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ABSTRACT. In this paper we study the asymptotic behaviour of phase-field functionals of Am-
brosio and Tortorelli type allowing for small-scale oscillations both in the volume and in the
diffuse surface term. The functionals under examination can be interpreted as an instance of a
static gradient damage model for heterogeneous materials. Depending on the mutual vanishing
rate of the approximation and of the oscillation parameters, the effective behaviour of the model
is fully characterised by means of I'-convergence.
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1. INTRODUCTION

Damage models for elastic materials describe the degradation of the elastic properties of a body
as a consequence of some applied loads [30, B1]. The total energy of an elastic material undergoing
damage then depends on two variables: the deformation u: A — R™ (A C R™ open and bounded
representing the reference configuration of the material) and an internal variable v : A — [0,1]
measuring at each point the damage state of the material (the value v = 1 corresponding to
the original sound state and the value v = 0 corresponding to the totally damaged state). In
a periodically heterogeneous setting and at fixed time, this energy can be described in terms of
phase-field functionals of the form

ﬁa(u,v,A):A(v2+na)f<5£€,Vu) dx+§A(1—v)2dx+sAh(%,VU) dz, (1.1)

where € > 0 is a small parameter, 0 < 1. < £, and d. > 0 is infinitesimal, as ¢ — 0. The integrands
f and h are (0, 1)"-periodic in the first variable and satisfy growth and coercivity conditions of
order 2 in the second variable (see Section [2 for the full list of assumptions). Correspondingly, .7,
is defined for (u,v) € WhH2(A;R™) x WH2(A; [0, 1]).

The three terms in (LI can be interpreted as follows. The first term accounts for the stored
elastic energy and reflects the worsening of the elastic properties of the material due to the damage
process. Namely, in the regions where the damage occurs, that is, where v ~ 0, the deformation
gradient Vu becomes very large in norm and hence u singular. The second term represents the
energy dissipated in the damage process, hence it is maximal when the material is totally damaged.
Together with the third term, which penalises the spatial variations of v, it forces the damage to
localise for small € in diffuse regions of size proportional to €, around the set where |Vu| blows
up. Then, asymptotically, the damage-localisation gives rise to sharp cracks and the functionals
in (I.I) are expected to behave, in the limit, as a fracture model.

In a homogeneous setting, choosing f(x, Vu) = |Vu|?, and h(z, Vv) = |Vv|?, the functionals
Z. reduce to the classical Ambrosio-Tortorelli model which is indeed known to I'-converge to the
prototypical brittle fracture model given by the Mumford-Shah functional [3} 4]. If now instead
Ne ~ &, then the static damage model described by .%. can be shown to I'-converge to a fracture

model of cohesive type [23] (see also [25] 26]).
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Moreover, in a heterogeneous scale-free setting [24], that is, when functionals of the form

/szf(:E,Vu)dx—Fé/A(l—v)de—!—a/ h(z,Vv)dz (1.2)

A
are considered, the corresponding I'-limit is given by the nonhomogeneous, anisotropic brittle

energy a la Griffith
/ f(z,Vu) da:—|—2/ Vh(z,v,) dH
A SuNA

where now u belongs to GSBV?(A;R™); i.e., is a generalised special function of bounded vari-
ation [2, 22]. In this functional framework Vu denotes the approximate differential of w, S, its
discontinuity set, and v, the normal to 5.

In the recent work [7] the authors analysed the limit behaviour of a general class of heteroge-
neous, scale-dependent phase-field functionals of the form

1
/ v? fo(x, Vu) de + —/ ge(x,v,eVv) da (1.3)
A €Ja
where f. and g. belong to suitable classes of integrands including, in particular, the choices
folw,Vu) = f(5.Vu), o0, V) = (1= v)? +h(5, Vo),
g g
with f and h as in ([I]). The main result in [7] establishes that the functionals in (I3)) essentially

behave like (IL2). That is, the (possibly sequence-dependent) I'-limit of (I3) is a free-discontinuity
functional of the form

/ foolz, Vu)da + / Joo (T, ) dH™ L,
A SuNA

where fo and g, can be characterised in terms of limits of suitable scaled minimisation problems.
Furthermore, the minimisation problem providing f~, only involves f. while the formula providing
Joo only involves the minimisation of g. (over pairs (u,v) along which the first term in (3]
vanishes). In this respect, the I'-convergence result in [7] can be seen as the phase-field analogue of
the decoupling result for free-discontinuity functionals proven in [I6]. In particular, we notice that
in the regular elliptic setting the limit decoupling immediately implies that the T-limit of (3]
does not depend on the jump opening of v and hence is a brittle energy.

Building upon the limit decoupling obtained in [7] it can be proven (cf. Theorem and
Proposition [4.35)) that the functionals %, I'-converge to a free-discontinuity functional of the form

/ Fuom (V) da + / o () AHY, (1.4)
A SuNA

where fLom is given by the classical formula of periodic homogenisation [10] 29]; i.e.,

r——+oo "

from(€) = lim iinf{ / f(@, V) de: u € WH2(Q,(0);R™) ,u = ug near a@(@)},
Q-(0)

while the homogeneous surface energy density gﬁom will depend on the parameter

¢ = lim (5£ € [0, 4+o0],

e—0 0z

or, in other words, on the mutual vanishing rate of the approximation and the oscillation parame-
ters. Then, the main contribution of the present paper consists in the characterisation of gﬁom in
the three limit regimes: £ =0, £ € (0,400), and £ = +oo (¢f. Theorem [31] Propositions (1] [6:1]
and [[2).

We notice that in the one-dimensional setting; i.e., for n = m = 1, the computation of the
I-limit of the damage model ([ILI)) can be carried out directly, by hands, without resorting to the
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general convergence result in [7], as shown in [6]. On the other hand, we observe that the analysis to
determine gf_ shares some similarities with the homogenisation of phase-transition functionals of
Modica-Mortola type as in [5]. We also mention here the work [28] where the stochastic analogue of
[5] is considered, though only for 6. = €. Moreover, in the papers [14] 18, 19, 27] further variants of
phase-transition functionals are considered where a transition-scale and an oscillation-scale appear
at the same time and interact in the I'-limit.

We now give a brief heuristic account of the I'-convergence result, Theorem [BI] in the three
regimes £ = 0, £ € (0,+00), and £ = +o00. As already observed, thanks to the general analysis
developed in [7], it is not difficult to show that the functionals %, behave like

/A(v2—|—775)fhom(Vu)dx—|—§/(1—0)2 dx+5/Ah(5%,Vv) da. (1.5)

A
Then, if ¢ = 0, which corresponds to the case ¢ < ., we can regard d. and the variable 2/, as
fixed and let first € — 0. In this way, arguing as in the case of ([.2]) we would get the J.-dependent
free-discontinuity functionals

/Afhom(Vu) dw+2/smA1/h(%,uu> dH (1.6)

Therefore, appealing to [13], letting . — 0 yields the homogeneous free-discontinuity function
(C4) with surface energy density g given by

inf{/ Vh(z,v,)dH L
SuNQy(0)

1
Jhom(V) =2 lim

r—+oo pn—1

w e BV(QY(0):{0,e1}) ,u = u” mear a@:m)} ,

where ©” denotes the jump function defined as

{61 if z-v>0,

Y@ =30 i eev<o.

We notice that in this regime the passage from %, (or, equivalently, from (IH)) to the functionals
(CH) can be made rigorous by combining the Modica-Mortola trick with a classical argument of
Ambrosio based on the co-area formula. These two ingredients allow us to estimate from below the
surface term in ([5) with an e-independent heterogeneous and anisotropic perimeter functional
and then to conclude (see the proof of Proposition [B.1]).

If £ € (0,400), which corresponds to the case ¢ ~ 4., approximation and homogenisation
procedure cannot be decoupled and gﬁom is given by an asymptotic cell-formula in which the whole
Modica-Mortola term in ([[Il) appears. More precisely, in this regime gﬁom is given by

in —v)? z, Vv x:
f{/wo)((l )2+ h(tz, Vo)) d

ve WH(Q(0),0 < v < 1: 3ue WH(Q(0); R™) with

¢ BT
ghom(y) - TBI_EOO pn—1

vVu =0 a.e. in Q7 (0) and (u,v) = (a”,9") near 0Qy (0) » ,

(1.7)

where 4" is a suitable regularisation of «” while " is equal to 1 on most of the boundary of the
cube Q¥(0) and equal to 0 in a neighbourhood of the hyperplane = - v = 0, and chosen in a way
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such that *Va¥ = 0 a.e. in Q¥(0) (see Section 2] for the definition of (@”,%") and cf. [1l
Theorem 3.5]). We notice that in view of the growth conditions satisfied by f (see [(f1)), the first
term in %, vanishes on those pairs (u,v) which are admissible in (7).

Eventually, if £ = +o00, which corresponds to the case £ > ., heuristically, we can first let
dc — 0 thus getting the spatially homogeneous functionals

2 1 2
/A(v —|—775)fhom(Vu)dx—|—g/A(1—v) dI—I—E/Ahhom(Vv)dx, (1.8)

where
hhom (w) = inf{/ h(z, Vv + w)dz: v e W, 2((0, 1)")} .
CRVL

Hence, letting ¢ — 0 and invoking [24] give

/ Fuom (V) da 42 / Sy
A Su.NA

in (L4, so that in this case

Jhom (V) = 2¢/ hhom (V).
We notice that in this regime the most delicate step in the proof of the I'-converge result is to show
that %, actually behaves like (L8] or, in other words, that the passage to the limit as . — 0 can

be rigorously justified. To do so we show that we can replace the v-variables of a sequence (u., v¢)
with equi-bounded energy with a suitably averaged sequence (v.) such that

1/(1_v5)2dx+a/ h(i,vvs) da > 1/(1_55)2dx+a/ hhom(V3.) dz + o(1).  (1.9)
€Ja A NOe A A

3

However, in order to ensure that after this replacement the corresponding volume term

/A@? + na)f(;—s, Vua) da, (1.10)

or, equivalently,

/A (02 + 1) from (Vue) dz,

remains uniformly bounded, we need some additional information on the blow-up rate of |Vu,]
which shall be related to the scale of oscillations d. in the following way

1
/ |Vue|? de ~ —. (1.11)
A 55

The latter is then enforced by requiring that in the regime € > d. the infinitesimal parameter 7).
appearing in (L)) is exactly of order d. so that, thanks to the growth conditions satisfied by f,
the assumption in ([LTT)) is automatically satisfied by the u-variables of any sequence (u.,v.) with
equi-bounded energy.

