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A Single-Lobe Photometric Stereo Approach for Heterogeneous Material∗

Roberto Mecca† , Yvain Quéau‡ , Fotios Logothetis§ , and Roberto Cipolla§

Abstract. Shape from shading with multiple light sources is an active research area, and a diverse range of
approaches have been proposed in recent decades. However, devising a robust reconstruction tech-
nique still remains a challenging goal, as the image acquisition process is highly nonlinear. Recent
Photometric Stereo variants rely on simplifying assumptions in order to make the problem solvable:
light propagation is still commonly assumed to be uniform, and the Bidirectional Reflectance Distri-
bution Function is assumed to be diffuse, with limited interest for specular materials. In this work,
we introduce a well-posed formulation based on partial differential equations (PDEs) for a unified
reflectance function that can model both diffuse and specular reflections. We base our derivation
on ratio of images, which makes the model independent from photometric invariants and yields a
well-posed differential problem based on a system of quasi-linear PDEs with discontinuous coeffi-
cients. In addition, we directly solve a differential problem for the unknown depth, thus avoiding the
intermediate step of approximating the normal field. A variational approach is presented ensuring
robustness to noise and outliers (such as black shadows), and this is confirmed with a wide range of
experiments on both synthetic and real data, where we compare favorably to the state of the art.

Key words. Photometric Stereo, quasi-linear PDEs, single-lobe BRDF, specular reflection, diffuse reflection,
variational method
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1. Introduction. The problem of reconstructing a static object using multiple images
taken from a fixed point of view but with varying illumination is well known in the computer
vision community as the Photometric Stereo (PS) problem. Initial PS methods extended
the shape from shading problem (SfS) [8, 21, 22, 23, 24, 32] (which attempts to recover
three-dimensional (3D) structure from a single image) by adding supplementary information
contained in additional images. In contrast with SfS, PS can be unambiguously solved with
three images even when the albedo is unknown [62], and even with two images when the albedo
is known [52]. However, most classical PS approaches have relied on important simplifications,
such as

(a) orthographic viewing geometry;
(b) uniform directional illumination;
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UNIFYING DIFFUSE AND SPECULAR REFLECTIONS 1859

(c) diffuse reflectance;
(d) absence of shadows and discontinuities;
(e) monochromatic lighting and reflectance.
Although those assumptions allow one to prove the well-posedness of the PS problem, they

constrained this 3D shape recovery technique to be employable only under a very controlled
setup.

Contribution. With the aim to extend and derive a well-posed mathematical formulation
for the model presented in [37], in this work we propose a method capable of performing the PS
technique in much less controlled setups by simultaneously handling several nonlinear physical
effects in order to make it as close as possible to real-world scenarios. Taking inspiration from
[40], we relax all the above mentioned assumptions from (a) to (e) by proposing the following:

• an irradiance equation capable of handling both diffuse and specular reflectance, as
well as pointwise and directional light sources, and perspective viewing geometry;
• a unifying equation for the PS problem based on partial differential irradiance equation

ratios;
• an l1-norm-based variational method for solving the set of fundamental equations that

ensures robustness to shadows and depth discontinuities;
• direct depth recovery, without integrating the normals, thanks to a differential param-

eterization of the surface.
To the best of our knowledge, this approach is a step forward with respect to the state of

the art since it relaxes the aforementioned assumptions to make PS more realistic.

1.1. Related works. After more than thirty years of research, the scientific community
has not yet found a definitive solution for the general PS problem. However, several attempts
have been made in order to relax the assumptions (a)–(e) in order to deal with realistic
irradiance equations.

Camera modeling. Perspective viewing geometry for photometric 3D reconstruction has
been introduced by Horn [21], then used by Bruckstein [8], and later developed in equivalent
manners by Tankus and Kiryati [55], Prados and Faugeras [49], and Durou and his coworkers
[6, 15]. Recently, Papadhimitri and Favaro [46] presented a new perspective parameterization
to solve the PS problem without knowledge of the light directions, i.e., uncalibrated PS (UPS).

This significant feature allowed PS to be exploited for such important applications as shape
recovery from endoscopic images [13, 45]. In this particular case the nonuniform spread of
light cannot be considered negligible due to the proximity of the light source to the inspected
surface.

Lightings. Starting from initial works dealing with uniform and directional lighting as-
sumptions, light propagation models have been extended to consider nearby point light sources
spreading light radially. Initially this idea was proposed by Iwahori, Sugie, and Ishii [29], and
later by Clark [12]. More recently, nearby point light sources have also been considered in
alternating optimization procedures (“bundle adjustments”) for structure-from-motion [41]
and UPS problems [47].

However, all those works modeling nonuniform light propagation by adopting point light
source parameterization assume diffuse reflection, which limits the applicability of the PS
technique.
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1860 R. MECCA, Y. QUÉAU, F. LOGOTHETIS, AND R. CIPOLLA

Reflectance. Most of the research done till now for the PS technique has assumed purely
diffuse reflectance as the Bidirectional Reflectance Distribution Function (BRDF). Unlike (a)
and (b), shape recovery from specular shading still remains a challenging goal since most of
the common materials provide specular highlights that prevent reasonable reconstructions by
the PS technique.

Regarding shading models for specular highlights, several dedicated irradiance equations
have been presented so far. First, Torrance and Sparrow [56] presented a physical model
based on radiometry principles. Later, Phong [48] showed an empirical model which basically
extended the cosine law, making it depend also on the viewer direction. The Blinn–Phong
shading model [4] extended further the previous one by eliminating some limitation in the
analytical formulation. Then Cook and Torrance [14] provided a well-known specular model
based on a strongly nonlinear physical theory. Other important models for specular BRDFs
can be found in [33], and interesting comparisons among some of them have been performed
in [44].

