = a2} coincide, and we can invoke
Theorem 4.2. There is in fact more structure than this. When a2/a1 = k2

p/k
1
p,

and kp is the sole wave vector with this slope, the intersection must be at {zj =
0, j �= p} ∩ S(a), which is a circle (invariant under the action of Tα). In case of
multiplicity two, this is at {zj = 0, j �= p, p + 1} ∩ S(a), which is a Tα invariant
ellipsoid homeomorphic to S3.

With no further work one can see that for N > 2 and for choices of a avoiding the
singular cases {k2

p/k
1
p : p = 1, . . . , N} there are at least two distinct solutions of (2.9),

corresponding to the maximum and minimum of the reduced Hamiltonian HQ on
S(a). In all cases in which both a1, a2 > 0 these are truly three dimensional solutions,
as they have a nonzero component of vp ∈ X1 for at least two linearly independent
wave vectors kp. Indeed, if kp is the only wave number having slope k2

p/k
1
p, and if

a2/a1 �= k2
p/k

1
p, then {zj = 0 : j �= p} ∩ S(a) is empty. In case kp is collinear with

kp+1, but still a2/a1 �= k2
p/k

1
p, then as well {zj = 0 : j �= p, p+ 1} ∩ S(a) = ∅, since if

z = (0, . . . zp, zp+1, . . . , 0) ∈ S(a), then

|zp|2 +
k1

p+1

k1
p

|zp+1|2 = a1

k1
p

= |zp|2 +
k2

p+1

k2
p

|zp+1|2 = a2

k2
p

,(4.11)

giving the contradiction a2/a1 = k2
p/k

1
p. This argument shows that solutions of (2.9)

associated with v ∈ S(a) are genuinely three dimensional in character.
Theorem 4.5. Given v ∈ S(a) with a2/a1 �∈ {k2

p/k
1
p : p = 1, . . . , N}, then v

contains nonzero Fourier modes for at least two wave vectors which are not collinear.
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There is further topology of the orbit space S(a)/T 2 which will, in cases of reso-
nance N > 2, guarantee, in general, that there are more solutions. This will be shown
by an argument involving a cohomological index equivariant with respect to the group
action of a torus, similar to the topological category argument of J. Moser [17] with
the action of a circle. In what follows, ind Tα(S) will be a Tα equivariant cohomologi-
cal index of the set S. The following theorem gives a lower bound for distinct critical
orbits of a Tα invariant function HQ on S(a) in this situation, in terms of the index.
It furthermore provides an estimate of the index, which is sharp.

Theorem 4.6. Let N > 2 and choose a as in Theorem 4.4 so that S(a) is a
compact manifold. Then there exist at least ind Tα(S(a)) + 1 distinct critical orbits of
HQ on S(a), corresponding to distinct solutions of (2.9). We can furthermore make
a choice of the index so that ind Tα

(S(a)) = N − 2.
A standard argument implies that the number of critical points of invariant func-

tionals H on the set S(a) is bounded below by ind Tα(S(a))+1. The crux of the proof
is to show that, while the topology of S(a) and S(a)/T 2 varies depending upon a, in
all nonsingular cases one can define an index so that ind Tα(S(a)) = N − 2.

We claim that for all a such that a2/a1 �∈ {k2
p/k

1
p : p = 1, . . . , N}, then S(a) �

S2d−1 × S2(N−d)−1. Indeed, define

J1 =
1

a1
I1 +

1

a2
I2 =

N∑
p=1

c(p)

(
k1

p

a1
+

k2
p

a2

)
r2
p

and

J2 =
1

a1
I1 − 1

a2
I2 =

N∑
p=1

c(p)

(
k1

p

a1
− k2

p

a2

)
r2
p;

an equivalent description of S(a) is that

S(a) = {v ∈ X1 : J1 = 2, J2 = 0} .(4.12)

Suppose that k2
d/k

1
d < a2/a1 < k2

d+1/k
1
d+1, then for 1 ≤ p ≤ d the coefficients

(k1
p/a1 − k2

p/a2) of J2 are positive, and they are negative for d+1 ≤ p ≤ N . We may

write P =
∑d

p=1 c(p)(
k1
p

a1
− k2

p

a2
)r2

p, N = −∑N
p=d+1 c(p)(

k1
p

a1
− k2

p

a2
)r2

p; then J2(v) = P −N
and the set S(a) is homeomorphic through radial projections to the manifold

S̃(a) = {z ∈ C
N : (P +N)(z) = 2 , (P −N)(z) = 0}

= {z ∈ C
N : P (z) = 1 and N(z) = 1} .

This expression makes it is clear that S̃(a) � S2d−1 × S2(N−d)−1, a product of odd
dimensional spheres.

We are interested in functions on S(a) which are invariant under the action
of Tα; therefore, it is essentially the index of the orbit space S(a)/T 2 � S2d−1 ×
S2(N−d)−1/T 2 which is relevant. As a first example, we will suppose that Tα is a
product T 2 action on the manifold S2d−1 × S2(N−d)−1, and that it is free (although
in the capillary gravity wave problem this is almost never the case);

Tα(z1, . . . , zN ) = (zpe
iα1k1

)dp=1(zpe
iα2k2

)Np=d+1 .(4.13)

Therefore S(a) is a manifold which factors into two odd dimensional spheres, each
with a circle action which is equivalent to the Hopf fibration. That is, the orbit space
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is S(a)/T 2 � CP (d − 1) × CP (N − d − 1). In this case we will take the equivariant
cohomological index ind Tα(S(a)) to coincide with the Čech cohomology cuplength
of the quotient manifold; cuplength (S(a)/T 2). The following proposition consists
of standard facts about the notion of index, Liusternik–Schnirlman category, and
cuplength.

Proposition 4.7. The number of critical points of a C2 function H on M is
bounded below by Cat (M). Furthermore,

(i) Cat (M) ≥ cuplength (M) + 1 ≥ ind Tα
(M) + 1;

(ii) cuplength (M1 ×M2) = cuplength (M1) + cuplength (M2);
(iii) when M � CP (q), then Cat (M) = cuplength (M) + 1 = q + 1.

We deduce from (ii) and (iii) that
(iv) Cat (CP (d− 1)× CP (N − d− 1)) ≥ N − 1.

The remaining task is to produce the same lower bound in the general case, in
which the torus action Tα on S(a) is not free, and when the action of Tα is as a
twisted product. We note that, while Tα is not a free action, at least the stabilizers
s(z) = {α ∈ T 2 : Tαz = z} are always finite. The following argument is an
adaptation of the classical one of A. Borel, which we learned from T. Goodwillie and
D. Sinha.

The first step in the construction of a Tα equivariant cohomology for S(a) is to
identify a universal total space E = S∞ × S∞ and the classifying space E/T 2 =
BT 2 ∼ CP∞×CP∞; see, for example, E. Fadell and P. Rabinowitz [9] or Rabinowitz
[22]. The action of Tα on E×S(a) is free, and because E is contractible and the only
isotropy subgroups which appear are finite, the space S(a)/T 2 and the homotopy
orbit space (E × S(a))/T 2 have the same rational cohomology.

The cohomology of the classifying space BT 2 is generated by two elements y1 =
y⊗ 1 and y2 = 1⊗ y, where y is the generator of the cohomology of CP∞. Because of
the presence of more than one generator, the construction of [9] will not work directly.
We note, however, that in the same vein a well-defined index based on cuplength can be
defined for any graded subalgebra of H∗(B;Q). Let Y be a finitely generated graded
subalgebra of H∗(B;Q) with a basis {y1, . . . , yq}, and let F : (E ×S(a))/T 2 → BT 2

be a classifying map. We define an equivariant cohomological index to be

ind Y ((E × S(a))/T 2) = max{|k| : k ∈ N
q, F ∗(yk) �= 0} .

This index coincides with that of E. Fadell and P. Rabinowitz [9] when Y is generated
by one element, and with the usual cuplength when Y = H∗(B;Q). In our situation
we will take Y to be generated by {y1, y2}, which is the latter case.