To conclude we would like to briefly comment on the additional assumption (II1)) which might
be a drawback of our specific method of proof, inspired by [5] (see the proof of Proposition [T.2]).
In fact, on the one hand the definition of the auxiliary sequence (v.) is somehow dictated by the
key estimate (L9) which, in its turn, is compatible with an analogous estimate for (ILI0) only if
also this term can be put in some relation with the oscillation parameter d.. On the other hand,
from a modelling point of view, an assumption on the convergence rate to zero of 7. (so to enforce
(CII)) does not appear to be too restrictive. We finally observe that also in the homogenisation
of the Modica-Mortola functionals [5] the regime ¢ = +o0 is the most delicate one and requires an
additional assumption on the vanishing rate of §. as € — 0.
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1.1. Outline of the paper. In Section [Z] we set some notation, define the phase-field functionals
Z., and recall some preliminaries. Section[3lis devoted to the statement of the main I'-convergence
result, Theorem Bl and to the proof of a convergence result for some associated minimisation
problems, Corollary[3.4l Then the proof of Theorem [3.1lis carried over in a number of intermediate
steps throughout sections[@-[7l Namely, in Sectiond, Theorem 2] we prove that the functionals .%,
I-converge to a spatially homogeneous free-discontinuity functional and in Proposition[Z5 we show
that its volume energy density coincides with fhom. In Section [f] we consider the regime ¢ = 0 (or
equivalently £ < ¢.) and determine the homogenised surface energy density gg om (see Proposition
B.I). Then, Section [A is devoted to the characterisation of gf_  in the regime ¢ € (0,+00) (or
equivalently e ~ §.) (see Proposition [6.1]). Eventually, Section [1 deals with the regime ¢ = +o0o
(or equivalently € > ), where in this case to determine g;° =~ we make the additional technical
assumption 7. ~ 0. ~ &%, for some a > 1 (see Proposition [T2)).

2. SETTING OF THE PROBLEM AND PRELIMINARY RESULTS

In this section we introduce some useful notation, define the functionals under examination, and
recall some preliminaries.

2.1. Notation. We start collecting the notation we are going to employ throughout.

(a) m,n > 1 are fixed positive integers; we set RJ* := R™ \ {0};

() S"Li={v=(v1,...,vn) ER": V2 + .- + 12 =1} and g’i—l ={vesS" ! ) >0},
where i(v) := max{i € {1,...,n}: v; #0};

(c) L£™ and and H"~! denote, respectively, the Lebesgue measure and the (n — 1)-dimensional
Hausdorff measure on R"”;

(d) A denotes the collection of all open and bounded subsets of R™ with Lipschitz boundary.
If A,B e Aby A CC B we mean that A is relatively compact in B;

(e) @ denotes the open unit cube in R™ with sides parallel to the coordinate axis, centred at
the origin; for x € R™ and r > 0 we set Q,.(x) := rQ 4+ z. If z = 0 we simply write Q,.
Moreover, Q' denotes the open unit cube in R"~! with sides parallel to the coordinate
axis, centred at the origin, for every r > 0 we set Q.. :=rQ’;

(f) for every v € S"~! let R, denote an orthogonal (n x n)-matrix such that R e, = v; we
also assume that R_,Q = R,Q for every v € S"" !}, R, € Q"*" if v € S* 1 NQ", and that
the restrictions of the map v — R, to g’ihl are continuous. For an explicit example of a
map v — R, satisfying all these properties we refer the reader, e.g., to [16, Example A.1];

(g) for x € R™, r > 0, and v € S"~!, we define Q%(z) := R,Q.(0) + z. If z = 0 we simply
write Q¥ and we set Q¥ := QY;

(h) for & € R™*™ we let ug be the linear function whose gradient is equal to §; i.e., ug(z) = &z,
for every = € R™;

(i) for ¢ € RY*, and v € S"~! we denote with u¢ the piecewise constant function taking values
0, ¢ and jumping across the hyperplane IT” := {z € R": 2 - v = 0} i.e.,

Y (2) ¢ if z-v>0,
U \T) =
¢ 0 if z-v<0,

when ¢ = e; we simply write u” in place of uy, ;
(j) let u € CY(R), v € C'(R), with 0 < v < 1, be one-dimensional functions satisfying the
following two properties:
i. v/ =0 in R;

i (u(t), v(1) = (X(o,400) () 1) for ] > 13
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(k) for v € S"7! we set
w’(z) =u(z-v)e, (x):=v(z- v);

(1) for v € S"1, ¢ € RY* and £ > 0 we set
- (1 = (1
uza(x) = u(gzzr V)¢, (x):= V(EZE V).
When ¢ = e; we simply write 4 in place of @y, .. We notice that in particular, uy = u”,
vy = 0"

We now introduce the functional spaces relevant for our problem. Given a L™-measurable set
A C R™ we let LY(A;R™) denote the space of all Lebesgue measurable functions mapping from
A to R™. On L°(A;R™) we consider the topology induced by the convergence in measure on
bounded subsets of A. We recall that this topology is both metrisable and separable.

For A C R™ open we consider the functional space SBV (4; R™) (resp. GSBV (A;R™)) of special
functions of bounded variation (resp. of generalised special functions of bounded variation) on A.
We refer the reader to the monograph [2] for the properties of those functional spaces; here we only
recall that for any v € SBV(A;R™) the distributional derivative Du is a bounded radon measure
and can be represented as

Du(B) :/ Vudx—i—/ [u] @ v, dH" 1, (2.1)
B BNS,

for every B € B™, where B™ is the Borel o- algebra of R™. In (ZI) Vu denotes the approximate
gradient of u (which makes sense also for v € GSBV), S, the set of approximate discontinuity
points of u, [u] := ut —u~ where u* are the one-sided approximate limit points of u at S,, and
v, is the measure theoretic normal to .S,.

For p > 1 we also consider the functional spaces

SBVP(A;R™) := {u € SBV(A;R™): Vu € LP(A;R™") and H""*(S,) < +o0o},
and
GSBVP(A;R™) := {u € GSBV(A;R™): Vu € LP(A;R™*") and H"(S,) < 400} .

We recall that GSBVP(A;R™) is a vector space; moreover, if u € GSBVP(A; R™) then we have
that ¢(u) € SBVP(A;R™) N L>®(A4;R™), for every ¢ € C1(R™;R™) with supp(Vep) CC R™ (see
[22]).

Eventually, we say that a function h : R — R™ is r-periodic for some r > 0, if h(z+re;) = h(zx)
for every i € {1,...,n}.

Throughout the paper C denotes a strictly positive constant which may vary from line to line
and within the same expression.
2.2. Setting of the problem. In this subsection we introduce the functionals we are going to
analyse in this paper. To this end, let f : R™ x R™*"™ — [0, 4+00) and h : R™ x R® — [0, +00) be
Borel measurable functions satisfying, respectively, the following hypotheses:

(f1) (growth conditions) there exist two constants 0 < ¢; < ¢a < +o00 such that for every
x € R™ and every £ € R™*"

c1lé]* < f(x,€) < eal€f;
(f2) (continuity in &) there exists 0 < L1 < 400 such that for every x € R™ we have
|f(x,&1) — fz, &) < Li(1+ &] +1&]) |6 — &,

for every &1, & € R™*™;
(f3) (periodicity in z) for all £ € R™*", f(-, &) is @-periodic;
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(hl) (growth conditions) there exist two constants 0 < ¢3 < ¢4 < 400 such that for every
x € R”, and every w € R"
cslw]? < h(z,w) < eq|w?;
(h2) (continuity in w) there exists 0 < Lg < +00 such that for every € R"™ we have
|h(z,w1) — h(z, wa)| < La(1+ |wi] + |wz])|wy — wol

for every wy, wo € R™;
(h3) (homogeneity in w) for all x € R™, h(x,-) is homogeneous of degree two; i.e.,

h(z, sw) = s*h(x,w)

for all w € R™, s € R;
(h4) (Lipschitz-continuity in x) there exists 0 < Ls < 400 such that for every w € R™ we have

|h(z1,w) — h(x2,w)| < L3|x; — 22
for every z1, z2 € R™;
(hb) (periodicity in x) for all w € R™, h(-,w) is Q-periodic.
In all that follows € > 0 varies in a family of strictly positive parameters converging to zero and

0 > 0 is a strictly increasing function of € with d. \, 0 as € \, 0. Set

(= lim 53 € [0, 400]. (2.2)

e—0 0¢

Moreover, throughout the paper we let 0 < 7. < €.

For given Borel integrands f : R™ x R™*™ — [0,400) and h : R™ x R” — [0, 400) as above, we
introduce the functionals .%.: LO(R"; R™) x LO(R") x A — [0, +0oc] defined by

A(U2+ﬁa)f(é,Vu) dx —i—/A ((1—51))2 —l—sh(;—s,Vv)) dx

if (u,v) € WH2(A4;R™) x WH2(A), 0<v <1,

Felu,v, A) =

+o0 otherwise in LO(R"; R™) x LO(R").
(2.3)

It is convenient to introduce a notation for the regularised surface term in %, #2 : LO(R")x A —
[0, +00]; we set

2
/<(1 sv) —l—ah(;,Vz})) dr ifveWh2(4), 0<v<1,
Fi(v,A) = {4 :

+o0 otherwise in LO(R").

Remark 2.1. The following observations are in order.

(1) In view of hypotheses|(f1)H(/2)land|[(A1)H(R3)} for n. = 0 the functionals .%, in (23) belong
to the class of functionals introduced and analysed in [7]. Moreover, a one-dimensional
variant of %, has been analysed by the authors in [6].

(2) The assumptions on f and h ensure, in particular, that for every A € A the functionals
Z.(-,+, A) are continuous in the strong W12(A4;R™) x W12(A) topology.
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(3) Assumptions |(f1)| and imply that for every A € A and every (u,v) € WH2(A;R™) x
W12(A), 0 < v <1 there holds

min{1, ¢y, c3} AT (u,v) < Fo(u,v, A) < max{l,ca,cs } AT (u,v), (2.4)

where

AT (u,v) := /A(U2 +1.)|Vul® dz —I—/A ((1 _EU)2 + £|Vv|2) dz (2.5)

is the Ambrosio-Tortorelli functional [4].