Instead of simplifying the PS problem by removing specularity, other works dealt with
the images as they are, having both specular and diffuse components. Nayar, Ikeuchi, and
Kanade [43] assumed hybrid surfaces by summing diffuse and specular components using the
Beckmann and Spizzichino [3] reflection model, allowing them to locally reconstruct the shape
of the object. Ikeuchi [28] faced the PS problem with specular reflectance by introducing a
smoothness prior on the surface, which was shown to be realistic for several industrial ap-
plications, though this approach is limited to a typology of surfaces effectively holding this
smoothness constraint. Wolff [60] proposed a reflectance model for combined diffuse and
specular reflections from dielectric materials. Since the modeling involved purely physical pa-
rameters in terms of the Fresnel coefficient and the Dirac delta function, the results achieved
can be considered mostly theoretical rather than actually applicable for shape reconstruc-
tion. Goldman et al. [17] described the irradiance equation as a weighted sum of fundamental
diffuse and specular materials, and they solved it by iteratively adding weights inside a min-
imization process in order to include specular reflection. Yang and Ahuja [65] introduced a
PS method for estimating diffuse reflection and surface normals from color images. Using a
dichromatic reflection model, they considered surface chromaticity as a matching invariant for
PS, assuming that at least one of the color images was diffuse. Chung and Jia [11] adopted
a two-step optimization approach to estimate the normals and all reflectance parameters. In
the first step, the visual information from shadows was used to estimate the normals at some
surface points. These recovered normals played a key role in estimating the global reflectance
parameters according to the Ward BRDF [59]. In the second step, with the reduced number of
unknowns, a robust iterative optimization process was applied estimating the surface normals
and the diffuse albedo for all surface points.

Although very sophisticated approaches modeling specular highlights have been presented,
several advances have also been made in creating more robust algorithms while considering
highlights as missing parts that additionally include shadows, saturations, self-occlusions, etc.

Outliers. Regarding robustness to outliers, most recent works proposed sparsity-enhancing
estimators. For instance, the SVD-based approach on which the UPS relies [18] can be en-
hanced to deal with shadows, which were a priori detected and treated as missing data by
Miyazaki and Ikeuchi [42]. An alternative is to preprocess the images according to a low-rank

D
ow

nl
oa

de
d 

02
/0

3/
17

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

UNIFYING DIFFUSE AND SPECULAR REFLECTIONS 1861

constraint, as suggested by Wu et al. [63]. Such an approach, relying on convex relaxation
of an l0-norm-based minimization problem, was recently improved by Wang et al. [58], who
proposed dealing with the nonconvex nature of the problem using a proximal strategy. A
similar approach, but more specifically dedicated to perspective UPS, was considered in [50],
extending the approach by Ikehata et al. [27], who introduced robust estimators derived from
the l1-norm to recover the normals. Eventually, points where the normal cannot be defined,
because of the presence of edges or depth discontinuities, can be handled by robust normal
field integration methods such as those presented in [16].

Clearly, such reinforcement of the PS technique is mandatory for real-world applications.
Yet robustness can also be improved by considering extra information contained in RGB
images, rather than relying solely on luminance.

Color. In most PS methods, the images are assumed to have gray levels. Color images can
be used to separate the diffuse part from the specular one, as in the methods presented above,
but usually only the one-channel diffuse part is used in the reconstruction. Clearly, not all
information is exploited when proceeding in this manner. On the other hand, methods dealing
with all color channels assume either that the material is monochromatic and the lightings
are colored [7] or that the inverse is the case [2].

All these works brought the PS problem further on one or the other specific point, but
they all require estimating both the shape and the albedo. Another strategy involves using
image ratios that make it possible to eliminate the albedo from the unknowns.

Image ratios. Considering image ratios yields photometric invariants [19, 34, 61]. Such
invariants have been successfully used in image matching under varying illumination [30], in
robust approaches to PS [19, 64], or in general PS settings with unknown [10] or pointwise [40,
38, 51] lightings. Image ratios also play a key role in linearizing the differential approaches to
PS based on nonlinear PDEs.

Differential approaches to PS. Recently, new PS models based on nonlinear PDEs have
attracted increasing interest [9, 10, 36, 39, 40, 50, 54]. These approaches model the irradiance
equations via nonlinear PDEs. This system of nonlinear PDEs can be solved using calculus
of variations [50] or proximal methods [20]. However, such methods remain computationally
very intensive: it is simpler to eliminate the nonlinearity, through image ratios, as done in [36,
39, 40, 51, 54]. Chandraker, Bai, and Ramamoorthi [10] considered more general irradiance
equations with unknown light sources and computed the photometric invariants describing
the surface through its isocontours [1]. However, in all these works, the shape reconstruction
process required additional initial or boundary information, which are not required in the linear
least-squares variational approach proposed recently in [51, 54]. Mecca and coauthors [36,
39, 40] used specific irradiance equations for diffuse surfaces only, proving uniqueness of the
solution by characteristic strip expansion and assuming known light information (i.e., direction
or position). However, the approach adopting such an expansion performs unfavorably under
noise. This is due to the fact that for each step of the expansion, only a single pair of images
is taken into account despite a larger amount of images being available. In addition, depth
information is only propagated through a single direction, in contrast to robust variational
solvers that simultaneously estimate the depth at all pixels [20, 50, 51, 54].

In the same framework, a mathematical study of a purely specular reflectance using the
Blinn–Phong shading model has been proposed by Tozza et al. [57] employing an additional
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1862 R. MECCA, Y. QUÉAU, F. LOGOTHETIS, AND R. CIPOLLA

shading model practically separated from the diffuse one. In fact, although the approach deals
with both diffuse and specular reflectance, the actual differential models are applied separately
after a preliminary segmentation of the shape domain [25]. Furthermore, simplifying assump-
tions related to the orthographic viewing geometry and directional lighting are considered in
order to deal with linear PDEs. Relaxing those hypotheses, Mecca, Rodolà, and Cremers [38]
proposed two differential models dealing separately with diffuse and specular reflectance while
introducing the parameterization of more realistic physical effects such as perspective viewing
and light attenuation. Even if they did not provide any mathematical proof regarding the
well-posedness of the differential problems, the experimental part is very interesting. In fact,
they showed that the instability of the characteristic strip expansion due to noise increases
significantly while reconstructing specular shapes.

In order to deal with these drastic limitations, in this work we unify both diffuse and
specular reflectances by modifying the Blinn–Phong model into a single-lobe approach. Fur-
thermore, in order to make the solution of the differential formulation robust, we propose a
variational solver and compare it with the method based on the characteristic strip expansion
to confirm the theorized gain in robustness.