The rational cohomology of the homotopy orbit space (E × S(a))/T 2 is obtained
using the Leray–Serre spectral sequences. This calculation can be paraphrased in
terms of Poincaré series. The E2 page of the spectral sequence is Ep,q

2 = Hp(BT 2)⊗
Hq(S(a)), whose associated Poincaré series is

PB(t) = (1− t2)−2 .

One nontrivial differential occurs at the E2p page, and another at the E2(N−p) page
(or in the inverse order, if N/2 < p), resulting in the Poincaré polynomial for the
quotient

P(E×S(a))/T 2(t) =
(1− t2p)(1− t2(N−p))

(1− t2)2

= (1 + t2 + · · ·+ t2(p−1))(1 + t2 + · · ·+ t2(N−p−1)) .
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The coefficients of P(E×S(a))/T 2(t) give the Betti numbers βj of S(a)/T
2, as its rational

cohomology coincides with that of the homotopy orbit space. From this expression,
β2(N−2) = 1; hence H2(N−2)((E × S(a))/T 2;Q) is one dimensional, and there is

some nonzero element in the coset of {yγ
1 y

N−2−γ
2 }N−2

γ=0 . All higher cohomology classes

vanish. We deduce that there are classes x1, x2 ∈ H2 for which the cup product
xγ

1x
N−2−γ
2 is nonzero, so that ind Tα((E × S(a))/T 2) = N − 2. Applying Proposition

4.7, we conclude the result of Theorem 4.6.
We note for further interest that for Morse functions H on S(a)/T 2, the Morse

inequalities state that the number of critical points is at least P(E×S(a))/T 2(1) =∑2(N−2)
j=1 βj = p(N − p). This estimate exceeds N − 1, strictly so if p �= 1, N − 1.

The equivariant cohomology of products of spheres under torus actions is relevant in
other problems, in particular in the problem of resonant tori in dynamical systems; it
is discussed further in W. Craig and D. Haskell [6].

4.2. Two dimensional capillary gravity waves. The point of this short sub-
section is to provide an alternate proof of the existence of gravity waves in two di-
mensions [15], [27], and capillary gravity waves in two dimensions, both in the regular
case [31], [2], [1] and in the presence of resonance [13], [14]. This can be done in the
present framework, considering the circle T (Γ) = R/Γ and setting our basic function
space to be X = Hs(T (Γ)). The null space of the linearized operator A is denoted by
X1; in the nonresonant case it is two dimensional, and in the case of resonance it is
four dimensional. By Theorem 3.2 we obtain a solution to (2.14a) in a ball Bε(0, c0)
which is analytic in both variables (v, c). The relevant functionals for the variational
problem are

I1 =

∫
S1

η∂x1
ξ dx ,(4.14)

and H gives as in (2.8) by a one dimensional integral. In the two dimensional problem
the group action is a circle action on S(a) which leaves the functions H, I invariant.
Furthermore, the one dimensional version of Lemma 4.1 holds [16, Lemma 2, p. 739],
giving an analytic function c = c(v) such that q = F (v + w(v, c(v)), c(v)) is in the
tangent space of S(a) = {v ∈ X1 : IQ(v) = a}. The object is to solve (2.14b) using
the reduced variational problem.

In the nonresonant case, N = 1 and each subset S(a) ∈ X1, a > 0, is a one
dimensional submanifold consisting entirely of solutions of (2.9), related to each other
by translation by Tα; this is the analog of Theorem 4.3. The solutions are in fact
analytic in v, as in the classical Lyapunov center theorem.

We now consider the resonant case. Let us suppose that the null space of A(c0)
is generated by Fourier modes k1, k2 = Rk1 ∈ Γ′ � Z. For small Bond number, we
have in fact k1 � k2. The subset of X1 with fixed momentum is

S(a) = {v ∈ X1 : I1 = c(1)|z1|2 + c(2)|z2|2 = a} .(4.15)

The circle action on S(a) is given by Tαz = (z1e
iα, z2e

iRα), and incidentally the
quotient S(a)/Tα is never a manifold. Nonetheless, the submanifold S(a) � S3 is
compact, and therefore the function H is either constant, or else has at least two
distinct critical values, namely, its maximum and its minimum. This gives rise to at
least two distinct critical circles of H on S(a), invariant under Tα.

Theorem 4.8. The two dimensional gravity wave problem and the two dimen-
sional capillary gravity wave problem have analytic families of periodic solutions bi-
furcating from each ck, k ∈ Γ′, for which the null space X1 is two dimensional. In
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case of resonance in the capillary gravity wave problem, X1 is four dimensional and
there are at least two distinct solutions on every level surface S(a) of the momentum
I1, for sufficiently small a > 0.

We remark that we would not obtain a better lower estimate for the number of
critical orbits of H on S(a) from an index theory argument, or even from a more
refined argument by Morse theory, if indeed we were to show that H was a Morse
function on S(a)/T 2.

4.3. Proof of Lemma 4.1. To finish this section we give a proof of Lemma 4.1,
which is based on the implicit function theorem. From Theorem 3.2 we have the
estimate ‖w(v, c)‖X ≤ C ‖v‖2

X , and we also find

‖q‖Y = ‖δuH(v + w)− c · δuI(v + w)‖Y

≤ ∥∥Q(δ2
uH(0)(v + w)− c0 · δuI(v + w))

∥∥
Y

+ ‖Q(δuH3(v + w)− (c− c0) · δuI(v + w))‖Y

= ‖Q(δuH3(v + w)− (c− c0) · δuI(v))‖Y .

The notation is that I = (I1, I2), that δuH(u) = δ2
uH(0)u + δuH3(u) describes the

Taylor series expansion with remainder, and we have used thatQ projects orthogonally
in X onto an invariant subspace of J (a symplectic subspace) so that QδuI(u) =

δuI(Qu). Letting v =
∑N

p=1 rp[cos(ϕp)v
1
kp
+ sin(ϕp)v

2
kp
] as in (4.7), we compute the

quantities

δuI�(v) =

N∑
p=1

rp(cos(ϕp)J∂x�
v1

kp
+ sin(ϕp)J∂x�

v2
kp
)

=
N∑

p=1

rp cos(ϕp)J∂x�

(
c0 · kp cos(kp · x)

(g + σ|kp|2) sin(kp · x)
)

+rp sin(ϕp)J∂x�

( −c0 · kp sin(kp · x)
(g + σ|kp|2) cos(kp · x)

)

and

∫
T (Γ)

(δuI�(v), δuIj(v)) dx =

N∑
p=1

r2
p(k

j
pk

�
p)|T (Γ)|((c0 · kp)

2 + (g + σ|kp|2)2) .(4.16)

Let us suppose that a = (a1, a2) is not collinear with any wave vector in the set
K, and that (v, c) satisfies I(v + w(v, c)) = a. Define the quantity

m(v, c) =
1

|v|2
∫

T (Γ)

(q(v, c) , δuIj(v + w(v, c))) dx

=
1

|v|2
(∫

T (Γ)

−
2∑

�=1

(c− c0)�(δuI�(v), δuIj(v))dx+O(|v|3)
)

,

which maps X1 × R
2 to R

2, and whose vanishing implies (4.2). To analyze the set
m(v, c) = 0, evaluate m on a line {v = ρe : ρ ∈ R, |e|X1 = 1} through the origin,
setting me(ρ, c) = m(ρe, c). Clearly me(0, c0) = 0, and taking the derivative with
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respect to c,

∂c�me,j(ρ, c) = − 1

|v|2
∫

T (Γ)

(δuI�(v), δuIj(v))dx|v=ρe +O(|ρ|)

= −
∫

T (Γ)

(δuI�(e), δuIj(e))dx+O(|ρ|) .