2.3. Preliminary remarks on the Ambrosio-Tortorelli functional. We close this first sec-
tion by recalling some results on the convergence of suitable variants of the Ambrosio-Tortorelli
functional above together with some properties of the so-called optimal profile problem.

Remark 2.2. By virtue of [4] we know that the functionals AT, defined in (Z3]), I'-converge in
LO(R™;R™) x L%(R™) to the Mumford-Shah functional

MS(u,1) = / |Vu|>dz + 2H" (S, NA) u € GSBV?(A;R™).
A

Moreover, [24] Theorem 3.1] states that for any p > 1, any a,b > 0, and any norm ¢ : R™ — [0, +00)
the anisotropic Ambrosio-Tortorelli functionals

& (u,v) = a/A(U” +ne)|VulP dx + b/A (@ + 5902(Vv)> dz, (2.6)

with (u,v) € WHP(A;R™) x WH2(A) and 0 < v < 1, T-converge in LY(R™;R™) x L°(R™) to the
anisotropic free-discontinuity functional

E(u,1) = a/ |Vu|P dz + 2b/ o(vy)dH"™ ' uwe GSBVP(AR™). (2.7)
A SuNA

Although [24) Theorem 3.1] is stated in the case where in &; the functions Vu and v have the same
summability exponent p > 1, an inspection of the proof reveals that different exponents can be
also considered (c¢f. also [I7, Theorem 5.1]).

Remark 2.3. Let A > 0; arguing as in, e.g., [9, Chapter 6], it is immediate to check that

+oo
V= min{/ (Q1=v)*+A(@)*)dz:ve W20, 400), 0 <v <1, v(0) =0, v(+o0) = 1}
0
(2.8)

T
= :iprifomin{/o (Q=v)>+A()*)dz:ve WH2(0,T), 0 <v <1, v(0) =0, v(T) = }7
(2.9)

where v(400) := lim;_, 400 v(t). Indeed, a solution to the minimisation problem in (28] is given
by the smooth function vy(t) = 1 — exp(—t/v/A). Then, for every T > 0 a competitor for the
minimisation problem in (29) can be obtained by linearly interpolating on (T' — 1,7T) between
vA(T — 1) and 1, thus approaching the value v/A, as T — +oco. In particular, the minimisation
in (29) can be carried over all Lipschitz continuous functions v satisfying the same boundary
conditions.
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3. STATEMENT OF THE MAIN RESULT

In this section we state the main result of this paper, Theorem B.Il The latter establishes the
I'-convergence of .%. as € — 0 in the three regimes ¢ < d., € ~ 0., and € > 6.. As a corollary of
Theorem 1] we then prove the convergence of some minimisation problems associated to .%..

Theorem 3.1 (I-convergence). Let .%#. and £ be as in 23) and [22)), respectively. If £ = 400,
assume moreover that n. ~ d. ~ €%, for some o > 1. Then for every A € A the functionals
Fe(y+, A) T-converge in L°(R™; R™) x LY(R™) to the homogeneous functional F_ (-,-, A), where
Ft o LO(R™;R™) x LO(R™) x A — [0, +0c] is given by

hom *
/ fhom(Vu) dx + / Ghom(Vu) dH™™Y ifu € GSBV?(A;R™),
A SunA
‘gzﬁom(uavaA) = v=1ae in A, (31)
400 otherwise ,
with from: R™*™ — [0, +00) and gf,,,: S"~1 — [0, +0c) Borel functions.
Moreover, for every & € R™*™ there holds
1
from(§) = Egrn e inf{ f(z,Vu)dz: w € WH(Q,;R™) ,u = ug near 8QT}. (3.2)
rrree Qr
For every v € S"~! we have:
(i) if £ =0, then
1
g (v):=2 lim T inf{/ Vh(z,v,)dH
r——+oo rn— 5.NQY
(3.3)
u € BV(Qr;{0,e1}) ,u = u” near 8@:} ;
(7) if £ € (0,400), then
¢ — T ~ 2 .
hom (V) == Tgrfoo p— 1nf{/Qu (1 = v)* + h(lx,Vv)) dz:
veWH(QY),0< v < 1: Jue WH(QY;R™) with (3.4)
vVu =0 a.e. in QY and (u,v) = (a”,7") near 8@?} ;
(i4i) if £ = 400, then
Jhom (V) 1= 2v/hnom (V) (3.5)
where hpom : R™ — [0, 400) is given by
hhom (w) := inf{/ h(z,Vv+w)dz: v € W012(Q)} ) (3.6)
Q

Remark 3.2 (Properties of fiom). The homogenised bulk integrand fhom in (3:2) coincides with
the bulk integrand obtained in [I0, 29 I3]. In particular, the limit in (32) exists and fhom is
quasiconvex. Moreover, fhom can be rewritten as

fnom(§) = inf in inf{ o f(@,Vu+§)de: ue WH(Qn;R™) ,u = 0 near 8QT} . (3.7)
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Remark 3.3 (Properties of gf_ ). Some observations on the surface integrand g{_ . are in order.

(1) In the regime ¢ = 0 the surface integrand g{  defined in (33) coincides with the one
obtained in the homogenisation of functionals defined on finite partitions [I]. More pre-
cisely, [I, Proposition 4.4] ensures that g{ (v) is well defined for every v € S"~!. In
addition, [Il Theorem 4.2 and Example 2.8] ensure that the 1-homogeneous extension of
g to R™ is convex, and therefore continuous. Moreover, in view of [I, Theorem 3.1 and
Example 2.8] the value of g{ (v) remains unchanged if the surface integrand v/h in (B3]
is replaced by its convex envelope with respect to the second variable.

(2) For ¢ = 1, the existence of the limit defining g{__(v) as well as the continuity of gf .
restricted to g’j‘;l is established in [7, Proposition 8.7] in a more general setting. The
arguments as above can be used to show that the same continuity properties hold true for
any ¢ € (0, 4+00).

(3) In the regime ¢ = 400 the function gp°  is easily seen to be continuous. Indeed it is
known that the function hyey, satisfies the growth condition and the local Lipschitz
condition albeit with a different constant L} (c¢f. [29, Lemma 2.1]). Moreover, hpom
is convex.

The proof of Theorem BTl will be divided into a number of intermediate steps and will be carried
out in Sections @HT7l Specifically, in Section F] we show that there exists a subsequence (gf) such
that for every A € A the corresponding functionals %, (-, -, A) I'-converge to a free-discontinuity
functional which is finite on GSBV?(A;R™) x {1} and of the form

/fe(vu)daH—/ g"([u],vy) dH" L.
A SunA

At this stage the integrands f* and g* may a priori depend on the subsequence (£). The procedure
followed to prove such a compactness and integral representation result is by now classical, moreover
the corresponding result for 7. = 0 can be found in [7, Theorem 5.2]. For these reasons we will
only sketch this proof here (see Theorem [4.2]). Then, in view of [7, Theorem 5.2 and Theorem
3.1] we show that the volume integrand f* coincides with fuom given by (B.2), and therefore it
is independent of ¢ and (g3,). Eventually, in Sections [5 B and [7 we characterise g* in the three
regimes ¢ = 0, £ € (0,+00), and ¢ = +0o0, respectively. Namely, we show that ¢g* = gf_ , where
we notice that the latter does not depend on the subsequence (gi). Consequently, Theorem [3.1]
follows by the Urysohn property of I'-convergence [20, Proposition 8.3].

To conclude, we also observe that hypothesis|(~4)| will be used only in the proof of Proposition
Bl In particular, for ¢ € (0,+00] Theorem Bl holds true without assuming any continuity of h
in x.

On account of Theorem [B1] we can prove the following convergence result for a class of minimi-
sation problems associated to .%..

Corollary 3.4. Assume the hypotheses of Theorem [31l are satisfied and assume in addition that
for a.e. x € R™ the functions f(x,-) and h(zx,-) are quasiconver and convex, respectively. Let
AeA g>1, and g € LI(A;R™). Then

e for any e > 0 there exists a solution (ic,v:) € WH2(A;R™) x WH2(A) to the minimisation
problem

M, := min {ﬁa(u,v,A) + /A lu —g|?dx: (u,v) € L°(R™;R™) x LO(R”)} ; (3.8)

o 0. — 1in L?(A), ase — 0;
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e up to subsequences, (t.) converges in LY(A;R™) to a solution of
M* := min {ffom(u, 1,A)+ / lu —g|?dz: u € GSBV?(A;R™)N Lq(A;Rm)} ; (3.9)
A

o M. = M ase —0.

Proof. For fixed € > 0 the existence of a minimizing pair (., v:) € WH2(A;R™) x WH2(A) for
B3) follows by a straightforward application of the direct method of the calculus of variations.
The convergence v. — 1 in L2(A) readily follows by the definition of .#.. Moreover, by
[24, Lemma 4.1] up to subsequences (not relabelled) 4. — u‘ in L°(A;R™), for some u* €
GSBV?(A;R™). Eventually arguing as in [23, Theorem 7.1] we deduce that M. — M*, . — u’
in LY(A;R™), and that @‘ is a solution to (3.9). O

4. AN ABSTRACT I'-CONVERGENCE RESULT

In this section we prove an abstract I'-convergence result for the functionals .%#.. We notice
that if in ([233]) we choose 7. = 0 then the functionals %, are a special instance of those considered
in [7] for which a I'-convergence and integral representation result was established (cf. [7], Theorem
5.2]). Since in this case we would like to allow for the presence of the infinitesimal sequence 7.,
with 0 < 7. < €, we need to show that the analogue of |7, Theorem 5.2] holds true in this case as
well. The proof of this result will be very close to that of [7, Theorem 5.2], for this reason we will
only sketch it here, referring to [7] for the details.

Remark 4.1. A crucial step in the proof of the I'-convergence result below is to show that the
functionals %, in (23) satisfy a so-called fundamental estimate, uniformly in . We observe that
such an estimate easily follows arguing as in [7, Proposition 5.1]. Indeed, thanks to for
every A € A and every u € WH2(A;R™) the term 7. fA f(%,Vu) dz can be bounded (up to a
multiplicative constant) from above and from below by the convex term 7. [, [Vu|?dz to which
the construction in [7, Proposition 5.1] directly applies.