This paper is organized as follows: The unified irradiance equation is presented in section
2. The mathematical derivation of the new equation for the PS problem is provided in sec-
tion 3. Two numerical solvers are presented in section 4. The first shows the well-posedness of
a fast-marching-based approach where the depth is recovered. The second introduces a vari-
ational solver over a larger amount of unknowns, including one of the reflectance parameters.
Experimental results are presented in section 5.

2. Image formation model. With the aim being to formulate a mathematical model as
general as possible, we have to deal with two fundamental features of the image formation
process regarding the modeling of the pinhole camera and the reflectance.

2.1. Camera model. We start by considering the projection of the tridimensional surface
Σ into the image plane introduced by Papadhimitri and Favaro in [46]. This allows one to
easily extend the perspective viewing projection to the orthographic one just by making the
focal length tend to infinity. The projection takes a 3D point, described by the real-world
coordinates (ξ, η, ζ) ∈ Σ, into the image plane Ω = Ω ∪ ∂Ω according to

(1) (ξ(x, y), η(x, y), ζ(x, y)) =

(
x
f+z(x, y)

f
, y
f+z(x, y)

f
, z(x, y)

)
,

where z is the depth. According to this parameterization, the direction of the outgoing normal
to the surface is given by

(2) n(x, y)=

(
∇z(x, y),−f+z(x, y)

f
− (x,y)·∇z(x, y)

f

)
,

where the derivatives of z are considered in the image coordinates and are denoted in the
following: ∇z(x, y) =

(
∂z
∂x(x, y), ∂z∂y (x, y)

)
. Let us denote the normalized vector by

(3) n(x, y) =
n(x, y)

|n(x, y)|
,
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UNIFYING DIFFUSE AND SPECULAR REFLECTIONS 1863

extending the same notation to the rest of the paper, and considering a general vector under
the operator · as unit vector.

2.2. Reflectance model. In order to formulate the PS problem in a general manner, we
consider the irradiance equation given by the following inner product for the ith light source:

(4) Ii(x,y) = ρ(x,y)ai(x,y,z)
(
n(x,y,z)·hi(li,v)

) 1
c(x,y) ,

where ρ, ai, and c are positive scalar functions representing, respectively, the albedo, the
attenuation of light, and the shininess. The albedo ρ and the shininess c are independent of
the source number, since they are only related to the surface reflectance. In this work, we make
no hypothesis on the albedo and the shininess. The vector function hi = (h1

i , h
2
i , h

3
i ) combines

information about the viewer direction v = v(x, y, z) and the ith light source li = li(x, y, z).
With our aim being to unify diffuse and specular components parameterized by a single-lobe
irradiance equation, we choose hi to be as follows:

(5) hi = li + min

{
1,
|1− c|
ε

}
v.

Here ε is a parameter describing the material of the surface, allowing combination of diffuse
and specular reflectances by describing the continuous transition state between diffuse and
specular component.

Besides being independent from the camera projection model, thanks to the parameter-
ization (2), this new general model can be used to deal with surfaces made by heterogeneous
materials depending on c and ε:

• by choosing c ≡ 1, we obtain the purely diffuse (Lambertian) reflection model;
• setting 0 < c ≤ 1 − ε leads to purely specular reflectance (Blinn–Phong type), where

the size of the specular lobes depends on the value of c;
• the choice 1 − ε < c < 1 provides a transition state between diffuse and specular

component;
• spatially varying reflectances can be modeled by using the space dependency of c.

Beyond the previous well-known settings, challenging spatially varying reflectances can be
modeled by using the piecewise constant space dependency of c over the image domain. This
allows us to tackle the challenging problem of dealing with heterogeneous materials. In fact,
the presented algorithm is capable of simultaneously recovering both z and c.

Moreover, by manipulating the definitions of ai and li, this new model allows one to deal
with well-known light configurations.

Uniform lighting. When ai(x, y, z) ≡ φi ∈ R and li is independent from the coordinates
(x, y, z), it corresponds to the directional lighting model, φi being a scalar parameter repre-
senting the intrinsic intensity of the source.

Point light source. When li(x, y, z) = (ξi, ηi, ζi)− (ξ(x, y), η(x, y), ζ(x, y)), one obtains the
point light source model for a source at position (ξi, ηi, ζi).

Light attenuation. In order to deal with more realistic physical effects, we can also consider
light attenuations due to distance and angular factors (anisotropy) [40], defined, respectively,
by

(6) adi(x, y, z) =
1

|li(x, y, z)|2
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and

(7) aai(x, y, z) = g(li(x,y,z) · pi)

for some anisotropy function g depending on the source type, and where pi is the principal
lighting direction of the source, i.e., its orientation. This function g is usually calibrated by
manufacturers under the form of luminous intensity diagrams. A good approximation holding
for a lot of commercial LEDs is the imperfect Lambertian primary source model, which reads

(8) aai(x, y, z) = (li(x,y,z) · pi)µ.

Lambertian (“isotropic”) sources, which are valid approximations for small angles, are ob-
tained by setting µ = 0, while stronger anisotropy effects can be simulated by increasing the
value of µ. Putting it all together, this yields the following general attenuation factor:

(9) ai(x, y, z) = φi
aai(x, y, z)

|li(x, y, z)|2
.

Despite being empirical, the reflectance model (4) generalizes many previous models used
in PS. In the literature on PS, all these specific situations require a different machinery.
However, we will show in the following that the 3D reconstruction problem can be reformulated
by the same simple quasi-linear PDE, handling the general viewing geometry, reflectance, and
lighting models previously described. Thus, we provide a unified approach to the PS problems
in many real-world scenarios.

The purpose of using a unique irradiance equation for diffuse and specular components is
coherent with having a unique image as input data including both reflections. Since diffuse
and specular component separation is not a reliable procedure to recover a shape made up of
heterogeneous materials, we consider a unified irradiance equation with the aim of extracting
geometric information from both diffuse and, most importantly, specular highlights of the
observed object.

3. The unifying equation. As already shown in [40] the ratio of irradiance equations as
(4) seen as partial differential irradiance equations simplifies the PS problem since it becomes
independent of the albedo and the irrational nonlinearities (normalization of the normal vec-
tor). We now extend this theory to the more realistic case studied in this paper.