If this Jacobian is invertible, the implicit function theorem implies the existence of a
solution c(ρ) of me(ρ, c) = 0 in a sufficiently small neighborhood of the origin. From
(4.16) we see that ∂c�mej(0, c) is a sum with nonnegative coefficients of symmetric
rank one matrices kpk

T
p . As long as two linearly independent kp of the sum have

their respective coefficients nonzero, it is invertible, and the statement of the lemma
holds for sufficiently small ε. Let us suppose then that ∂cme(0, c) is not invertible,
for purposes of contradiction. Then both

∂cjme,�(0, c0) = −
∑

s

C(1)
ps

kj
ps
k�

ps
,

Ij(e) =
∑

s

C(2)
ps

kj
ps
,

where all kps are collinear, and where the coefficients are C
(1)
ps = ((c0 · kp)

2 + (g +

σ|kp|2)2)|T (Γ)|, C(2)
ps = ((c0 · kp)(g + σ|kp|2))|T (Γ)|. However, for v = ρe, we have

(a1, a2) = (I1(v+w(v, c)), I2(v+w(v, c))) = ρ2(I1(e), I2(e))+O(|ρ|4) and this in turn
is ρ2

∑
s C

(2)
ps (k

1
ps
, k2

ps
)+O(|ρ|4). For sufficiently small ρ this is incompatible with the

hypothesis of noncollinearity of the lemma, and hence ∂cme(0, c0) must be invertible.
Once a solution c(v) of m(v, c) = 0 is established for v �= 0, another argument

using the statement of the implicit function theorem implies that c(v) is locally real
analytic away from the origin. Indeed, for ρ �= 0 and for e ∈ S1 = {v ∈ Xi : |v| = 1}
such that (I1(e), I2(e)) �∼ kp, the implicit function theorem implies that the solution
c(v) = C(ρe) is real analytic in the parameter e. This concludes the proof of the
lemma.

5. Analyticity of the Dirichlet–Neumann operator. The one remaining
detail in our proof is the analyticity of the Dirichlet–Neumann operator. This was
first established in the two dimensional setting by R. Coifman and Y. Meyer [4], and
in the three dimensional setting by W. Craig, U. Schanz, and C. Sulem [7]. The
result in general n dimensions was proven by D. Nicholls [19], as a generalization of
the method of W. Craig, U. Schanz, and C. Sulem. All of these authors proved the
following result in differing numbers of dimensions.

Theorem 5.1. Consider functions η such that |η|L∞ < hR0, |η|C1 < R0, and
|η|Cs+1 < ∞. There exists R0 > 0 such that the Dirichlet–Neumann operator G(η) is
analytic in η in the neighborhood,

{η | |η|C1 < R0, |η|Cs+1 < ∞},(5.1)

as a linear map in ξ from W s+1,q → W s,q.
In this theorem Cs is the space of s times continuously differentiable functions,

and W s,q is the Lq based Sobolev space of s times differentiable functions. In his
thesis D. Nicholls [19] modified this theorem in two dimensions by only requiring
η ∈ W s+1,q, which is used to prove the result of this paper in two dimensions with
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σ = 0. The approach of W. Craig, U. Schanz, and C. Sulem [7] was to perform
estimates on the Dirichlet–Neumann operator by always placing Cs norms on η terms
and W s,q norms on ξ terms. This produces a very clean result, which is not, however,
useful for the applications in the present paper. In this section we replace the Cs+1

derivative with a W s+1,q at the cost of a C2 derivative on ξ. In this section we
generalize this procedure to higher dimensions for use in the three dimensional result.

5.1. An exact implicit formula. The method of W. Craig, U. Schanz, and C.
Sulem [7] begins with an exact implicit formula for the Dirichlet–Neumann operator.
The formula is in terms of smoothing and singular integral operators which one can
analyze using the theorem of M. Christ and J. Journé [3]. In this section we consider
n dimensional real space R

n and will use the notation x = (x′, xn) ∈ R
n−1 × R for a

point in R
n rather than the (x, y) notation of previous sections.

Theorem 5.2. An exact implicit formula for the Dirichlet–Neumann operator in
n ≥ 2 dimensions is

(I −B(η)) G(η) ξ = |Dx′ | tanh(h |Dx′ |) ξ +A(η) ξ,(5.2)

where

A(η) ζ = −
(
1 + e−2h|Dx′ |

)−1

|Dx′ |M(η) ζ ,

B(η) ζ = −
(
1 + e−2h|Dx′ |

)−1

|Dx′ |L(η) ζ ,

and

M(η) ζ =

∫
mn(x

′, y′)ζ(y′) dy′ ,

L(η) ζ =

∫
ln(x

′, y′)ζ(y′) dy′ .

In two dimensions

m2(x
′, y′) =

1

π


 1

(x′ − y′)2

{
(x′ − y′)∂y′η(y′)− (η(x′)− η(y′))

1 + q2
1

}

+
1

(x′ − y′)2 + 4h2


 (x′ − y′)∂y′η(y′) + (η(x′) + η(y′))

1 + 4h√
(x′−y′)2+4h2

q2 + q2
2




+
2h

(x′ − y′)2 + 4h2


 1

1 + 4h√
(x′−y′)2+4h2

q2 + q2
2

− 1






and

l2(x
′, y′) = − 1

2π

[
log(1 + q2

1) + log

(
1 +

4h√
(x′ − y′)2 + 4h2

q2 + q2
2

)]
.

In these formulae we set

q1(x
′, y′) =

η(x′)− η(y′)
|x′ − y′| ,

q2(x
′, y′) =

η(x′) + η(y′)√
|x′ − y′|2 + 4h2

.
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In n ≥ 3 dimensions,

mn(x
′, y′) =

2

ωn


 1

|x′ − y′|n
{
(x′ − y′) · ∇y′η(y′)− (η(x′)− η(y′))

(1 + q2
1)

n/2

}

+
1(

|x′ − y′|2 + 4h2
)n

2



(x′ − y′) · ∇y′η(y′) + (η(x′) + η(y′))(

1 + 4h√
|x′−y′|2+4h2

q2 + q2
2

)n/2




+
2h(

|x′ − y′|2 + 4h2
)n

2




1(
1 + 4h√

|x′−y′|2+4h2
q2 + q2

2

)n/2
− 1





 ,

and

ln(x
′, y′) =

2

(n− 2)ωn


 1

|x′ − y′|n−2

{
1

(1 + q2
1)

(n−2)/2
− 1

}

+
1(

|x′ − y′|2 + 4h2
)(n−2)/2




1(
1 + 4h√

|x′−y′|2+4h2
q2 + q2

2

)(n−2)/2
− 1





 ,

where ωn = 2
√
π

n
/Γ(n

2 ).
Proof. The proof of this result can be found in the paper of W. Craig, U. Schanz,

and C. Sulem [7] for the case of three dimensions, or in the thesis of D. Nicholls
[19] for the general case. The essence of the proof is that one can express solutions
of Laplace’s equation at a point in terms of the function itself and the fundamental
solution. From here one takes appropriate derivatives, evaluates at the free surface,
identifies the Dirichlet–Neumann operator, and then recognizes the linear terms as
convolutions and writes them as |Dx′ | tanh(h |Dx′ |). In case that the depth h is
infinite, the above Fourier multiplier is replaced by |Dx′ |, the expression q2 vanishes,
and the subsequent analysis is similar but simpler. We will carry out the analysis for
the case h finite in the remainder of this section.

5.2. Proof of analyticity. The principal ingredients are the formulae of sec-
tion 5.1 for the Dirichlet–Neumann operator and the theorems on singular and smooth-
ing integral operators of section 5.3. The method we use is similar to the one employed
by W. Craig, U. Schanz, and C. Sulem [7] and D. Nicholls [19]. We modify the ap-
proach by considering function spaces which are relevant to our current purpose. In
particular, we will require only that η ∈ W s+1,q rather than Cs+1 in the two dimen-
sional setting, and η ∈ W s+2,q rather than Cs+1 in the three dimensional setting,
representing an improvement in the smoothness required of η—however, at the cost
of the information and elegance of the proof of W. Craig, U. Schanz, and C. Sulem
[7], in particular information involving |η|C1 .
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By investigating the analyticity properties of the operators A(η) and B(η), along
with the analyticity of the operator (I −B(η)), we will show that the Dirichlet–
Neumann operator itself is analytic. We begin by considering the operator B(η).