Theorem 4.2. Let %, be as in (23); then there exists a subsequence (gx) such that for ev-
ery A € A the functionals F.,(-,-, A) T-converge in L°(R";R™) x LO(R"™) to F(-,-, A), where
FL LOR™;R™) x LY(R™) x A — [0, +00] is given by

/ (V) dz + / g ([u], ) AR if u € GSBV2(A;R™),
ot A SuNA
T (u,0,A) = v=1a.e in A, (4.1)
400 otherwise,
for some Borel functions f: R™*™ — [0, +00) and g°: R™ x "1 — [0, +00).

Proof. Since 0 < 7. < ¢, thanks to (Z4]) and Remark we deduce the existence of a constant
C > 0 such that

s ([ 19t as 180 0) < (29 (w1,4)
< (FYH'(u,1,A) < c(/ |Vu|2dx+”H,"*1(SuﬂA)),
A

for every A € A and u € GSBV2(A;R™), where (Z9)(-,-, A) and (F¢)"(-,-, A) denote the I-
liminf and T-limsup of %, (-, -, A), respectively. Moreover thanks to Remark [£.1] the functionals %,
satisfy the fundamental estimate [7, Proposition 5.1]. Thus, arguing as in [7, Theorem 5.2] we can
apply the localisation method of I'-convergence (see e.g., [20, Chapters 14-18]) together with the
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integral-representation result [8 Theorem 1] to deduce the existence of a subsequence (%, ) and
a functional #* : LO(R";R™) x LO(R") x A — [0, +00o] with the following properties: For every
A € A the functionals .Z, (-, -, A) T-converge in L(R";R™) x LO(R") to F*(-,-, A) and for every
u € GSBV?(A;R™) there holds

F(u,1,A) = / fi(x, Vu) dz + / g (x, [u], vy) dH" T,
A SunA
for some Borel functions f¢ : R® x R™*" — [0,4+00), g* : R" x R x R® — [0, +0c), while
F(-,-, A) = +oo if either u ¢ GSBV?(A;R™) or v # 1. Eventually, thanks to and a
well-known argument (see, e.g., [[3, Lemma 3.7 (ii)]) shows that .#* is invariant under translation
in . This in turn implies that f¢ and ¢* are independent of z, hence the claim follows. O

Remark 4.3. By the general properties of I'-convergence, for every A € A the functional .#¢(-,1, A)
in (@) is lower semicontinuous with respect to the convergence in measure. In particular, the func-
tional u > [g 4 g°([u], vy) dH™ 1 is lower semicontinuous on finite partitions. As a consequence
(see [1]), we deduce that for every v € S"~! the function g‘(-,v) is subadditive, while for every
¢ € R the 1-homogeneous extension of g*(¢,-) is convex. In particular, g°(¢, ) is continuous.

By virtue of Theorem [£2] to complete the proof of Theorem [B.I] we need to characterise the
integrands f* and g¢ in (@), for every £ € [0, +00]. To this end, we preliminarily compare them
to the bulk and surface integrands obtained by applying [, Theorem 3.1] to %#. when n. = 0. We
start recalling some of the notation employed in [7].

Fore >0, p> 2, £ € R™*" and v € S"~! we define the two following minimisation problems

mg(ug, Q,) := inf { / f(éi, Vu) dr: u e W1’2(Qp;Rm) , U = ug near 8Qp} ,
Qp €
and

(@ +gh(5£€,w)> da:ve ,@f(u;,QZ)} ,

v
P

mi(ﬂ?,@%) = inf { /
Q
with

o (W, Q) :={ve Wl’z(QZ), 0<v<1:3ueWh¥( b R™) with vVu =0 a.e. in Q)
and (u,v) = (a¥,7!) near 0Q%}
(4.2)
where (@Y, 0Y) is as in
Remark 4.4. If n. = 0, by invoking [7, Theorem 3.1] we can deduce the existence of a sequence
(ex) such that the corresponding functionals %, (-, -, A) I-converge in L°(R™;R™) x L°(R") to
Ff(u,1,A) = / FA(Vu) dz —I—/ () dH™™ ' w e GSBV?(A;R™),
A SunA

where the integrands fe and §¢ are given by

A 1 1
¢ T . b _; . b
1 = msup S, (ve, Q) =Ty s Gt md 0, Qp) - (49
and
N . . s /—v v . 1 PR s (—U v
i) = hr;Ls(t)lp ! hiri)sip m;, (uf,,Q)) = hI;ljélp ! hkrgggf m;, (a7, ,Q}). (4.4)

For later use we observe that arguing as in [7l, Proposition 2.6] one can show that §*(v) in (@4]) can
be equivalently written by replacing mZ, (uf, , Q) with mZ, (uy, ,Qp), with ap ~ . Moreover,
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an inspection of the proof of [T, Proposition 7.4] reveals that the u-variable in (£2]) can be taken
such that ||u||p~ <1 and

u(z) € {0,e1} if w(z) #0, (4.5)
for a.e. z € Q.

In view of ([@4) we know that for every ¢ € [0,+o0o] the surface integrand §¢ is independent
of the jump opening [u]. We notice, however, that the methods employed in [7] to establish the
independence of [u] of the surface term cannot be directly transferred to the case . > 0 and
therefore to the integrand g* appearing in (EI)).

Upon assuming that (gx) is a subsequence along which both Theorem [£:2] and [7, Theorem 3.1]
hold true, we can readily deduce that

FA© 2 f(€) and g'(¢.v) 2 5(), (4.6)
for every £ € R™*" every ((,v) € RJ* x S"~! and every £ € [0, +o0].

In Proposition below we show that f¢ and ff coincide and that for every ¢ € [0,400] they
are actually equal to fhom as in ([B:2)). Furthermore, in Propositions (1] and we prove that g°
and §* coincide for every £ € [0, +00); therefore, in these regimes ¢¢ is independent of ¢. Moreover,
for £ = 0 there holds ¢° = §° = g0, with ¢{_ given by ([B3); while for £ € (0, 4oc) there holds
¢" =g" =g, with g/ asin B2).

Eventually, in Proposition [[.2] we deal with the case £ = 400 and prove that ¢g* coincides Ihom
as in (3.5). This ensures, in particular, that g* is independent of ¢ also when ¢ = +o0o. We notice,
however, that in this regime it is not clear whether g* and §¢ coincide.

4.1. Characterisation of the volume integrand. In this subsection we characterise the volume
integrand f* in (@I)). Namely, we prove the following result.

Proposition 4.5. Let fuom and f¢ be as in B2) and @3), respectively. Let moreover f¢ be the
volume integrand in [@I)). Then for every & € R™*™ and every £ € [0,400] there holds

F4E) = FH€) = from(©). (4.7)

Proof. To not to overburden notation the I'-converging subsequence provided by Theorem is
still denoted by (.%.).
We establish the two equalities in (7)) separately.

Step 1: fL(E) = fuom(€), for every & € R™*" and every £ € [0, +00].

Let e > 0, p > 2, and u € WH2(Q,; R™) be fixed and define u. € W?(Q,/s.;R™) by setting
ue(z) := éu(&ax), for every x € Q,/5.. Then clearly u = ug¢ near 9Q), if and only if u. = u¢ near
0Q,/s.. Moreover, setting r. := p/d. a change of variables gives

1 o 1
—n/ f(i,Vu) do = — [z, Vue)dr = — f(z,Vue)dx.
P Jq, de P JQ,s. re Ja,.

Passing to the infimum in u and appealing to Remark 3.2 we thus deduce that

lim iIIlg(’ng,Cgp) = fhom(g)v

e—=0 p"

where the limit above exists independently of p > 0 and of the I'-converging subsequence. Then
@3) yields the claim.

Step 2: f(€) = from(€), for every € € R™*™ and every £ € [0, 4+00].
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By combining (6] and Step 1 we immediately deduce that
fé(g) > fhom(g) ) (48)

for every £ € R™*™ and every £ € [0, +00].

The proof of the opposite inequality follows by constructing a recovery sequence similarly as in
the case of classical homogenisation in Sobolev spaces (see [29] Lemma 2.1(a)]). For the readers’
convenience we repeat this construction in our setting. Let o > 0 be fixed, thanks to (3.1) we can
find r € N* and v € W2(Q,; R™) with u = 0 near dQ, such that

1
T'_"/ f(.I,VU—Ff)dLE < fhom(§)+g- (49)
Qr
We then extend u r-periodically to R” and define (u.) C Wh*(R™; R™) as

ue () == ue(x) + 55u(5£8).

Clearly (u.) C VV]%)C2 (R™;R™); moreover, by definition of u. we have that u. — wug weakly in
WL2(R™ R™) and u. — ug in L2, (R™; R™), therefore u. — ue in LO(R”; R™). Hence Theorem A2

implies that

) = Z ue, 1,Q) < liminf Z.(u.,1,Q) = liminf/
e—0 e—0 Q

T

(1 +n)f (5 Tus)de. (410)

Set

f(;—s, Vua) = g(%) with g(y) := f(y,& + Vu(y)).

Since g is r-periodic, by the Riemann-Lebesgue Theorem we get that
. 1
o(5) = o [ at)dy weady in L'(Q),
55 rm Qr

so that in particular
x

. !
lim Qf(ég,Vus)dx—T—n/QTf(y,g—l—Vu)dy.

e—0

Thus, since Vu, is uniformly bounded in L*(Q; R™*"), using and combining [@9) and (ZI0)

we obtain

FAE) < from () + 0. (4.11)
Eventually, we conclude gathering ([A8) and (£.I1]), and by the arbitrariness of o > 0. O

5. OSCILLATIONS ON A LARGER SCALE THAN THE SINGULAR PERTURBATION

In this section we characterise §* and g* in the regime ¢ = 0; the latter corresponds to the case
where the scale of the oscillations . is much larger than the scale of the singular perturbation e.