3.1. Partial differential irradiance equation ratio. With the aim being to extend such
a methodology to the more general and realistic irradiance equations (4), we divide those
coming from the ith and jth light sources, leading to (10) below. From now on, we neglect
the dependencies to improve the readability of the equations.

Equation for Ij︷ ︸︸ ︷
(Ii)

c

(ai)
c hi · n

=
ρc

|n|︸ ︷︷ ︸
Equation for Ii

=
(Ij)

c

(aj)
c hj · n

.(10)
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By considering the first and the last part of the chain of equalities (10), after some algebra
we obtain the following quasi-linear PDE:

bij(x, y, z) · ∇z(x, y) = sij(x, y, z),(11)

where

bij =
(

(ajIi)
c
(
h

1
j −

x

f
h

3
j

)
− (aiIj)

c
(
h

1
i −

x

f
h

3
i

)
,

(ajIi)
c
(
h

2
j −

y

f
h

3
j

)
− (aiIj)

c
(
h

2
i −

y

f
h

3
i

))
(12)

and

(13) sij =
f + z

f

(
(ajIi)

c h
3
j − (aiIj)

c h
3
i

)
,

a vector field and a scalar field, respectively.
We will call (11) the unifying equation for the PS problem, since it elegantly describes

the interaction between two irradiance scenarios depicted in Ii and Ij , regardless of what the
models are for the camera projection, the surface reflectance, and the type of lighting.

As a preliminary and important result, we initially consider the unifying equation (10)
enhanced by the Dirichlet boundary condition as follows:

(14)

{
bij(x, y, z) · ∇z(x, y) = sij(x, y, z), (x, y) ∈ Ω,
z(x, y) = g(x, y), (x, y) ∈ ∂Ω,

showing that this problem is well-posed in the next section.

3.2. Well-posedness by using the unifying equation. In this part, we focus on proving
the well-posedness of the quasi-linear differential problem (14), which is based on a single
pair of images. We employ the characteristic strip expansion method by drawing inspiration
from [36, 39]. Let us remark that the fundamental improvement of our work with respect to
[40] does not prevent showing the existence and uniqueness of a weak, Lipschitz continuous
solution. Let us start by proving the following result.

Lemma 1. The vector field bij(x, y, z) does not vanish in Ω, that is,

(15) |bij(x, y, z)| 6= 0 ∀(x, y) ∈ Ω, ∀z ∈ C1(Ω).

Proof. We prove it by contradiction in the most general case by assuming that there exists
a point (x̃, ỹ) ∈ Ω and a function z ∈ C1(Ω) such that

(ajIi)
c
(
h

1
j −

x̃

f
h

3
j

)
− (aiIj)

c
(
h

1
i −

x̃

f
h

3
i

)
= 0,(16)

(ajIi)
c
(
h

2
j −

ỹ

f
h

3
j

)
− (aiIj)

c
(
h

2
i −

ỹ

f
h

3
i

)
= 0,(17)

where all the functions are evaluated at point (x̃, ỹ), i.e., Ii,j = Ii,j(x̃, ỹ), h
1,2,3
i,j = h

1,2,3
i,j (x̃, ỹ, z̃)

and z = z(x̃, ỹ).
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In order to simplify the notation, we remove the dependency on (x̃, ỹ) and consider fixed
values for the involved quantities.

By considering the image irradiance equation (4) for (16) and (17), we get

(aiajρ)cn · hi
(
h

1
j −

x

f
h

3
j

)
− (aiajρ)cn · hj

(
h

1
i −

x

f
h

3
i

)
= 0,(18)

(aiajρ)cn · hi
(
h

2
j −

y

f
h

3
j

)
− (aiajρ)cn · hj

(
h

2
i −

y

f
h

3
i

)
= 0,(19)

which can be simplified as follows:

n ·
(
hi

(
h1
j −

x

f
h3
j

)
− hj

(
h1
i −

x

f
h3
i

))
= 0,(20)

n ·
(
hi

(
h2
j −

y

f
h3
j

)
− hj

(
h2
i −

y

f
h3
i

))
= 0.(21)

If we solve the system made by (20) and (21) with respect to zx and zy (in n as in (2)), we
get the following solution:

z∗x =
(h2
ih

3
j − h3

ih
2
j )(f + z)

fh2
ih

1
j − fh1

ih
2
j + h3

ih
2
jx− h2

ih
3
jx− h3

ih
1
jy + h1

ih
3
jy
,(22)

z∗y = −
(h1
ih

3
j − h3

ih
1
j )(f + z)

fh2
ih

1
j − fh1

ih
2
j + h3

ih
2
jx− h2

ih
3
jx− h3

ih
1
jy + h1

ih
3
jy
.(23)

Once we compute the image values substituting z∗x and z∗y into (4), we get Ii = 0 and Ij = 0,
which clearly contradicts the assumption of having nonnull image data to reconstruct the
shape.

In this theoretical study, we will assume that there is no such missing data. We will later
propose a variational approach to handling this issue.

Now, we continue the proof of the last fact, which completes the proof for the well-
posedness. Let us introduce this result by remarking that if γ ∈ Ω is a regular curve where
∇z is discontinuous (jump discontinuity, since we are assuming z as Lipschitz continuous),
then the images are discontinuous on γ; see Figure 1. Then we assume that γ is given as well.
Furthermore, we have that γ is the curve of discontinuity also for b and s since they depend
explicitly on the images.

Theorem 1. Let γ(t) be a regular curve of discontinuity for the image functions. Let
(x̃, ỹ) ∈ γ(t), and let nγ(x̃, ỹ) be the outgoing normal with respect to the set Ω+ (located
on the right of γ(t)); then the following inequality holds:

(24)

[
lim

(x,y)→(x̃,ỹ)
(x,y)∈Ω+

bij(x, y, z(x, y)) · nγ(x̃, ỹ)

][
lim

(x,y)→(x̃,ỹ)
(x,y)∈Ω−

bij(x, y, z(x, y)) · nγ(x̃, ỹ)

]
≥ 0.