Theorem 5.3. In the setting of the two dimensional water wave problem (n = 2),
if 1 < q < ∞ and s > max( 1

q , 2), then B(η) satisfies the estimate

‖B(η) ξ‖W s,q < C ‖η‖2
W s+1,q ‖ξ‖W s,q .(5.3)

Furthermore, the operator B(η) is analytic as a function of η on the space W s,q. In
the setting of the three dimensional water wave problem (n = 3), if 1 < q < ∞ and
s > max( 2

q , 3), then B(η) satisfies the estimate

‖B(η) ξ‖W s,q < C ‖η‖2
W s+2,q ‖ξ‖W s,q .(5.4)

Furthermore, the operator B(η) is analytic as a function of η on the space W s,q.
The proof of this theorem depends upon the following two lemmas which are

proven in W. Craig, U. Schanz, and C. Sulem [7] and D. Nicholls [19].

Lemma 5.4. The operator
(
1 + e−2h|Dx′ |)−1

and the Riesz potential Rj(Dx′) =

i
Dx′

j

|Dx′ | are bounded on W s,q for 1 < q < ∞ and s ≥ 0.

Lemma 5.5. Given functions f ∈ Cs and g ∈ W s,q the following interpolation
identity holds for some constant K(s):

‖fg‖W s,q ≤ K(s) [|f |L∞ ‖g‖W s,q + |f |Cs ‖g‖Lq ] .(5.5)

We may now proceed with the proof of Theorem 5.3. Since

|Dx′ | = −
n−1∑
j=1

Rj(Dx′)∂x′
j
,

and we have Lemma 5.4, we need only consider two types of integral operators, ∂x′
j

applied to

P2 =

∫
− 1

2π
log(1 + q2

1) ξ(y
′) dy′,

Q2 =

∫
− 1

2π
log(1 + κhq2 + q2

2) ξ(y
′) dy′

in two dimensions and

Pn =

∫
2

(n− 2)ωn

1

|x′ − y′|n−2

{
1

(1 + q2
1)

(n−2)/2
− 1

}
ξ(y′) dy′

Qn =

∫
2

(n− 2)ωn

1(
|x′ − y′|2 + 4h2

)(n−2)/2

×
{

1

(1 + κhq2 + q2
2)

(n−2)/2
− 1

}
ξ(y′) dy′

in n ≥ 3 dimensions, where κh = 4h/
√|x′ − y′|2 + 4h2. Applying the derivative

operator to the above quantities results in the following formulae:

∂x′P2 = − 1
π

∫
q1

1 + q2
1

[
∂x′η(x′)
|x′ − y′| −

(η(x′)− η(y′))(x′ − y′)

|x′ − y′|3
]
ξ(y′) dy′,
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∂x′Q2 = − 1

2π

∫
1

1 + κhq2 + q2
2


−q2

4h(x′ − y′)(
|x′ − y′|2 + 4h2

)3/2

+(κh + 2q2)




∂x′η(x′)(
|x′ − y′|2 + 4h2

)1/2
− (η(x

′) + η(y′))(x′ − y′)(
|x′ − y′|2 + 4h2

)3/2




 ξ(y′) dy′

in two dimensions and

∂x′
j
Pn = − 2

ωn

∫
x′

j − y′j
|x′ − y′|n

{
1

(1 + q2
1)

(n−2)/2
− 1

}
ξ(y′) dy′

− 2

ωn

∫
1

|x′ − y′|n−2

q1

(1 + q2
1)

n/2

[
∂x′

j
η(x′)

|x′ − y′|

− (η(x
′)− η(y′))(x′

j − y′j)

|x′ − y′|3
]
ξ(y′) dy′ ,

∂x′
j
Qn =

2

ωn

∫
x′

j − y′j(
|x′ − y′|2 + 4h2

)n/2

{
1

(1 + κhq2 + q2
2)

(n−2)/2
− 1

}
ξ(y′) dy′

+
2

(n− 2)ωn

∫
1(

|x′ − y′|2 + 4h2
)(n−2)/2

1

(1 + κhq2 + q2
2)

n/2

×


−q2

4h(x′
j − y′j)(

|x′ − y′|2 + 4h2
)3/2

+(κh + 2q2) ·


 ∂x′

j
η(x′)(

|x′ − y′|2 + 4h2
)1/2

− (η(x′) + η(y′))(x′
k − y′k)(

|x′ − y′|2 + 4h2
)3/2




 ξ(y′) dy′

in n ≥ 3 dimensions. It is not difficult to see that the singular and smoothing integral
operator theorems of section 5.3 apply to the above operators if we keep in mind that
d = n − 1. Indeed, in the seven principal terms appearing in the expression for the
operator ∂x′

j
Qn and in the notation of Theorem 5.21, we have (p, ρ, λ) = (1, n− 2, 1),

(2, n− 2, 0), (1, n, 0), (0, n− 1, 1), (1, n− 1, 0), (1, n, 0), and (0, n, 1). It is also useful
to use Lemma 5.5 to pull out functions which depend on x′ from the y′ integrals, and
interpolate.

The goal is not to show that B(η) is analytic but rather to show that (I−B(η))−1

is analytic. With this in mind we make the following estimate concerning powers of
the operator B(η) and then conclude analyticity of (I −B(η))−1.

Corollary 5.6. In the setting of the two dimensional water wave problem (n =
2), if 1 < q < ∞ and s > max( 1

q , 2), then the powers of B(η) satisfy the following
estimate: ∥∥B(η)j ξ

∥∥
W s,q < Cj ‖η‖2j

W s+1,q ‖ξ‖W s,q .(5.6)

Thus, for ‖η‖W s+1,q small enough, the operator (I − B(η))−1 exists, satisfies the
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estimate ∥∥(I −B(η))−1 ξ
∥∥

W s,q < 1 + C̃ ‖ξ‖W s,q ,(5.7)

and is analytic as a function of η on W s,q. In the setting of the three dimensional
water wave problem (n = 3), if 1 < q < ∞ and s > max( 2

q , 3), then the powers of

B(η) satisfy the following estimate:∥∥B(η)j ξ
∥∥

W s,q < Cj ‖η‖2j
W s+2,q ‖ξ‖W s,q .(5.8)

Thus, for ‖η‖W s+2,q small enough, the operator (I − B(η))−1 exists, satisfies the
estimate ∥∥(I −B(η))−1 ξ

∥∥
W s,q < 1 + C̃ ‖ξ‖W s,q ,(5.9)

and is analytic as a function of η on W s,q.
Proof. We restrict to the case of n = 2 as the n = 3 case is virtually identical.

We already have the estimate

‖B(η) ξ‖W s,q < C ‖η‖2
W s+1,q ‖ξ‖W s,q ,

and we now proceed via induction. The case j = 1 is clearly true, so we assume that
the corollary is true for j and analyze (j + 1),∥∥B(η)j+1 ξ

∥∥
W s,q =

∥∥B(η)jB(η) ξ∥∥
W s,q

< Cj ‖η‖2j
W s+1,q ‖B(η) ξ‖W s,q

< Cj+1 ‖η‖2(j+1)
W s+1,q ‖ξ‖W s,q .

Therefore, the estimate on the jth power holds true. To compute (I − B(η))−1 we
use the Neumann series

(I −B(η))−1 = I +

∞∑
j=1

Bj(η)

and note that it converges in the radius of convergence of the series

∞∑
j=1

Cj ‖η‖2j
W s+1,q .