Proposition 5.1. Assume that £ =0. Let g0, and §° be as in B3) and [@4), respectively. Let
g° be the surface integrand in @&I)). Then for every (¢,v) € RS x S*~1 there holds

9°(¢v) = 3°(v) = Ghom (V) -

Proof. Not to overburden notation we still denote by (%#.) the I'-converging subsequence given by
Theorem
We introduce the function ¥ : R™ x R™ — [0, +00) given by

U(z,w) := /h(z,w)
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and observe that by we have
Vel < U (e,w) < Velul, (5.1)

for every x,w € R™. Moreover, by |(h3)| ¥ is positively 1-homogeneous and symmetric in w. For
v € S" ! and r > 0 it is also convenient to introduce the following notation

mPe(u”, QY) := inf{/ U (z,v,) dH" 1 u € BV(QY;{0,e1}) ,u = u” near BQZ} , (5.2)
SuNQy.

where U** denotes the convex envelope of ¥ in the second variable. In view of Remark B3] (1)
g, can be rewritten as

0 _ : v v
ghom(y) - TBI_EOO yn—1 mpC(u 7Qr) . (53)
By (@0), it suffices to show that
3°(V) = giom (V) = (¢, ), (5-4)

for every (¢,v) € RJ* x S"~1. The proof of (5.4]) will be carried out in two separate steps.

Step 1: §°(v) > g0, (v), for every v € SP~1.
Let v € S" 1 ¢ >0, p > 2 and v € o (uZ,Q)) be arbitrary. Then there exists u €
Wh2(Qy; R™) such that

vWu=0ae. in@Q, and (u,v)=(a/,7) near 0Q; . (5.5)

Starting from the pair (u,v) we now construct suitable competitors for the minimisation problem
defining mP° in (52)). To this end, we define the increasing function ®: [0,1] — [0,1/2] as

¢ N2
(1) :—/O(l—z)dz_%—(l 2” .

Then, from the Young Inequality together with the homogeneity of ¥ we deduce

y;(v,Q;):/Q (@Hh(%,w))dxy/cg xy(a—i,a—u)vu) da

v v
P P

> 2/ P (i, (1- U)Vv) dz
Qy z

:2/ pr (f,vqm)) d . (5.6)
Qy z

For s € [0,1/2) we define the sets
B ={r e Q,: ®(v(z)) > s},

which have finite perimeter for £'-a.e. s € (0,1/2). In view of (5.6, by a generalised Coarea
Formula (see e.g. [2I, Lemma 2.4]) and the Mean Value Theorem, we find ¢ € (0,1/2) such that

1/2
X X
o s vy > s [0 — *% (7 R n—1
JE(U,QP)_Z/QZ\IJ (6€,V<I>(v))dx 2/0 </8E\IJ (5E,I/E)d7'[ )ds

2/ \P**(E,VEt) d%nil,
o* Et 55

where 0*E*® and vgs denote the reduced boundary of E° and the measure theoretic inner normal
to E?, respectively.

(5.7)
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A direct computation shows that v(z) > 1 — /1 =2t > 0 for x € E!. As a consequence,
from (@) in Remark 4] we obtain

u(z) € {0,e1} for a.e. z € E*. (5.8)
Since in addition E? has finite perimeter in Q) the two functions
u® = uxpe u' = uxpe +e1(1 — xgt)

belong to BV (Q%;{0,e1}). Moreover, up to an H"-negligible set, 0*E* is the disjoint union of
S0 and Sy,1. Indeed, from (5.8) we readily deduce that 9* E*\ S is the disjoint union J,o and Jy,1,
where J,0 and J,1 are the set of approximate jump points of u® and u!. Since u € W%( o R™),
we have H"~1(S,) = 0, while H"71(Sy0 \ Jyo) = H" 71 (Su1 \ Ju1) = 0 by the properties of BV-

functions. Hence, the claim follows. Since moreover v,o = *vg: = v,1 H" '-a.e. on 9*E?,
from (B.1) together with the symmetry of ¥ we deduce that
T2 (0,Q4) > / q,(i,,u) dpr! +/ \y(iyu) ap! (5.9)
S5NQY de 51NQY Oc

We extend u°, u! by u” to Qv (1+6.)p Without renaming them. In this way, thanks to EEH) we have

S N (QYr 450, \ Q) C ( Y0 Qs \ QY U (aQ;m{|x-u|gg})) for k=0,1. (5.10)

Finally, for ro := (1+6:)p/d- and k = 0,1 let u¥ € BV(Q¥_;{0,e1}) be given by uf(z) := u*(6.2).
Then u¥ = u” near 0Qy_ and Syr = —Suk Thus, by the change of variables y = x/J. we obtain

1 z L1 L1
e /s \J (5 ,I/uk> dH > — /s U**(z, v k)dH ——mP(u”, Q)

ke v r k ro
GNQU sy, € € -NQY. €

which together with (5.9) and (G.I0) gives

1 2
ST P 0.Q)) 2w, Q )_2\/—<(1+5) —1—|—2(n—1)%). (5.11)

Since v € «/(u,(Q}) was arbitrarily chosen, we can pass to the infimum on the left-hand side

of (&I1)) and let & — 0 to deduce that

TP (u”, Q)) = Ghiom (V)

where the last equality follows from (5.3)). By the very definition of §°(v) in ([#4]) we conclude the
proof of Step 1 by letting p — 0.

lim inf m?(a? > lim
1750 5( E7Q ) e—0 rn

Step 2: ¢°(¢,v) < g, .. (v), for every ((,v) € RY x S"~1.
Let (¢,v) € RY* x S"~'; by Theorem [£2] we have that

9°(Cv) = 7°(ug,1,Q") < liminf T (ue, v, Q)
E—r

for any sequence (ue,v.) converging to (uf,1) in L°(R™;R™) x L°(R™). Then to conclude it is
sufficient to construct a sequence (i, ) converging to (uf,1) in LO(R™;R™) x L°(R") and such
that

lim sup Z, (e, 0, Q") < gﬁom(”) . (5.12)

e—0

Moreover, since gp . and g°(¢, ) are continuous (c¢f. Remark 3.3 (I)) and Remark {3 respectively),
it suffices to consider v € S*~' N Q", then the general case follows by density.
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Let v € S ! N Q" and let R, € Q"*" be an orthogonal matrix as in so that R e,, = v.
Then, for n > 0 fixed we find r € N* with R, € Z"*" and u € BV (Q¥;{0,e1}) with v = v” on
0QY satisfying

2
) aH T < g0 (5.13)
T QuNS

By Reshetnyak’s continuity Theorem [2| Theorem 2.39], the continuity of ¥, and [2] Theorem 3.42]
we can assume without loss of generality that S, is of class C2. Moreover, since the approximation
of the set {u = e;} with smooth sets is a local procedure (cf. [2, Remark 3.43]) and v = v” in a
neighbourhood of 0QY, the boundary conditions satisfied by u are not affected by the smoothing
procedure. We then extend u to R™ (without renaming it) in a way so that it is r periodic in the
directions Rye;, i =1,...,n—1and u =u” in {x € R™: |z - v| > r/2}. In this way we have that

Sy C{zeR": |z -v| <r/2}. (5.14)

Since S, is of class C?, denoting by dg, (z) := dist(z, S,,) the distance from S, for a > 0 suitably
small there is a unique projection m,: {z: dg, (z) < a} — S, of class C%. We then set

P(2) = {Vu((wa(x)) if ds, (z) < a,

v otherwise.

By Remark 2.3 we can find T,, > 0 and v, € Wéf (R™), v, Lipschitz continuous, with v, (0) = 0,
vy(t) =1fort >T,, 0<wv, <1, and

—+oo
C, = / (L =vp)?+ (v})?) dt <1+7. (5.15)
0
Next we choose &, := /€., so that & < ¢, and consider the pair (4., ¥.) given by

(Ue(2), Ve (7)) := (ue(2/0c), ve(2/0c))

where '
(1 - dist(z, {u = el})(Sa) ¢ if dist(z, {u =e1}) < =
ue(x) = &
0 otherwise,
and
: 55
0 if dg, (z) < i
Ve () = 5. dg, (x) — Se £
5 u d . 5
Ze out O fd S
n <5 U(z,v(z)) if ds, (z) > 5.
for every x € R™. Clearly, u. € Wli)f (R™;R™). Moreover, by |(h1) and (5.1)
&

(ue (2),ve(7)) = (wi(x),1) i ds, () = AR \/_T (5.16)

As a consequence, since { < £ < 0§, for ¢ sufficiently small we have that that dg,(z) < «
whenever v.(z) # 1. In particular, both the mappings z — dg,(z) and  — 7(z) are Lipschitz
continuous in the region where v, # 1. Thus, in view of (5.1)), the regularity of ¥ and v, ensure that

U € WIECOO(RW), Moreover, thanks to (G.14) we have that dg, (%) > g—i + seddy it |z -v| >
for € sufficiently small. Thus, (B.16]) implies that

(e (@), () = (u¢(§), 1) = (wg(@),1) if |z v]>rde,
and thus (@, 7.) converges to (uf,1) in L°(R™; R™) x L°(R™).