Proof. We start by considering the following quantities for both images Ii and Ij :

(25) lim
(x,y)→(x̃,ỹ)
(x,y)∈Ω+

Ii,j(x, y) = I+
i,j , lim

(x,y)→(x̃,ỹ)
(x,y)∈Ω−

Ii,j(x, y) = I−i,j ,
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⌦+

⌦�

(ex, ey)

n�
t�

�(t)

Figure 1. The two subsets Ω+ and Ω− separated by the curve γ(t) contain the well-defined classical solution.
The vectors nγ and tγ are, respectively, the normal and the tangent vectors of γ(t).

which define the vector field b as follows:

lim
(x,y)→(x̃,ỹ)
(x,y)∈Ω+

bij(x, y, z) =

(
(ajI

+
i )c
(
h

1
j −

x̃

f
h

3
j

)
− (aiI

+
j )c
(
h

1
i −

x̃

f
h

3
i

)
,

(ajI
+
i )c
(
h

2
j −

ỹ

f
h

3
j

)
− (aiI

+
j )c
(
h

2
i −

ỹ

f
h

3
i

))
= (b+1 , b

+
2 ),

lim
(x,y)→(x̃,ỹ)
(x,y)∈Ω−

bij(x, y, z) =

(
(ajI

−
i )c
(
h

1
j −

x̃

f
h

3
j

)
− (aiI

−
j )c
(
h

1
i −

x̃

f
h

3
i

)
,

(ajI
−
i )c
(
h

2
j −

ỹ

f
h

3
j

)
− (aiI

−
j )c
(
h

2
i −

ỹ

f
h

3
i

))
= (b−1 , b

−
2 ).

Now, after calling nγ at point (x̃, ỹ) as (nγ1 , n
γ
2) and the components of the vector field

bij(x, y, z) as (b+1 , b
+
2 ) and (b−1 , b

−
2 ) in each limit case, we write (24) as follows:

(26) b+1 b
−
1 (nγ1)2 + b+2 b

−
2 (nγ2)2 + (b+1 b

−
2 + b+2 b

−
1 )nγ1n

γ
2 ≥ 0.

Then, after substituting (4) into the previous inequality, we have
[
(aiajρ)cn+ · hi

(
h

1
j −

x

f
h

3
j

)
− (aiajρ)cn+ · hj

(
h

1
i −

x

f
h

3
i

)]

[
(aiajρ)cn− · hi

(
h

1
j −

x

f
h

3
j

)
− (aiajρ)cn− · hj

(
h

1
i −

x

f
h

3
i

)]
(nγ1)2

+

[
(aiajρ)cn+ · hi

(
h

2
j −

y

f
h

3
j

)
− (aiajρ)cn+ · hj

(
h

2
i −

y

f
h

3
i

)]

[
(aiajρ)cn− · hi

(
h

2
j −

y

f
h

3
j

)
− (aiajρ)cn− · hj

(
h

2
i −

y

f
h

3
i

)]
(nγ2)2

+

([
(aiajρ)cn+ · hi

(
h

1
j −

x

f
h

3
j

)
− (aiajρ)cn+ · hj

(
h

1
i −

x

f
h

3
i

)]

[
(aiajρ)cn− · hi

(
h

2
j −

y

f
h

3
j

)
− (aiajρ)cn− · hj

(
h

2
i −

y

f
h

3
i

)]

+

[
(aiajρ)cn+ · hi

(
h

2
j −

y

f
h

3
j

)
− (aiajρ)cn+ · hj

(
h

2
i −

y

f
h

3
i

)]
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[
(aiajρ)cn− · hi

(
h

1
j −

x

f
h

3
j

)
− (aiajρ)cn− · hj

(
h

1
i −

x

f
h

3
i

)])
nγ1n

γ
2 ≥ 0,

which simplifies to the following inequality:

[
n+ · hi

(
h1
j −

x

f
h3
j

)
− n+ · hj

(
h1
i −

x

f
h3
i

)][
n− · hi

(
h1
j −

x

f
h3
j

)
− n− · hj

(
h1
i −

x

f
h3
i

)]
(nγ1)2

+

[
n+ · hi

(
h2
j −

y

f
h3
j

)
− n+ · hj

(
h2
i −

y

f
h3
i

)][
n− · hi

(
h2
j −

y

f
h3
j

)
− n− · hj

(
h2
i −

y

f
h3
i

)]
(nγ2)2

+

([
n+ · hi

(
h1
j −

x

f
h3
j

)
− n+ · hj

(
h1
i −

x

f
h3
i

)][
n− · hi

(
h2
j −

y

f
h3
j

)
− n− · hj

(
h2
i −

y

f
h3
i

)]

+

[
n+ · hi

(
h2
j−

y

f
h3
j

)
−n+ · hj

(
h2
i−

y

f
h3
i

)][
n− · hi

(
h1
j−

x

f
h3
j

)
−n− · hj

(
h1
i−

x

f
h3
i

)])
nγ1n

γ
2 ≥ 0.

(27)

In order to evaluate the difference between the two image values, we define the following
quantities:

i+i,j = n+ · hi,j =

(
∇+z,−f + z

f
− (x, y) · ∇+z

f

)
· hi,j ,(28)

i−i,j = n− · hi,j =

(
∇−z,−f + z

f
− (x, y) · ∇−z

f

)
· hi,j ,(29)

where ∇+z = (z+
x , z

+
y ) and ∇−z = (z−x , z

−
y ) are the limits of the gradient of z to (x̃, ỹ) from

Ω+ and Ω−, respectively. Now, we preliminarily substitute the first part of (28) and (29) into
(27), yielding the inequality

[
i+i

(
h1
j −

x

f
h3
j

)
− i+j

(
h1
i −

x

f
h3
i

)][
i−i

(
h1
j −

x

f
h3
j

)
− i−j

(
h1
i −

x

f
h3
i

)]
(nγ1)2

+

[
i+i

(
h2
j −

y

f
h3
j

)
− i+j

(
h2
i −

y

f
h3
i

)][
i−i

(
h2
j −

y

f
h3
j

)
− i−j

(
h2
i −

y

f
h3
i

)]
(nγ2)2

+

([
i+i

(
h1
j −

x

f
h3
j

)
− i+j

(
h1
i −

x

f
h3
i

)][
i−i

(
h2
j −

y

f
h3
j

)
− i−j

(
h2
i −

y

f
h3
i

)]

+

[
i+i

(
h2
j −

y

f
h3
j

)
− i+j

(
h2
i −

y

f
h3
i

)][
i−i

(
h1
j −

x

f
h3
j

)
− i−j

(
h1
i −

x

f
h3
i

)])
nγ1n

γ
2 ≥ 0.