In other words, the Neumann series converges when ‖η‖W s+1,q < 1/
√
C, and we are

done.
We now turn our attention to the operators A(η). While the operators B(η) map

W s,q intoW s,q and thereby preserve derivatives, we should expect the operators A(η)
to map W s+1,q into W s,q. This is incorporated into our proof by using a variation of
integration by parts, given below, to remove all ∂y′ derivatives from η(y′) terms and
place them elsewhere. We give the version of integration by parts in the following
lemma proven in W. Craig, U. Schanz, and C. Sulem [7] and D. Nicholls [19].

Lemma 5.7. Consider x, y ∈ R
n, R(q1) an odd continuous function of q1, and

η ∈ C1(Rn); then we have that∫
x− y

|x− y|n · ∇y(R(q1))ξ(y) dy = −
∫

R(q1)
x− y

|x− y|n · ∇yξ(y) dy.(5.10)
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We are can now prove an estimate on the operator A(η) which is given in the
following theorem.

Theorem 5.8. In the setting of the two dimensional water wave problem (n = 2),
if 1 < q < ∞ and s > max( 1

q , 2), then A(η) satisfies the estimate

‖A(η) ξ‖W s,q < C ‖η‖2
W s+1,q ‖ξ‖W s+1,q .(5.11)

Furthermore, the operator A(η) is analytic as a function of η from the space W s+1,q

to the space W s,q. In the setting of the three dimensional water wave problem (n = 3),
if 1 < q < ∞ and s > max( 2

q , 3), then A(η) satisfies the estimate

‖A(η) ξ‖W s,q < C ‖η‖2
W s+2,q ‖ξ‖W s+1,q .(5.12)

Furthermore, the operator A(η) is analytic as a function of η from the space W s+1,q

to the space W s,q.
Proof. As before, since

|Dx′ | = −
n−1∑
j=1

Rj(Dx′)∂x′
j

is the Riesz potential given in Lemma 5.4, we need consider only two types of integral
operators, ∂x′

j
applied to

P2 =

∫
1

π

1

(x′ − y′)2

{
(x′ − y′)∂y′η(y′)− (η(x′)− η(y′))

1 + q2
1

}
ξ(y′) dy′,

Q2 =

∫
1

π

1

(x′ − y′)2 + 4h2

{
(x′ − y′)∂y′η(y′)
1 + κhq2 + q2

2

+
(η(x′) + η(y′))
1 + κhq2 + q2

2

}
ξ(y′) dy′,

R2 =

∫
1

π

2h

(x′ − y′)2 + 4h2

{
1

1 + κhq2 + q2
2

− 1

}
ξ(y′) dy′

in two dimensions and

Pn =

∫
2

ωn

1

|x′ − y′|n
{
(x′ − y′) · ∇y′η(y′)− (η(x′)− η(y′))

(1 + q2
1)

n/2

}
ξ(y′) dy′,

Qn =

∫
2

ωn

1(
|x′ − y′|2 + 4h2

)n/2

{
(x′ − y′) · ∇y′η(y′)

(1 + κhq2 + q2
2)

n/2

+
(η(x′) + η(y′))

(1 + κhq2 + q2
2)

n/2

}
ξ(y′) dy′,

Rn =

∫
2

ωn

2h(
|x′ − y′|2 + 4h2

)n/2

{
1

(1 + κhq2 + q2
2)

n/2
− 1

}
ξ(y′) dy′

in n ≥ 3 dimensions. All we need to do is apply the differential operator ∂x′
j
to each of

these integrals, use Lemma 5.7 wherever appropriate, and then note that the singular
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and smoothing integral operator theorems of section 5.3 can be used. Keeping in
mind the facts that

∂x′
j
q1(x

′, y′) =
∂x′

j
η(x′)

|x′ − y′| −
(η(x′)− η(y′))(x′

j − y′j)

|x′ − y′|3 ,

∂x′
j
q2(x

′, y′) =
∂x′

j
η(x′)(

|x′ − y′|2 + 4h2
)1/2

− (η(x′) + η(y′))(x′
j − y′j)(

|x′ − y′|2 + 4h2
)3/2

,

∂x′
j
κh(x

′, y′) = − 4h(x′
j − y′j)(

|x′ − y′|2 + 4h2
)3/2

,

we compute the derivatives in two dimensions as

∂x′P2 = − 2
π

∫
1

(x′ − y′)3

{
(x′ − y′) · ∇y′η(y′)− (η(x′)− η(y′))

(1 + q2
1)

n/2

}
ξ(y′) dy′

+
1

π

∫
1

(x′ − y′)2

{
∂y′η(y′)− ∂x′η(x′)

1 + q2
1

− [(x′ − y′)∂y′η(y′)− (η(x′)− η(y′))] 2q1∂x′q1

(1 + q2
1)

2

}
ξ(y′) dy′,

∂x′Q2 = − 2
π

∫
x′ − y′

((x′ − y′)2 + 4h2)
2

{
(x′ − y′)∂y′η(y′) + (η(x′) + η(y′))

1 + κhq2 + q2
2

}
ξ(y′) dy′

+
1

π

∫
1

(x′ − y′)2 + 4h2

{
∂y′η(y′) + ∂x′η(x′)
1 + κhq2 + q2

2

− [(x′ − y′)∂y′η(y′) + (η(x′) + η(y′))] (q2∂x′κh + (κh + 2q2)∂x′q2)

(1 + κhq2 + q2
2)

2

}
ξ(y′) dy′,

∂x′R2 = − 2
π

∫
2h(x′ − y′)

((x′ − y′)2 + 4h2)
2

{
1

1 + κhq2 + q2
2

− 1

}
ξ(y′) dy′

− 1
π

∫
2h

(x′ − y′)2 + 4h2

(q2∂x′κh + (κh + 2q2)∂x′q2)

(1 + κhq2 + q2
2)

2

and in n = 3 dimensions as

∂x′
j
Pn =

2

ωn

∫
x′

j − y′j
|x′ − y′|n+2

{
(x′ − y′) · ∇y′η(y′)− (η(x′)− η(y′))

(1 + q2
1)

n/2

}
ξ(y′) dy′

+
2

ωn

∫
1

|x′ − y′|n
{

∂y′
j
η(y′)− ∂x′

j
η(x′)

(1 + q2
1)

n/2

−
[(x′ − y′) · ∇y′η(y′)− (η(x′)− η(y′))] (nq1∂x′

j
q1)

(1 + q2
1)

n

}
ξ(y′) dy′,

∂x′
j
Qn = − 2n

ωn

∫
x′

j − y′j(
|x′ − y′|2 + 4h2

)(n+2)/2

×
{
(x′ − y′) · ∇y′η(y′) + (η(x′) + η(y′))

(1 + κhq2 + q2
2)

n/2

}
ξ(y′) dy′
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+
2

ωn

∫
1(

|x′ − y′|2 + 4h2
)n/2

{
∂y′

j
η(y′) + ∂x′

j
η(x′)

(1 + κhq2 + q2
2)

n/2

−
[(x′ − y′) · ∇y′η(y′) + (η(x′) + η(y′))] (q2∂x′

j
κh + (κh + 2q2)∂x′

j
q2)

(1 + κhq2 + q2
2)

n

}
ξ(y′) dy′,

∂x′
j
Rn = − 2n

ωn

∫
2h(x′

j − y′j)(
|x′ − y′|2 + 4h2

)(n+2)/2

{
1

(1 + κhq2 + q2
2)

n/2
− 1

}
ξ(y′) dy′

− n

ωn

∫
2h(

|x′ − y′|2 + 4h2
)n/2

q2∂x′
j
κh + (κh + 2q2)∂x′

j
q2

(1 + κhq2 + q2
2)

(n+2)/2
ξ(y′) dy′.

As noted before, we can now use the theorems of section 5.3 in combination with
Lemma 5.7 to arrive at the conclusion of the theorem.

Now that we have Corollary 5.6 and Theorem 5.8, we can finally state and prove
the theorem regarding analyticity of the Dirichlet–Neumann operator.