18 A. BACH, T. ESPOSITO, R. MARZIANI, AND C. I. ZEPPIERI

Now it remains to estimate %, along the sequence (i, ¥c). To this end we start observing that
Vi, =0 a.e. in € R",

hence from we deduce that
js(ﬂsvaiaQy) S CQTIE/ |V’EL5|2diE+jES(1_)E7QU) (517)
Qu

In order to estimate the right-hand side of (BEI7) it is convenient to define the sets

A = {er”: ds, <53> < g—} :

v, & LA N
B, := {,TEQ s < dg, (55> < 55+55 C4Tn} .
By definition of u. we have
_ OTIE n
nE/V |V |[*dz < = LMA)=C

€

L(Ac)

3

(5.18)

Moreover, implies that h(;”—s, Vi.(z)) = 0,ifx € A. and F2 (0., Q" \(A-UB.)) = 0. Therefore,
we infer

FE(0:,Q") = % + Z5(v., B.) . (5.19)

We now show that £™(A.)/e vanishes as ¢ tends to zero. Since
A = 55{$ € Qlll/égz dSu (I) < g_a}
€

by (5.14) and the periodicity of u, if we cover {z € QY5 : dg, (z) < g—z} with ([1/(.r)] + 1)"~!
copies of {x € Q¥: dg,(z) < g_:} we get
n—1
£r(A) < &%c“({x € Qs d,(n) < %}) |
r €

Since S, N QY is of class C?, the (n — 1)-dimensional Minkowski content of S,, N Q¥ coincides with
H"1(S, N QY), therefore
LMz eqr: dsu(ar:)ﬁg—E :H"_l(SuﬁQZ)g—E—I—O & ;
Oc Oc Oc
then, since &. < €, we have that in particular
L"(Ac) < H* (S N QY& (1 +der)™ !
e = 5 rn=l
as € — 0. Hence, gathering (B.17)-(E20) implies
Fe (e, Ve, QY) < FZ2(Ue, Be) + 0(1), (5.21)

so that it only remains to estimate %2 (., B:). To do so set
65 ds“ (%) - g_z
9:(¥) = T T TN
v (57 (2))
thus 0. (x) = vy(ge(x)). Therefore|(h3)|implies that
1-w z)))? T
y;(?787-88) _ / ( 77(95( ))) +£(v;7(g€(x))2h (5_

B. €

+o(1) = o(1), (5.20)

,Vg;._-(:t)) dz. (5.22)
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Moreover, by using that Vdg, (z/6.) = - '7(z/8.) we have

Vye(z) = m : (5.23)

Notice that for z € B. we have that Vi(xz/d.) = V(vy(ma(x/dc))) for € small enough, more-
over (BI){(h2)} and [(h4)|yield

‘\IJ <§—€,p <5%>) }1 <e, ‘vy\p(%,a(é))} <e, vww(é—i,p(%))} <ec,  (5.24)

for some ¢ = ¢(n, Lg, L3, c3) > 0. Hence (5.24) in particular implies that
Gs(x)_u( )+O( ) for z € B,
e e

which together with (5.23)), and |(h2)| give
x _ M Ge@)  h(Er(3) +O0(5)
(5 Voela) = 20 (E,0(2)  2R(EiE)

Thus, using that ¥? = h, from (5.22) we deduce that
245, B,) < (1 o (5_» / ((1 —ug(ge (@) <v;<g€€<x>>>2> & (525

€

In order to estimate the right-hand side of (5.28]), it is convenient to write B, as the disjoint union
of the sets BS and B. defined as Bf := B. N {z: u(§) = e1}, B = B.N{z: u(s£) = 0}. On
BZF we use the change of variables © = d.(y + tv,(y)) for y € S, N Q) and t := 5?E(dsu(g—s) - g—z)
Note that in this way we have T(x/d.) = v, (y). Since also .V ds, (x/d:)| = 1, using the Coarea
Formula on the right hand-side of (5.28) restricted to BX, we get

Vet 2
Fl B < <1+O( )>6n 1/ T/QM (1_Un(\ll(y+itui(y),uu(y))>>
) <U;<‘I’(y+ ;—Ewi@,yu(y)))) e

(5.26)

Now let ;
§:= , (5.27)

v (y + £ tru(y), vu (y))

so that by (5:24)) there holds

as Vvt £). ) — 0 (v + ). ) £ru) 1+0(%)

di ‘Ifz(y + 5 tvu(y), Vu(y)) ‘I’(y + 5 tru(y), Vu(y)) |
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Moreover, by |(h4)| we deduce that for every ¢ € (0,,/c4T;;) we have

3

¥y + 5 onul)on) = Vol +0 (5 )

Hence using the change of variables in (5.27) and applying Fubini’s Theorem in (5.26) we infer

L4 O(5) s ENY s
Wég Cn B (‘I’(y, Vu(y)) + 0(5_5)> dH (y) s (528)

1/6¢

F(ve, BY) <

where C,, is defined in (5.15]). Moreover, a similar estimate can be obtained on B_ using the change
of variables = d:(y — tvy(y)) for y € S, N Q). Thus, by the periodicity of u and using (5.1,
from (5:28)) together with the periodicity of ¥ and the fact that rR, € Z"*" we deduce

€

2+0(5) (146"
F5(ve, Be) < c = C U(y, vy @) dH" H(y). 5.29
o) < gy 0 [ (v +o(3) ) tw. 62
Thus, thanks to (5I5), (5210, and (229) we obtain

limsup 7. (@, o, Q) < (1 + 1) (hom (¥) +1) -
e—

Eventually, (5.12) follows by the arbitrariness of i > 0, using a diagonal argument. O

Remark 5.2. We notice that Step 1 in the proof of Proposition [(£.1] could have been established
also without using the asymptotic minimisation formula for §° in (4] and instead using a similar
argument as in [II} Theorem 17] now appealing to the homogenisation result [33, Theorem 1].
Moreover, Step 1 holds true also when J. < € and & ~ €. In particular, we have g0 < gf  for
any ¢ € (0, 4o0].

6. OSCILLATIONS ON THE SAME SCALE AS THE SINGULAR PERTURBATION

In this section we characterise §¢ and g¢ in the regime £ € (0, +00); the latter corresponds to the
case where the scale of the oscillations J. is comparable to the scale of the singular perturbation €.

Proposition 6.1. Assume that { € (0,+00). Let gi,,, and §° be as in (4) and (&), respectively.
Let g* be the surface integrand in [@I). Then for every (¢,v) € RE* x S"~1 we have

96 v) = 31 (V) = Ghom () -

Proof. Not to overburden notation, in all that follows (.%.) denotes the I'-converging subsequence
given by Theorem
We recall that in view of Remark [£.4] we have

§*(v) = limsup

p—0

1
= hmj(?p m;(tgs_, Q) = hmj(l)lp = likrr_l)ior.}f m;(ugs_, Qp), (6.1)
€ p

for every v € S*~ 1. It is also convenient to introduce the notation

Z,s—u7:::-f
m~*(a”,Qy) m{/Q

where o (@, QY) is defined according to (2). Therefore gf, . can be rewritten as

v
T

((1 _ ’U)2 + h(fl’,V’l))) dx:v e %(UU,Q:)} )

: 1 SV v
gﬁom(u) = lim 1m€’ (@”,Qr). (6.2)

r—+oo N

We notice that in view of (6], to prove the claim it suffices to show that
9'(V) = ghom(v) 2 g (Gw), Y (Gv) €RG < 8" (6:3)
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The proof of ([63) will be split into two steps.

Step 1: §*(v) > giom(v), for every v € S*71,
Let v € S"1 ¢ >0, p > 2¢, and let v € o (uys ,Qp) be arbitrary. Then, there exists
u € WH(Q4;R™) such that

vVu=0ae. in@Q, and (u,v)= (ug;, v ) near 0Q; . (6.4)
Set 7. := 75 and define (ue,v.) C Wh2(QY_;R™) x WH2(QY.) by setting
(ue(x),ve(x)) := (u(loez), v(€d.x)).
Then (64]) implies that
v:Vue =0 ae. in Q7 and (uc,v.)= (a",0") near 0Q;_,

that is, ve € &/ (u”, QY. ). Thus, a change of variables gives

(B () G

Z T;ilmLs(ayv :5) )

£, 5 €
) . <?(1 — )"+ Eh (ﬁx,Vvs)) dz

(6.5)

where

b, ¢
7N
Hence, since v € &/ (uy;_, Q}) was arbitrarily chosen, we can pass to the infimum on the left-hand
side of ([G.5)) and let € — 0 to deduce that

%:zmin{ }—>1 as € = 0.

.. _ . 1 _
oyttt (i, @) 2 i S (4, Q1) = o ()

where the last equality follows from ([E.2]). In view of (6] we then conclude the proof of Step 1
by letting p — 0.

Step 2: g*(¢,v) < Ghom(V), for every (¢,v) € RE x S*~ 1L,
Let (¢,v) € Ry* x S"~1; by Theorem 2] we have that

g (¢ v) = ﬁé(uz, 1,Q") < limiglf Fe(ue,ve, Q") (6.6)
e—

for any sequence (uc,v.) converging to (uf,1) in LO(R";R™) x LO(R™).
Let n > 0 be fixed, in what follows we construct a sequence (., ?.) converging to (u{,1) in
LO(R™;R™) x L°(R™) and such that
lim Sélp Fe(Uie, Ve, Q%) < gﬁom(V) +7. (6.7)
E—r
Then, we can conclude by combining (6:6) and (67) and by the arbitrariness of n > 0.

We notice that since both gf__ and ¢*(¢,-) are continuous (cf. Remark B3] @) and Remark E3)
we can prove the desired inequality only for ¥ € S*!1 N Q" and then conclude by density. Let
v e SINQ" and let R, € Q%™ be an orthogonal matrix as in with R,e,, = v, and let
m, € N* be such that m, R, € Z"*".

By [€2) we find r € = N* and v € &/ (u"”, Qy) such that

rnl_l /Q ((1 —v)? + h(lz, Vv)) de < gl )+ 1. (6.8)

v
r
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By definition of & (4", QY), there exists u € W12(Q¥%; R™) such that
vwWu=0ae. in Q7 and (u,v)= (@",0") near Q. (6.9)
For A > 0 we introduce

A
Sy = {xER": |z -v| < 5}
the strip of width A around the hyperplane IT”. We then extend (u,v) r-periodically inside the
strip Sy by setting
(u(z),v(z)) := (u(x — Ry(rz,0)),v(z — R,(rz,0))) if =€ Q¥(R,(rz,0)), z€Z"", (6.10)

and we set (u,v) := (u”,1) in R™\ S¥. Then the second condition in (G9)) ensures that (u,v) €
W2 (R R™) x WU2(R™). Eventually, we define (i, 7.) € W12 (R R™) x WL2(R™) by setting

Ue(x) := (u(%) -el)C and Tc(x) := v(%) ,
and we set 7. = (d.r € dom,N*. In this way, @ and v. are re-periodic inside Sy and for
r € R"\ S we have t.(z) = (u”(ﬁ) -e1)¢ = uf(z) and vc(z) = 1. Thus, (i, 0:) — (uf,1)
in LY(R™;R™) x LY(R™). To estimate F.(ic, v, Q") we note that v.Vi. = 0 a.e. in Q¥ thanks

to ([6.9). Moreover, V. = 0 on R" \ S} and |Vi.(z)| < i Vﬁ(ﬁ) I¢| in Sy . Thus, |(f1)]
together with a change of variables give
/ (¥2 + na)f(5£7 Vﬂa) dx < 02175/ |V |* daz < 02|§|2(€58)"_217€/ |Vul? dz .
v £ Q”ﬂST'fE Q;//([5E)OSTV
(6.11)
By setting JY := {2z € Z"71: Q¥(R,(rz,0)) N QY 5.y # 0} and using (6.10) we obtain
/ Vul>dz < ) / [Vul|? dz = #(J;)/ Vul|? dz.
QFese) NS segv QY (Ru(r2,0) Q¥
Thus, since
#(JY) < ([1fre) + 1)1 < (—T 5) , (6.12)
€

from (GI1)) we infer
(L+r)" I 1

T
/Qu(l_;f + ns)f(a, vas) o < ool /Qz Vul2de —0 ase 0, (6.13)

where the convergence to zero follows from the fact that 1. < € and d. ~ €.
To conclude it only remains to estimate .72 (0., Q"). Since 1. =1 on Q" \ Sy, from and a
change of variables we deduce that