(30)

Finally, once we write one image value i− (for example) with respect to i+ as

i−i,j = i+i,j + n− · hi,j − n+ · hi,j = i+i,j +

(
∇−z,−f + z

f
− (x, y) · ∇−z

f

)
· hi,j

−

(
∇+z,−f + z

f
− (x, y) · ∇+z

f

)
· hi,j = i+i,j +

(
δ,−(x̃, ỹ) · δ

f

)
· hi,j ,
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where δ = (δ1, δ2) = (z−x − z+
x , z

−
y − z+

y ), we get the following inequality:

[
f
(
i+i (h1

jn
γ
1 + h2

jn
γ
2)− i+j (h1

in
γ
1 + h2

in
γ
2)
)

+ (h3
j i

+
i − h

3
i i

+
j )(nγ1 x̃+ nγ2 ỹ)

]
(31)

[
f
(
i+i (h1

jn
γ
1 + h2

jn
γ
2)− i+j (h1

in
γ
1 + h2

in
γ
2)
)

+ (h3
j i

+
i − h

3
i i

+
j )(nγ1 x̃+ nγ2 ỹ)(32)

+ (δ2n
γ
1 − δ1n

γ
2)
(
f2(h1

jh
2
i − h1

ih
2
j ) + f(h2

ih
3
j x̃− h2

jh
3
i x̃+ h1

jh
3
i ỹ − h1

ih
3
j ỹ)
)]
≥ 0.(33)

By noticing that

(34) δ2n
γ
1 − δ1n

γ
2 = nγ1

(
z−y − z+

y

)
− nγ2

(
z−x − z+

x

)
= −z−x n

γ
2 + z−y n

γ
1 −

(
− z+

x n
γ
2 + z+

y n
γ
1

)

= lim
(x,y)→(x̃,ỹ)
(x,y)∈Ω+

∇(−nγ2 ,n
γ
1 )z(x, y)− lim

(x,y)→(x̃,ỹ)
(x,y)∈Ω−

∇(−nγ2 ,n
γ
1 )z(x, y) = ∇+

tγz −∇
−
tγz = 0,

due to the orthogonality of (−nγ2 , n
γ
1) = tγ with respect to the normal vector (nγ1 , n

γ
2) of the

discontinuity curve γ(t), we get the inequality verified independently from c and h.

From a theoretical point of view, Lemma 1 and Theorem 1 guarantee the existence of a
unique weak (Lipschitz) solution for (14), extending the procedure adopted in [36, 39, 40].
Such a procedure is very constructive since it is based on the characteristic strip expansion,
allowing a fast approximation of the surface starting from the known Dirichlet boundary
condition across the whole image domain.

We emphasize that this is a remarkable result, due to the fact that this entire formu-
lation, being independent of such fundamental parameters as c and h, could potentially be
generalized for any isotropic BRDFs. That is, since the previous theorem does not depend
on the particular choice of c and h, we wonder what would be the most suitable choice of
those parameters in order to deal with an irradiance equation that is as close as possible to a
physical BRDF. In other words,

(35) [c∗(x, y, z),h∗(x, y, z)] = argmin
c,h

‖I(c,h)− IBRDF ‖,

where I(c,h) is as presented in (4) and IBRDF is intended as a more physically reliable BRDF,
such as, for example, the complete Blinn–Phong model or the Cook–Torrance one. Both of
these irradiance equations will be used in the experimental part (section 5.3) for comparison
purposes and denoted, respectively, IBP and ICT .

We leave this part as an interesting future work.

4. Numerics on the unifying equation. In this section we present two conceptually differ-
ent numerical solvers for the unifying equation. The first, based on the fast-marching scheme,
is an extension of the differential treatment introduced in [39] and adopted in [40, 57, 38].
However, since such an approximation method uses a single pair of images for each pixel, it
remains a theoretical framework which lacks robustness when it comes to real-world data.
Indeed, this procedure turns out to be too sensitive to noise. In particular, especially when
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mostly specular images are taken into account, artifacts appear by the direction of propa-
gation for the characteristic strip expansion [38]. Hence, we introduce a second solver that
relies on a variational approach aimed at increasing the robustness of the shape recovery.
This plays a basic role since specular highlights provide a more difficult scenario in which the
low signal-to-noise ratio attained at the darker image regions renders the reconstruction more
susceptible to pixel noise.

In the following preliminary result, we show that each pair of vector fields coming in turn
from different pairs of images is a linearly independent vector in the image plane.

Theorem 2. Let bij(x, y, z) be the vector field of (12) where (i, j) ∈ Γ. Then ∀(i1, j1), (i2, j2)
∈ Γ ∀(x, y) ∈ Ω̄ and ∀z ∈ Lip(Ω̄) we have

(36) bi1j1(x, y, z) · bi2j2(x, y, z) 6= ±|bi1j1(x, y, z)||bi2j2(x, y, z)|.

Proof. In order to avoid too many parameters, let us fix the indices (i1, j1) and (i2, j2)
as (1, 2) and (1, 3), respectively. We prove by contradiction that b(1,2) and b(1,3) are never
parallel, assuming that there exist a point (x̃, ỹ) ∈ Ω and a Lipschitz function z̃ such that

(37) b(1,2)(x̃, ỹ, z̃) · b(1,3)(x̃, ỹ, z̃) = ±|b(1,2)(x̃, ỹ, z̃)||b(1,3)(x̃, ỹ, z̃)|.

To improve readability we omit the dependence on (x̃, ỹ, z̃). Now, by squaring both sides, we
have

(38)
(
b1(1,2)b

1
(1,3) + b2(1,2)b

2
(1,3)

)2
=
((
b1(1,2)

)2
+
(
b2(1,2)

)2)((
b1(1,3)

)2
+
(
b2(1,3)

)2)
.