Theorem 5.9. In the setting of the two dimensional water wave problem (n = 2),
if 1 < q < ∞ and s > max( 1

q , 2), then the Dirichlet–Neumann operator G(η) ξ

is analytic as a function of η ∈ W s+1,q, as a bounded linear operator from W s+1,q

to W s,q. In the setting of the three dimensional water wave problem (n = 3), if
1 < q < ∞ and s > max( 2

q , 3), then the Dirichlet–Neumann operator G(η) ξ is

analytic as a function of η ∈ W s+2,q, as a bounded linear operator from W s+1,q to
W s,q.

Proof. Theorem 5.2 gives the exact implicit formula

(I −B(η))G(η)ξ = |Dx′ | tanh(h |Dx′ |)ξ +A(η)ξ,

and thus, since (I −B(η)) is boundedly invertible, we can write

G(η)ξ = (I −B(η))−1 |Dx′ | tanh(h |Dx′ |)ξ + (I −B(η))−1A(η)ξ.

Since Corollary 5.6 and Theorem 5.8 give us analyticity and appropriate boundedness
of relevant operators we have the statement of the theorem.

5.3. Singular and smoothing integral operators. In this section we briefly
outline the statement and proofs of theorems concerning the boundedness properties
of certain singular and smoothing integral operators relevant to the proof the the
analyticity of the Dirichlet–Neumann operator outlined above. The bulk of these
theorems were first presented in W. Craig, U. Schanz, and C. Sulem [7] and U. Schanz
[25] in general n dimensions for use in the analyticity proof of the Dirichlet–Neumann
operator in three dimensions where η ∈ Cs+1 and ξ ∈ W s,q. The others were first
presented by D. Nicholls [19] in one dimension for use in the proof of the analyticity
of the Dirichlet–Neumann operator in two dimensions which only required that η, ξ ∈
W s,q for s > d

q . Here we extend the program of D. Nicholls [19] by proving his result
in d dimensions, and further reducing the smoothness required of η and ξ.

Let x, y ∈ R
d, and consider functions η : R

d → R and ξ : R
d → R. Our goal is to

study two classes of integral operators. The first is singular and has the general form

Cp(η) ξ(x) =

∫
k(x− y)cp(q1)ξ(y) dy,
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where k(x−y) is a convolution kernel of Calderón–Zygmund type satisfying standard
estimates outlined below. Recall that q1(η;x, y) = (η(x)−η(y))/|x− y|, and consider
cp : R → R which is analytic in the interval |z| < R0 such that cp(z) = O (|z|p) for |z|
small. The second class of operators is smoothing and has the general form

Cp,h(η) ξ(x) =

∫
Kh(x− y)cp,h(q2, κh)ξ(y) dy,

where

Kh(x) =
1(

|x|2 + 4h2
)ρ/2

d∏
l=1


 xl(

|x|2 + 4h2
)1/2




βl

,

with β =
∑d

l=1 βl,

q2(η;x, y) =
η(x) + η(y)(

|x− y|2 + 4h2
)1/2

, κh(x, y) =
4h(

|x− y|2 + 4h2
)1/2

.

We consider cp,h(z, w) : R
2 → R which is analytic for {|z| < R0, |w| < 2} such that

cp,h(z, w) = O(|z|p |w|λ) for |z| and |w| small. We will require that p + ρ + λ > d.
We will establish Sobolev estimates for the operators Cp and Cp,h in the following
theorems. The first, concerning bounds on Cp, requires the use of a deep theorem of
M. Christ and J. Journé [3] on Lq bounds for Calderón–Zygmund commutators. The
theorem concerning bounds on the operators Cp,h requires nothing more than careful
estimates as the operator is smoothing rather than singular.

To place ourselves in the setting for the theorem of M. Christ and J. Journé [3],
we define the standard estimates.

Definition 5.10. A kernel K on R
d is said to satisfy standard estimates if there

exist δ > 0 and cK < ∞ such that for all distinct x, y ∈ R
d and all z ∈ R

d such that

|x− z| ≤ |x−y|
2 ,

(i) |K(x, y)| ≤ cK |x− y|−d
;

(ii) |K(x, y)−K(z, y)| ≤ cK(
|x−z|
|x−y| )

δ |x− y|−d
;

(iii) |K(y, x)−K(y, z)| ≤ cK(
|x−z|
|x−y| )

δ |x− y|−d
.

With this definition in hand we state the following theorem.
Theorem 5.11 (M. Christ and J. Journé [3, Theorem 4]). Consider the singular

integral operator with kernel

L(x− y)

m∏
j=1

(∫ 1

0

bj(tx+ (1− t)y) dt

)
,(5.13)

where each bj ∈ L∞ and L satisfies the standard estimates. Then for 0 < q < ∞,∥∥∥∥∥∥
∫

L(x− y)

m∏
j=1

(∫ 1

0

bj(tx+ (1− t)y) dt

)
ξ(y) dy

∥∥∥∥∥∥
Lq

(5.14)

≤ cqcLm
N


 m∏

j=1

|bj |L∞


 ‖ξ‖Lq .
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One may take N = 2 + δL, for δL and cL which appear in the standard estimates.
The first step in analyzing the boundedness of the operators Cp(η) is to first

consider the simplified operator

Sp(η1, . . . , ηp) ξ(x) =

∫
K(x− y)


 p∏

j=1

q1(ηj)


 ξ(y) dy,

where K is a Calderón–Zygmund kernel which satisfies standard estimates. There are
two related theorems which one can prove concerning this operator. The first is due
to W. Craig, U. Schanz, and C. Sulem [7].

Theorem 5.12 (W. Craig, U. Schanz, and C. Sulem [7]). Let η1, . . . , ηp ∈ C1,
then the singular integral operator Sp(η1, . . . , ηp) is bounded on Lq and satisfies

‖Sp(η1, . . . , ηp) ξ‖Lq ≤ C0p
M


 p∏

j=1

|ηj |C1


 ‖ξ‖Lq ,(5.15)

with exponent M = 3 +min(δK , 1).
The second is an extension to general d dimensions of a result proven by D.

Nicholls [19].
Theorem 5.13. Let 1 ≤ r ≤ p, ηj ∈ C2 for j �= r, ξ ∈ C1

⋂
W 1,q, and

ηr ∈ L∞⋂
Lq. Consider K of the form

K(x, y) =

{
1

|x−y|d ,
x−y

|x−y|d+1 .
(5.16)

Then the singular integral operator Sp(η1, . . . , ηp) is bounded on Lq and satisfies

‖Sp(η1, . . . , ηp) ξ‖Lq ≤ C


|ηr|L∞


 p∏

j=1,j �=r

|ηj |C1


 ‖∂yξ‖Lq(5.17)

+ |ηr|L∞

p∑
s=1,s �=r


 p∏

j=1,j �=r,s

|ηj |C1


 |ηs|C2 ‖ξ‖Lq

+


 p∏

j=1,j �=r

|ηj |C1


 |ξ|C1 ‖ηr‖Lq

+ |ξ|L∞


 p∏

j=1,j �=r

|ηj |C1


 ‖∂yηr‖Lq

+ |ξ|L∞

p∑
s=1,s �=r


 p∏

j=1,j �=r,s

|ηj |C1


 |ηs|C2 ‖ηr‖Lq


 .

The proofs of both of these results rely on the following lemmas. We state without
proof the first two (see [19]) which are used in the proof of Theorem 5.12.

Lemma 5.14. Suppose that x �= y. If f1, . . . , fp ∈ C1, then

p∏
j=1

q1(fj) =
∑
l∈L

(
p∏

k=1

(x− y)lk
|x− y|

)(∫ 1

0

∂xlk
fj(tx+ (1− t)y) dt

)
,(5.18)
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where L is the set of all integer p-tuples (l1, . . . , lp) such that 1 ≤ l1, . . . , lp ≤ d.
Lemma 5.15. If k(x, y) is a Calderón–Zygmund kernel satisfying standard esti-

mates, then the kernel of the form

ζ(x, y) = k(x, y)

p∏
k=1

(x− y)lk
|x− y| ,(5.19)

where 1 ≤ lk ≤ d, also satisfies standard estimates.
The following two lemmas are the analogues of the above two in the case that a y

derivative is applied to q1(f). The proof of Lemma 5.16 is significantly different from
the proof of Lemma 5.14 so we present it here. However, the proof of Lemma 5.17 is
sufficiently close to that of Lemma 5.15 that we omit it.