R
T2 (0.,Q") = F2(0.,Q" N SY.) = (ﬂ&a)"/ ((1 L. 2h(zx,vU)> dz

e Q;,/(eé )I'_WS,,V, g (655)
: (6.14)

<A (L5t / (1 —v)? + h(fz, Vv)) dz,
QY es)NSx

where

- 0o, ¢
Ve ._max{?,ﬁ} —1 as € —0. (6.15)
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Eventually, in view of (G.I0) and |(h5)| we have
/ (1 —v)* + h(fz, Vv)) dz < Z / (1 —v)? + h(fz, Vv)) da
Q Q¥ (Ru(rz,0))

1/ce5e) ¥ z€JY

= Z /QU ((1—0)2+h(€x+£rRl,(z,0),Vv))d3:

zeJY
= #(J;)/ ((1 —v)? + h(lz, Vv)) dzx,
QY
where in the last step we also used that ¢r € m,N*, hence ¢rR,(z,0) € Z™ by the choice of m,,.
Thus, using again the estimate on #(JY) in ([6I2)), from ([@I4) we deduce that

FE(0,Q") < Ae(1+ 7)™t nl_l / (1 —v)* + h(fz, Vv)) dz (6.16)
T Qv

s

Eventually, by combining (6.8), €.13), (6.15), and (6.16) we obtain

limsup ¢ (tie, v, Q") = limsup F7 (v, Q") < gﬁom(l/) +n,
e—0 e—0

hence (67) is proven and thus the claim. O

7. OSCILLATIONS ON A FINER SCALE THAN THE SINGULAR PERTURBATION

In this section we characterise g in the regime ¢ = +o0; the latter corresponds to the case
where the scale of the oscillations J. is much smaller than the scale of the singular perturbation e.

The following Lemma is a consequence of some analogous results established in [5] in the context
of the homogenisation of Modica-Mortola functionals and will be used in the proof of Proposition
below.

Lemma 7.1. Let 0 > 0 be fized and let A € A. Then there exists K = K (o) € N and a constant
¢ > 0 (depending only on the space dimension) such that for any sequence (v.) C VVI})S (R™) with
sup, F2(ve, A) < 00 the functions vZ € Wéf(R") defined as
1
@)= e [ e)dy (7.1)
c (K(Sa)" Qxs,. () )

satisfy the following estimates

/h(%,v%) dz > / hhom(vug)dx—a/ Vo |? da, (7.2)
A e A AKs.
/ lve — 07| dw < c(K58)2/ Vo> dz, (7.3)
A Ags.
where hpom s as in B6) and Aks, == {33 e R™: dist(z, A) < WK&E}.

Proof. Estimate (7.2)) follows by [5, Propositions 4.7-4.9], while estimate (73] is an L?-version of
the L'-estimate obtained in [5, Proposition 4.10] and is a direct consequence of Lemma [AT]in the
appendix. O

Proposition 7.2. Assume that £ = +00; moreover, assume that ne >~ 0. ~ €%, for some o > 1. Let
g2 be as in B.5) and let g™ be the surface integrand in @I]). Then for every (¢,v) € RY* x S*~1
there holds

97(¢¥) = Ghom (V) -
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Proof. Not to overburden notation we still denote by (%#.) the I'-converging subsequence given by
Theorem
We prove the claim in two steps.

Step 1: g (¢,v) > g2, (v), for every (¢,v) € Ry x S"L.

Let (¢,v) € RP*x S"~! be fixed; by I'-convergence we find a sequence (uc,v:) C WH2(Q¥; R™) x
Wh2(QY) converging to (uf,1) in L°(R™;R™) x LO(R™) and satisfying

o(Cr) = FE(E1,QY) = lim F(ue, v, Q). (74)

By a vectorial truncation argument it is not restrictive to assume that |luc|pe(qvirm) is uni-
formly bounded and such that u. — u¢ also in L?(Q¥;R™). Moreover, thanks to Remark [A.] we
can apply the fundamental estimate [7, Proposition 5.1] to modify (ue,v:) in such a way that
(ue,ve) = (g ,,v7) near Q" without essentially increasing the energy. Summarising, with-
out loss of generality we can assume to be in the following situation: (ue,ve) — (u¢,1) in
L2(Q";R™) x L*(QY), (ue,ve) = (uf ., %) near 9Q", and (uc,v.) satisfy (T4). We then ex-
tend (ue,v:) by (u4f ., vZ) outside Q.

Let 0 < 0 < ¢; be fixed and vZ be given, accordingly, by (7)) in Lemma [Tl Then the desired

inequality can be proven if we show the following: There exist 1 < p < 4 (depending on the

3
exponent «) and a constant C' > 0 (independent of £ and o) such that
o Yy S T oy
llgglglf Fe(ue,ve,Q%) > llglilélf Ee(uz,v?) — Co, (7.5)
where &, is defined as in (Z6) with a = 2770, b =1—0, A = Q¥, and ¢ = \/hpom. Indeed,
suppose for a moment that (ZH) holds. Then that thanks to it is immediate to check that
hhom is 2-homogeneous. Since in addition hpem is convex and satisfies the growth condition |(A1)|
(c¢f. Remark B3 @), vhhom : R” — [0,+00) is a norm (see, e.g., [32, Corollary 15.3.1]). Then
Remark 2.2] together with the fact that (uc,v?) = (uf,1) in L(R™;R™) x L°(R™) yield
limiélfﬁa(ua,va,Q”) > (1=0)vhhom(v) —Co.
e—
Thus, gathering (74) and (3X) we obtain
97(¢v) = (1 = 0)giom(v) — Co,

from which we conclude by letting o — 0.
We are now left to prove (). To this end we notice that thanks to Lemma [[T] there exists
K = K(0) € N and ¢ > 0 such that setting r = r(0) := (2 + /n)y/nK we have

/ h<5£,va> d:EZ/ hhom(Vvé’)dw—o/ [Voe |* dz (7.6)
v £ v Q

Tiroe
and
/ lve — 07| dx < c(K6€)2/ |V |* d. (7.7)
v QT‘FT‘(SE
Moreover, ([Z4) together with ensure that there exists M > 0 such that
M
/ |V, |* dz :/ |V, | dz +/ Vol |2 de < —, (7.8)
QY s, Q¥ Vs \Q €
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for every e. Therefore, a convexity argument together with (6)—-(Z38) yield

_ )2 _ 2 0)\2
95(%,@”)2(1_0)/ (Sl Py c ">/ (ve = v2) dx+e/ h<5,Vvs> do
v € o v € v O
_ 0)2 _ 262
2(1_0)/ <M +shhom(wg)) dz — Mo — arE =DK%
v g g 19

(7.9)

We now turn to estimate the bulk term in %, (ue,ve, Q). Since o < ¢1, by and the Holder
Inequality with exponents g = % >1land ¢ = > 2 we immediately obtain

2—p

/ (v? + ns)f<6£,Vus) dzx > a/ (vg +7e)|Vue|P dz — o (1 + 72, (7.10)

for any 1 < p < 2. Moreover, the convexity inequality 2'P(a + b)P < aP + bP gives

g

a/ (v? + ne)|Vue|P da > 2p71/ ((vg)p+n€)|Vu€|pd;v—a/ [v7 —veP|VuePdz.  (7.11)
v QV QV

Then, thanks to (Z9)-(CII) the claim follows if we show that the last term in (1)) vanishes for
some suitably chosen p > 1.
In view of ([Z4]) and|(f1)|it is not restrictive to assume that
ns/ |Vu*dz < M, (7.12)

uniformly in e. In this way, again by the Holder Inequality, we have

/|v§—v€|p|Vu€|pdx§ /|U§—U€|i_ppdx /|Vu€|2dx
Qv Qv Qv
2—p
SMZW::S(/ |Ug_va|22_ppd;v>

=*
Note that 0 < v, < 1, so that by construction we have 0 < v < 1, hence |v. — vZ| < 2. Since
2p_

=r ?. Thus, from [T and (Z8) we deduce that

Z—p r
2 2

(7.13)

ve—vd

2

ve—vd
2

—szp > 2, this implies that
2B 2P 4p—4
/ |ve — vZ |77 da < 222'72/ lve — 07> dz < 27 ¢(K6.)%e M .

Hence, the estimate in ([T.I3]) gives

— —2 —
— Ve Ue Tr = csz e 8%2 . -
vZ PV |P dz < M922(P—1) K2p 2(55_? 14
Ql/
Since by assumption 7, ~ d. ~ &%, for some o > 1, (T.14) becomes
12— oIV do < gt e (7.15)
QV

We now observe that @ +2a > 0,if p < %; furthermore, the latter can be always

fulfilled, since ggj > 1, for a > 1. Eventually, with this choice of the exponent p the right hand
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side of (TI5) becomes infinitesimal as € — 0. Therefore, gathering (I0), (CI1)), and (TI5) we
get

T o

/ (v + ns)f<6—, Vus> dx > T ()P + ne)|Vue [P dz — o + o(1)
Qv e Qv

as € — 0. Together with (9] this gives ({H) with C' = M + 1 and thus the desired inequality.

Step 2: g (¢,v) < g2, (v), for every (¢,v) € Ry x S*1L.
Let (¢,v) € RY* x S"~1 be fixed; by Theorem 2] we have that
9= () = F>(ui,1,Q") < limiélf Felue,ve,Q%), (7.16)
E—

for every sequence (u.,v.) converging to (uf,1) in L°(R™;R™) x LO(R™).
Let n > 0 be fixed, in what follows we construct a sequence (., ?.) converging to (uf,1) in
LO(R™;R™) x L°(R™) and such that
lim sup F (tie, Ve, Q") < ghom (V) + 1. (7.17)

e—0

Then, we can conclude by combining (ZI6) and (ZI7) and by the arbitrariness of i > 0.