Using the terms from (12), replacing the respective irradiance equation in (4) for I1, I2, and
I3, and eliminating the nonnull quantities like the albedo and the light attenuations, this can
be rewritten as follows:

n̄ · h̄3(fh̄1
1h̄

2
2 − fh̄2

1h̄
1
2 + h̄3

1h̄
2
2x− h̄2

1h̄
3
2x+ h̄2

1h̄
3
2y − h̄3

1h̄
1
2y)

+ n̄ · h̄2(fh̄2
1h̄

1
3 − fh̄1

1h̄
2
3 − h̄3

1h̄
2
3x+ h̄2

1h̄
3
3x− h̄1

1h̄
3
3y + h̄3

1h̄
1
3y)

+ n̄ · h̄1(fh̄1
2h̄

2
3 − fh̄2

2h̄
1
3 + h̄3

2h̄
2
3x− h̄2

2h̄
3
3x+ h̄1

2h̄
3
3y − h̄3

2h̄
1
3y) = 0.

After noticing that all the terms in the previous equation are divided by the same nonnull
quantities as |n| and |hi| for i = 1, 2, 3, we can consider the nonnormalized vectors (i.e., we
can remove the bar on top of each factor). Then, substituting (2) for the normal like n, we
get

(39) h1
1h

3
2h

2
3 − h3

1h
1
2h

2
3 − h1

1h
2
2h

3
3 + h2

1h
1
2h

3
3 + h3

1h
2
2h

1
3 − h2

1h
3
2h

1
3 = 0,

arriving at the final contradiction, since it means that the light sources had to be placed at
collinear points, which is a condition commonly excluded in the PS field.

This result says that at each point the vector fields bi1j1 and bi2j2 span the image plane
in every direction for every surface z. Furthermore, this result allows us to adopt the same
strategy presented in [39], driving the characteristic strip expansion to reconstruct the surface.
As an experimental consequence, we consider this result important also for the variational
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approach. In fact, the hypothesis of noncollinear light sources must still be valid for the
functional to minimize.

Let us define the discretized image domain as Ω̄d = Ωd∪∂Ωd as the grid of points (xh, yk),
where xh = h∆x and yk = k∆y with h = −n, . . . , n and k = −m, . . . ,m.

Let us consider N images by knowing the respective light positions. By stacking the(
N
2

)
vector fields bij , such that (i, j) ∈ Γ = {{1, . . . , N}2 and i < j}, into a matrix field

B : Ω → R2×(N2 ), and the
(
N
2

)
scalar fields sij into a vector field s : Ω → R(N2 ), our new

mathematical formulation of the PS problem with N images reads as the following system of
unifying equations:

(40) B>∇z = s.

4.1. The fast-marching approach. In order to use the characteristic strip approach, we
linearly combine the available

(
N
2

)
unifying equations in (40) with the aim of driving the

characteristic expansion along the most suitable path across the image domain, as introduced
in [39]. The numerical strategy will depend on the direction we want by choosing image pairs
that have vector fields which allow different flow directions.

4.1.1. Upwind numerical scheme. We derive the upwind numerical discretization of (11)
after introducing its vanishing viscosity formulation as follows:

(41) bij(x, y, z) · ∇z(x, y) = εx
∂2z

∂x2
+ εy

∂2z

∂y2
+ sij(x, y, z),

where εx = |b1ij |∆x
2 and εy = |b2ij |

∆y

2 . That yields the following discretized equation:

(42) b1h,k
Zh+1,k − Zh−1,k

2∆x
+ b2h,k

Zh,k+1 − Zh,k−1

2∆y

= |b1h,k|
∆x

2

Zh+1,k − 2Zh,k + Zh−1,k

∆2
x

+ |b2h,k|
∆y

2

Zh,k+1 − 2Zh,k + Zh,k−1

∆2
y

+ sh,k,

where we denote bij(xh, yk, z(xh, yk)) as bh,k = (b1h,k, b
2
h,k) and sij(xh, yk) as sh,k by omitting

the dependency on the pair of images (i, j).
After some algebra, we get the following fixed point scheme:

(43) Z
(t+1)
h,k =

|b1h,k(Z
(t)
h,k)|Z

(t)

i−sgn (b1h,k(Z
(t)
h,k)),k

+ |b2h,k(Z
(t)
h,k)|Z

(t)

h,k−sgn (b2h,k(Z
(t)
h,k))

+ ∆sh,k(Z
(t)
h,k)

|b1h,k(Z
(t)
h,k)|+ |b2h,k(Z

(t)
h,k)|

,

where ∆x = ∆y = ∆. The well-posedness of (43) is ensured by Lemma 1 since it guarantees

that the sum |b1h,k(Z
(t)
h,k)|+ |b

2
h,k(Z

(t)
h,k)| does not vanish.

We must emphasize one severe limitation of the characteristic strip expansion method: it
is not suitable for approximating several parameters for (42). In the next part we show that
the proposed variational method can approximate simultaneously several parameters as z(x, y)
and c(x, y). In the experimental section a quantitative comparison shows the superiority of
the following variational method while dealing with noisy images and shadows.
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4.2. The variational approach. In order to enhance robustness to noise and outliers
such as shadows or nondifferentiable elements of the surface, we treat such effects as sparse
phenomena and rely on l1 optimization [27, 50]. Contrarily to the work by Ikehata et al. [27],
we consider global l1 optimization over the whole image domain Ω and all image ratios (i, j).
Thus, we solve the quasi-linear system of PDEs (40) in the L1 sense by considering the
following optimization problem:

(44) min
z

∥∥∥B(z)>∇z − s(z)
∥∥∥
L1(Ω)

,

where L1(Ω) is the traditional space of functions whose absolute value is Lebesgue integrable.
Some advantages of this formulation over state-of-the-art approaches are listed below.
Merging PS data. We remark that most of the previous works proposing robust approaches

to the PS problem, e.g., [27, 42, 50, 58, 63], derived the mathematical formulation by con-
sidering each irradiance equation independently of the others. Since our model is derived by
coupling irradiance equations considering their ratio, the unifying equation represents a more
suitable mathematical tool for the PS problem. In fact, it exploits the single view acquisition,
simplifying the complexity of the problem due to heterogeneous materials.