Lemma 5.16. Suppose that x �= y. If f ∈ C2, then

x− y

|x− y| · ∇yq1(f) = − x− y

|x− y|2 · ∇yf(y) +
f(x)− f(y)

|x− y|2

=
1

|x− y|2
d∑

k=1

(x− y)k

d∑
j=1

(x− y)j

∫ 1

0

bj,k(x, y, t) dt,(5.20)

where

bj,k =

∫ 1

0

τ∂yj
∂yk

f(t[τx+ (1− τ)y] + (1− t)y) dτ(5.21)

and bj,k ∈ L∞.
Proof. The first line of (5.20) is realized by a simple calculation of the derivative

of q1(f) with respect to y. For the second line we begin with the fundamental theorem
of calculus which states that for f ∈ C1,

f(b)− f(a) =

d∑
j=1

∫ 1

0

(b− a)j∂ujf(tb+ (1− t)a) dt.

Provided that f ∈ C2 this can also be done for ∇f resulting in the following:

∇uf(b)−∇uf(a) =

d∑
k=1

êk

d∑
j=1

∫ 1

0

(b− a)j∂uj∂uk
f(tb+ (1− t)a) dt,

where êk is the kth unit vector. We now set b = τx + (1 − τ)y and a = y, dot with
(x − y), and integrate in τ from 0 to 1. Using the fundamental theorem of calculus
on the ∇uf(b) term we arrive at

(f(x)− f(y))− (x− y) · ∇uf(y)

=

d∑
k=1

(x− y)k

d∑
j=1

(x− y)j

∫ 1

0

τ

∫ 1

0

∂uj
∂uk

f(t[τx+ (1− τ)y] + (1− t)y) dt dτ.

We now multiply both sides by 1
|x−y|2 and the theorem is proven. That bj,k(x, y, t) ∈

L∞ is due to the facts that f ∈ C2 and τ ∈ [0, 1].



354 WALTER CRAIG AND DAVID P. NICHOLLS

Lemma 5.17. A Calderón–Zygmund kernel of the type

ζ(x, y) = k(x, y)
1

|x− y|2
∑
r,s

(x− y)r(x− y)s

p∏
k=1

(x− y)lk
|x− y| ,(5.22)

where 1 ≤ r, s, lk ≤ d and k(x, y) is a Calderón–Zygmund kernel satisfying standard
estimates, also satisfies standard estimates.

At this point we can prove both Theorem 5.12 and Theorem 5.13. We begin with
Theorem 5.12.

Proof of Theorem 5.12. The main idea is to use the theorem of M. Christ and J.
Journé [3] on the operator Sp(η1, . . . , ηp). Define

L(x, y) = K(x, y)

p∏
j=1

(x− y)lk
|x− y| ,

with K as defined in the statement of the theorem and 1 ≤ lk ≤ d as in Lemma 5.14.
By Lemma 5.14 we can write the kernel of Sp

K(x, y)

p∏
j=1

q1(ηj)

as a finite sum of terms of the form

L(x, y)

p∏
j=1

∫ 1

0

∂xlk
ηj(tx+ (1− t)y) dt.

By Lemma 5.15 we know that L(x, y) satisfies standard estimates with cL = 3pcK

and δL = min(δK , 1). Therefore we can apply the theorem of M. Christ and J. Journé
above to each term∥∥∥∥∥∥

∫
L(x, y)

p∏
j=1

(∫ 1

0

∂xlk
ηj(tx+ (1− t)y) dt

)
ξ(y) dy

∥∥∥∥∥∥
Lq

≤ cLp
N


 p∏

j=1

∣∣∣∂xlk
ηj

∣∣∣
L∞


 ‖ξ‖Lq .

By the definition of the C1 norm the theorem is proven.
The proof of Theorem 5.13 is in many ways a corollary of Theorem 5.12 and is

presented below.
Proof of Theorem 5.13. The main idea is to use the theorem of M. Christ and J.

Journé [3] on the operator Sp. We begin with the calculation

Spξ(x) =

∫
K(x, y)


 p∏

j=1

q1(ηj)


 ξ(y) dy

=

∫
K(x, y)


 p∏

j=1,j �=r

q1(ηj)


 ηr(x)ξ(y)− ηr(y)ξ(y)

|x− y| dy
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=

∫
K(x, y)


 p∏

j=1,j �=r

q1(ηj)


 q1(ξ)ηr(y) dy

+

∫
K(x, y)


 p∏

j=1,j �=r

q1(ηj)


 ηr(x)ξ(y)

|x− y| dy

−
∫

K(x, y)


 p∏

j=1,j �=r

q1(ηj)


 ηr(y)ξ(x)

|x− y| dy

= I1 + I2 + I3.

Using Theorem 5.12 with the roles of ηr and ξ interchanged we can estimate the
integral I1 in appropriate fashion. We note that this estimate requires that ηj , ξ ∈ C1

for j �= r, and ηr ∈ Lq. The two integrals I2 and I3 can be handled in the same way
as one another, again with the roles of ηr and ξ switched. We choose I2 and begin
by pulling ηr(x) out in front of the integral. The ηr(x) factor will be estimated using
the L∞ norm. Now we are left with a singular integral operator much like that of
Theorem 5.12 except that the singular term is too singular. At this point we require
the special form of K. In the case K(x, y) = x−y

|x−y|d+1 we bring the factor
x−y
|x−y| out of

the integral by using its L∞ bound and thereby reduce to the case ofK(x, y) = 1
|x−y|d .

In this case we write

K(x, y)

|x− y| =
1

|x− y|d+1
= divy

[
x− y

|x− y|d+1

]
.

We now integrate by parts which results in a kernel of the right singularity at the
cost of derivatives appearing on the other terms in the integrand. Without loss of
generality consider K(x, y) = 1

|x−y|d ; then the integral I2 becomes

I2 = ηr(x)

∫
K(x, y)

|x− y|


 p∏

j=1,j �=r

q1(ηj)


 ξ(y) dy

= −ηr(x)



∫

(x− y)

|x− y|d+1
· ∇y


 p∏

j=1,j �=r

q1(ηj)


 ξ(y) dy

+

∫ 
 p∏

j=1,j �=r

q1(ηj)


 (x− y)

|x− y|d+1
· ∇y [ξ(y)] dy




= −ηr(x)




p∑
s=1,s �=r

∫
1

|x− y|d


 p∏

j=1,j �=r,s

q1(ηj)


 (x− y)

|x− y| · ∇y [q1(ηs)] ξ(y) dy

+

∫
1

|x− y|d


 p∏

j=1,j �=r

q1(ηj)


 (x− y)

|x− y| · ∇y [ξ(y)] dy


 .

Now, from Lemmas 5.16 and 5.17 we can estimate these two terms as long as ξ ∈ W 1,q,
ηr ∈ L∞, and ηj ∈ C2 for j �= r. As mentioned earlier, the term I3 can be handled
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analogously with the requirements that ξ ∈ L∞, ηr ∈ W 1,q, and ηj ∈ C2 for j �= r.
The estimate in the statement of the theorem is now realized.

As a precursor to estimating the operators Cp(η) in W s,q norm, we estimate the
following simplified operators:

Sp(η, . . . , η) ξ(x) =

∫
k(x, y)q1(η)

pξ(y) dy.

These will lead to the operator Cp(η) since the only difference is the presence in Cp(η)
of the analytic function cp(q1(η)) which we will expand in a Taylor series, giving rise to
a sum of operators of the form Sp(η, . . . , η). With this in mind we prove the following
theorem.