We observe that since ¢*°(¢,-) and gpo,, are both continuous (c¢f. Remarks B3] B]) and E3), by
a standard density argument it is enough to consider v € S*"! N QY. Let then R, € Q"*" be an
orthogonal matrix as in such that R, e, = v. Then there is m, € N* such that m, R, € Z"*".
In this way, we have

myR,(2,0) €I”NZ" forall z€Z" ' and m,v€Z". (7.18)

We now define the sequence (g, 0.). To this end, let & := L—ngajég, and define 7. € W2*(R"; R™)
by setting

TV
—u¥ if |z v <&,

’U,E(!E) = &e ¢ | | ©
uf otherwise,

so that in particular V. = 0 outside {|z - v| < £&.}. We now define 5. € W,\?(R") in such a way
that o = 0 in the region where Vi, # 0. To this end, note that by Remark for a fixed n > 0
there exist T}, > 0 and v, € W%(0,T,)) with v,(0) = 0, v,(T},) = 1 such that

2

where hpom is defined in (B.6]). Let us extend v, to (0,+00) by setting v, (t) := 1 for t > T}, and
let us define v} € W 2(R™) by setting vy (2) = vy (|2 - ).

By appealing to the classical homogenization result (see, e.g., [I2] Proposition 11.7 and Theorem
14.5)), for any positive sequence o — 0 we deduce the existence of a sequence (w}) C W?(R,(Q’ x
(0,T;))) such that (wf —vy) € Wy (R,(Q'x(0,T))), w} — vy in L*(R,(Q' % (0,T}))) as o — 0
and

/Tn (1= 09) + P () (v))2) At < /som(¥) + 2, (7.19)
0

lim ((1—wj)2+h(E,ij) ) dz
720 R, (Q'%(0,T,)) g

(7.20)
= / ((1 - 'U;;)2 + hhom(VUZ)) de < hhorn(V) + n 7
RA@%(0T,)) 2

where the last inequality follows from (ZIJ) and the definition of v}. Similarly, we find (w;) C
Wh2(R,(Q" x (—T,0))) satisfying the analogous properties on R, (Q’ x (=T}, 0)).
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Now set o, := % — 0, wf = w}, and w; := w, . By a truncation argument it is not

o)

restrictive to assume that 0 < w_, wj < 1. Moreover, let

Te 1= Q c J + 1>ml,58 € (g,e + myd;) (7.21)

My, 0¢
and consider the open intervals
1. = ( —myée — €Ty, —ml,ﬁs) and Ij = (m,,{s, my€e + sTn) ,
as well as I, := I” UIf. We start defining v. on R, (Q’Ts X Ia) by setting

_ <3: +my v
wo | ————

3

) in R, (QL x I7),

)=t (TE) i Rl I,

x-v|—m, .
v ("%) in R, ((Q.\ QL) x I.).
We then extend v, r.-periodically in directions R,e;, i = 1,...,n — 1 by setting
Ue(z) =0 (v — Ry(re2,0)) if 2 € R,((Q, +rez) x 1), z€Z" . (7.22)

In this way, v, is defined on the set

R, (R" ' xI.)={z e R"": m,& < |z -v| <myé + T}
and eventually we extend v, by setting v.(z) = 1 if |z -v| > €T, + m,& and v.(z) = 0 if
|z-v| < my&. Note that thanks to the boundary conditions satisfied by w! and w_ the functions
U belong to VV]i)C2 (R™). Moreover, by construction we have

(te(2), (@) = (wl(2), 1) if [z -v[>my& +eTy,

and thus (i, 0.) converges to (uf,1) in L(R™; R™) x LO(R™).
To conclude it is then left to show that (@, ¥.) also satisfies (CIT). Since 9.V, = 0 a.e. in R,

from we deduce that

P, 5o, QV) < czng/ Va2 de + 75 (5., Q") < mq?% + (5., QY), (7.23)
Qv £

where to establish (T.23) we also used that |Va.| < Igil in {Jz - v| <&} and Vi, = 0 outside. By
the choice of & the first term on the right-hand side of ([7.23]) vanishes as ¢ — 0; hence it only
remains to estimate %72 (0., Q"). Setting S := R, (Q" x I.) we have

2 vSe 1_ 75 2 _
F3 (5., Q) < HTwke | /S (% +sh(3 ws)> da. (7.24)

€ 5.’

To estimate the second term on the right-hand side of (.24]) define

Je={e ez (@ 4rea)n@ £ 0}
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then, in view of (.22]), the periodicity assumption together with (ZI8) and the choice of 7.
imply that

(1—1v.)? x (1—1w.)? x
/ss (f - Eh(@’ WE)) des ) /u((Q'rg-i-rsz)Xls) (f * 8h(5_s’vv8>> d

z€J,
(1—12.)2 T
:#JE/ <7+5h =, Vo, ) ) dz.
(Je) (@I c (55 )
(7.25)

We now estime the integral on the right-hand side of (T.25) on the set R, (Q. x I) by applying
the change of variables y = ex + m,&.v. Since & € 6.Z, recalling (TI8) and we obtain

1—7% 2
/ (ﬂ—ksh(i,vm))dx_anl/ <(1—w:)2—|—h(£,Vw:)>dx.
Ro(QLxIF) € O R (Q'x(0,T,)) Te
(7.26)

Moreover, a similar estimate holds on R, (Q. x I7). Instead, on the remaining part of R, (Q;._x I.)
the definition of v. together with a change of variables, Fubini’s Theorem, and give

1—17.)2 1—75.)2
/ (ﬂ + ah(f, V@E)) dz < / <ﬂ n C4E|V1_)5|2) dz
R, (QU\QL)XI.) € O Ro((Q)\QL)XI.) €

TTI
= 2/ / ((1 — vn)2 + 04(1);7)2) dtdz’ < 2(7"?71 - 6"71)0—4077 .
2\QL /o €3

(7.27)

We finally observe that #(J.) < (|1/r-]+1)""! and that thanks to (ZZI) we have Z= = 1+0(%).
Thus, gathering (T.24)—(27) we deduce that

FL(0e,QY) < (1—}—7“8)"_1/ ((1—w:)2+h<£,Vw:) )dx
R, (Q'x(0,Ty)) Oc

(7.28)
—i—(l—i—ra)"_l/ ((1—w8_)2+h(E,Vw;>)dx+o(1),
Ry (Q'x(—Ty,0)) Te
as € — 0. Eventually, by combining (Z.23), (C28)), and (T20)) we get
lim sup Fe (tie, Ve, Q") < 2y/hhom (V) + 1,
e—0
hence ([ZI7) is proven and thus the claim. O

APPENDIX

In this short section we state and prove Lemma [A] from which estimate (7.3) in Lemma [7.1]
follows. A similar estimate has been obtained in the proof of [5, Proposition 4.10] for the L'-norm.

Lemma A.1. There exists ¢ = ¢(n) > 0 such that for every open sets A, A’ C R", with A’ CC A,
every v € W1’2(R"), and every r satisfying

loc

O<r< 2dist(A’,0A)
r
2+ Vn)vn'
there holds

lv — v, > de < cr2/ |Vol? dz,
A A



GRADIENT DAMAGE MODELS FOR HETEROGENEOUS MATERIALS 29
where

wo)i= o [ ey,
r ()
Proof. Let A, A’ C R™ be open and such that A’ CC A; for any r > 0 set
Jo={z€Z": Qr(rz)NA" #0}.
For any v € WL2(R") we have

|v( ) — v (z)]? dz < Z/ z) — v, (2)]? da

z€J, (TZ

<2} (/QTM )—vr(rz)|2+/QT(Tz) |vr(rz)—vr(3:)|2d3:).

z€J,

(A1)

We estimate the two terms on the right-hand side of (A.]) using the Poincaré Inequality and the
continuity of the translation operator.
By a scaling argument, for every z € J, we have

o = vr(r2)l 2@y ) < PPVl 220 (rayizmy (A2)

where cp > 0 is the constant for the Poincaré inequality in the unit cube. Also note that for any
z € Jr and x € Q,(rz) there exists zg € A’ N Q,(rz) with |z — x| < /nr, hence
dist(A’,0A
Q.(rz) CA aslongasr< % . (A.3)
Moreover, the cubes Q,(rz), z € J, are pairwise disjoint. Thus, summing up (A2), for r > 0
satisfying (AZ3) we obtain

>,

o — v (rz)]? < chr? /A |Vv|? d. (A.4)
z€Jr rz)

Then, it remains to estimate the second term in (AJ]). An application of Jensen’s Inequality yields
for any z € J,

/ v, (r2) — vp(x)|? do = /
Qr(rz) Qr(rz)
<—/ / y) —v(y +2—r2)>dyda.
r(rz) r rz)

Since |z — rz| < y/nr/2 for any = € Q,(rz), the continuity of the shift operator in Sobolev spaces
(see, e.g., [I5, Proposition 9.3]) yields

1 2
—/ v(y) —v(y+z—rz))dy| dz
Qr(rz)

rn

(A.5)

vn
lo=v(-+@ =72) | L2, (ray) < 5 TIVUllL2@ay gy (ryimey, - for every z € Qn(rz)

and therefore
1 n
N N O R TR e VewPdr (a0
r »(r2) JQr(r2) Quutymyr(rz)

Moreover, for any z € J. and x € Q14 /m)-(r2) there exists z9 € Q.(rz) N A" with [z — 20| <

(2 + /n)\/nr/2, hence o
Quiynyr(rz) CA if r< % . (A.7)
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We observe that the cubes Q14 /m)r(72), 2 € J; are not pairwise disjoint. Nevertheless, since for

any z1,z2 € J, with Q11 m),(r21) NQ (14 ym)r (122) # 0 we have |21 — 29| < (1+4+/n)/n, each cube
Q14 ym)r(r2) intersects only N cubes, with IV independent of 7. Thus, summing up the estimates

in (AE) and (AG), for r > 0 as in (A7) we obtain

Z / o, (rz) — ve(x)]? da < N r / |Vol?dz. (A.8)
zeJ,. / Qr(rz)
Eventually the claim follows by combining (A1), (A4), and (AS). O
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