Theorem 5.18. If d = 1, the following estimate holds for η ∈ W s+1,q and
ξ ∈ W s,q, s > max( 1

q , 2):

‖∂s
xSp(η, . . . , η) ξ‖Lq ≤ C ‖η‖p

W s+1,q ‖ξ‖W s,q .(5.23)

If d = 2, the following estimate holds for η ∈ W s+2,q and ξ ∈ W s,q, s > max( 2
q , 3):

‖∂s
xSp(η, . . . , η) ξ‖Lq ≤ C ‖η‖p

W s+2,q ‖ξ‖W s,q .(5.24)

In order to prove this theorem we need the following lemma which is proven in
W. Craig, U. Schanz, and C. Sulem [7] and D. Nicholls [19].

Lemma 5.19. Let Sp be defined as

Sp(η, . . . , η) ξ(x) =

∫
K(x, y)q1(η)

pξ(y) dy.(5.25)

Then the lth derivative of this operator is

∂l
xSp(η, . . . , η)ξ(x) =

l∑
m=0

∑
∑

αk=m

Sp(∂
α1
x η, . . . , ∂αp

x η) ∂l−m
x ξ(x).(5.26)

We are now ready to prove Theorem 5.18.
Proof of Theorem 5.18. By Lemma 5.19 we have

‖∂s
xSp(η, . . . , η)ξ(x)‖Lq ≤

s∑
m=0

∑
∑

αk=m

∥∥Sp(∂
α1
x η, . . . , ∂αp

x η) ∂s−m
x ξ(x)

∥∥
Lq .

Since we wish to avoid using a Cs+1 derivative we diverge a little from the approach
of W. Craig, U. Schanz, and C. Sulem [7] and split the previous sum into three parts.
The first will contain all terms where at least one derivative hits the function ξ. The
second will contain terms with no derivatives on ξ but not all s derivatives on one η.
The final part will contain all terms where all s derivatives are on one of the η.

Each part will consist of terms of the form∥∥Sp(∂
α1
x η, . . . , ∂αp

x η) ∂s−m
x ξ(x)

∥∥
Lq .

If m < s, then at least one derivative hits ξ and we can use Theorem 5.12 to make
the estimate

∥∥Sp(∂
α1
x η, . . . , ∂αp

x η) ∂s−m
x ξ(x)

∥∥
Lq ≤ C


 p∏

j=1

|∂αj
x η|C1


∥∥∂s−m

x ξ
∥∥

Lq

≤ C |η|p−1
C1 |∂m

x η|C1

∥∥∂s−m
x ξ

∥∥
Lq .
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The second line comes from the interpolation

|∂α
x η|C1 ≤ C |η|1− α

m

C1 |∂m
x η| α

m

C1 .

By being wasteful with derivatives we can estimate this by C |η|p−1
C1 |η|Cs ‖η‖W s,q . By

our choice of s for d = 1 we can estimate this by C ‖η‖p
W s+1,q ‖ξ‖W s,q . Similarly, by

the choice of s for d = 2 we can estimate this by C ‖η‖p
W s+2,q ‖ξ‖W s,q . If we consider

m = s but αr �= s, then we make the estimate, based on Theorem 5.12

‖Sp(∂
α1
x η, . . . , ∂αp

x η) ξ(x)‖Lq ≤ C


 p∏

j=1

|∂αj
x η|C1


 ‖ξ‖Lq

≤ C |η|pCs ‖ξ‖Lq .

Again, by our choice of s we can make the appropriate estimate. Finally, in the case
where αr = s we use Theorem 5.13 to make the estimate

‖Sp(η, . . . , ∂
s
xη, . . . , η) ξ(x)‖Lq

≤ C


 p∏

j=1

|∂αj
x η|C1


 ‖ξ‖Lq

≤ C |η|p−1
C1 {|η|C1 |ξ|C1 ‖∂s

xη‖Lq

+ |η|C1

(|∂s
xη|L∞ ‖∂xξ‖Lq + |ξ|L∞

∥∥∂s−1
x η

∥∥
Lq

)
+(p− 1) |η|C2 (|∂s

xη|L∞ ‖∂xξ‖Lq + |ξ|L∞ ‖∂s
xη‖Lq )} .

Once again, without being careful about derivatives one can make the appropriate
estimate given the choice of s.

Finally, we are in a position to establish the analyticity of the singular integral
operators Cp in one and two dimensions in the appropriate function spaces.

Theorem 5.20. If d = 1, η ∈ W s+1,q, and s > max( 1
q , 2), then the singular

integral operator Cp(η) is bounded on W s,q and

‖Cp(η) ξ‖W s,q ≤ C ‖η‖p
W s+1,q ‖ξ‖W s,q .(5.27)

Furthermore, the operator Cp(η) is analytic as a mapping on W s,q and thus its Taylor
series converges in operator norm. If d = 2, η ∈ W s+2,q, and s > max( 2

q , 3), then the

singular integral operator Cp(η) is bounded on W s,q and

‖Cp(η) ξ‖W s,q ≤ C ‖η‖p
W s+2,q ‖ξ‖W s,q .(5.28)

Furthermore, the operator Cp(η) is analytic as a mapping on W s,q and thus its Taylor
series converges in operator norm.

Proof. The idea behind the proof is to expand the analytic function cp(z) in its
Taylor series expansion to reduce Cp to an infinite sum of operators Sp which have
the appropriate decay. In brief we write

Cp(η) ξ(x) =

∫
k(x, y)cp(q1)ξ(y) dy

=

∞∑
l=p

c
(l)
p (0)

l!
Sp(η, . . . , η) ξ(x).



358 WALTER CRAIG AND DAVID P. NICHOLLS

The proof now proceeds in exactly the same manner as in W. Craig, U. Schanz,
and C. Sulem [7] or D. Nicholls [19], where we use Theorem 5.18 rather than the
Cs+1 −W s,q estimates of these papers.

For the smoothing integral operators Cp,h there is a development which can be
followed which is very similar to, though not as delicate as, the one presented above
for the singular integral operators Cp. Due to the choices of s which we will make,
the estimates which we need have already been established by W. Craig, U. Schanz,
and C. Sulem in two dimensions [7], and in d dimensions by D. Nicholls [19]. We state
the result for completeness, and present the corollary which we use.

Theorem 5.21. Let p+ρ+λ > d, and suppose that |η|L∞ < hR0 and |η|Cs < ∞.
Then Cp,h is bounded from Lq to W s,q and

‖Cp,h(η) ξ‖W s,q < C |η|p−1
L∞ |η|Cs ‖ξ‖Lq .(5.29)

Furthermore, the operator Cp,h is analytic as a mapping from Lq to W s,q in the set

{η | |η|L∞ < hR0 and |η|Cs < ∞}.(5.30)

Consequently, Cp,h is represented by its Taylor series expansion.
The corollary that we use is the following.
Corollary 5.22. If d = 1, η ∈ W s+1,q, and s > max( 1

q , 2), then the smoothing
integral operator Cp,h is bounded from Lq to W s,q and

‖Cp,h(η) ξ‖W s,q < C ‖η‖p
W s+1,q ‖ξ‖Lq .(5.31)

Furthermore, the operator Cp,h is analytic as a mapping from Lq to W s,q and thus is
represented by its Taylor series expansion. If d = 2, η ∈ W s+2,q, and s > max( 2

q , 3),
then the smoothing integral operator Cp,h is bounded from Lq to W s,q and

‖Cp,h(η) ξ‖W s,q < C ‖η‖p
W s+2,q ‖ξ‖Lq .(5.32)

Furthermore, the operator Cp,h is analytic as a mapping from Lq to W s,q and thus is
represented by its Taylor series expansion.
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[2] H. Beckert and E. Zeidler, Beiträge zur Theorie und Praxis freier Randwertaufgaben,
Akademie-Verlag, Berlin, 1971.
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