Robustness. An important advantage directly follows from this coupling, one that is based
on the number of unifying equations when solving PS with N > 2. In fact, most of the
approaches attempt to solve a linear system having N equations provided by the irradiance
equation for each image. Instead, in our formulation, the number of equations to be solved
does not increase linearly with the number of images, since N images yield

(
N
2

)
unifying

equations. Clearly these equations tend to be redundant, providing a natural framework for
robust recovery of the shape. Hence, robust estimators enforcing sparsity of the residual are
well adapted.

Colored scenes and materials. We remark that color images are no longer a problem: since
each color channel provides one unifying equation, they can be stacked in the same way as
above. This is another remarkable result since we do not need to assume that either the
source or the material is monochromatic. This assumption is usually introduced because
it is impossible to separate the colored light intensity from the colored albedo. Since our
formulation is independent of the albedo, only the directions and intensities of the light sources
have to be explicitly considered. This means that, for real-world applications, calibration of
the light must be performed with respect to each color channel.

Missing data. If, for some pixel (x, y), no information is available in any of the images
Ii(x, y), i ∈ {1, . . . , N}, due, for instance, to a null albedo (no light reflected at all), the
corresponding set of unifying equations (40) is not informative, since it reads as 0 = 0. Thus,
there may be points on the surface that are left undetermined. Denoting by Ωmissing the set

of such points (which is easily computed a priori by thresholding the values of
∑N

i=1 Ii), we
can deal with this issue by modifying the definition of B and s according to

B =




1 0
0 1
0 0


 over Ωmissing,(45)

s = 0 over Ωmissing,(46)

D
ow

nl
oa

de
d 

02
/0

3/
17

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

UNIFYING DIFFUSE AND SPECULAR REFLECTIONS 1873

which will enforce ∇z = 0 over this subset Ωmissing. This can be seen as a built-in hole
filling of the noninformative areas to ensure some smoothness and prevent artifacts. This can
be very useful when dealing with very specular objects, since in such cases the information
is concentrated in small areas: performing such self-filling will smoothly ensure continuity
between the areas where shape reconstruction is possible. Hence, it becomes possible to
reconstruct specular surfaces with few images, while several hundreds are used in state-of-the
art approaches [26].

We emphasize that this variational problem is conceptually very different from the state-of-
the-art sparsity-enhancing technique [27], where l1 optimization is considered locally in order
to approximate the normal to the surface at each pixel. In fact, our formulation considers the
global minimum over the image domain, having as unknown the depth. Proceeding thusly, it
is less likely to produce artifacts in, for instance, areas with very low intensity in all images,
since they will be implicitly smoothed by the global minimization procedure. Furthermore,
it allows one to directly recover piecewise-smooth surfaces without relying on a posteriori
solvers, which are either fast but not robust to discontinuities [53], or robust to discontinuities
but slow [16]. Our approach using global l1 minimization is closer to what has been studied
in [50], but with the major difference being that the initial PDE (40) is quasi-linear. Similar
quasi-linear PDEs were also used in [51, 54], but using only least-squares optimization; this
led to highly efficient numerics, but they were not as robust as the proposed l1 optimization.

4.3. Orthographic camera and directional lightings. In the specific case of orthographic
cameras and directional lightings, neither B nor s depends on z. Hence, the functional to
minimize is not coercive since it depends only on ∇z, and not on z. Yet the knowledge of
z in just one point suffices to make it coercive. Alternatively, any least-squares prior z0 on
the solution can be introduced, turning the initial problem (44) into its zero-order Tikhonov
regularized version,

(47) min
z

∥∥∥B>∇z − s
∥∥∥
L1(Ω)

+ λ ‖z − z0‖2L2(Ω) ,

with λ > 0 very small in order not to bias the results (we systematically used λ = 10−9).
In our experiments, z0 is a uniform function, which basically fixes the mean value of z, and
hence the mean distance from the object to the camera. Dealing with the (functional) L1-
norm requires a totally different machinery from [27], since it involves the partial derivatives
of z. In this view, it is convenient to rewrite (47) under its ADMM form [5]:

(48)





min
z,g
‖g‖L1(Ω) + λ ‖z − z0‖2L2(Ω)

s.t. g = B>∇z − s.

Introducing the scaled dual variable u, this new problem can be solved using the alternating
direction scheme:

gk+1 = argmin
g
‖g‖L1(Ω) + α

∥∥∥g −
(
B>∇zk − s− uk

)∥∥∥
2

L2(Ω)
,(49)

zk+1 = argmin
z

λ

α
‖z − z0‖L2(Ω) +

∥∥∥B>∇z −
(
gk+1 + s + uk

)∥∥∥
2

L2(Ω)
,(50)

uk+1 = uk + gk+1 −B>∇zk+1 + s(51)
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starting from (z0,g0,u0) = (z0,B
>∇z0 − s,0). This scheme can be proven to converge from

almost any descent parameter α, whose choice only affects the convergence rate. Equation
(49) can be solved pointwise by shrinkage, and (50) by Gauss–Seidel iterations. By discretizing
directly (50) and then writing the optimality condition, we avoid introducing any boundary
condition, while state-of-the-art differential methods for PS require the depth to be known on
the boundary [10].

4.4. Perspective viewing and lighting geometry. In the case of perspective camera
and/or point light sources, the fields B = B(z) and s = s(z) depend explicitly on the unknown
z. To handle this issue, we consider the semi-implicit scheme

zk+1 = argmin
z

∥∥∥B(zk)>∇z − s(zk)
∥∥∥
L1(Ω)

+ λ
∥∥∥z − zk

∥∥∥
2

L2(Ω)
(52)

starting from an initial solution z0 = z0. Proof of convergence towards a local minimum is left
for future work, but we experimentally observed that it was reached in only a few iterations.

4.5. Approximating the shininess parameter c. Since the unifying irradiance equation
allows a simultaneous parameterization of diffuse and specular reflectance, the approximation
of the shininess coefficient c is an important achievement for the material understanding of
the depicted scene. In fact, the shininess parameter can be determined within the process
by enforcing sparsity residuals on the ratio equations (10). A typical iterative scheme can be
written as

(53)





zk+1 = argmin
z

∥∥B(zk, ck)>∇z − s(zk, ck)
∥∥
L1(Ω)

,

ck+1 = argmin
c

∥∥∥
(
Iiaj(z

k)

Ijai(zk)

)c
− hi(z

k,ck)·n(zk)

hj(zk,ck)·n(zk)

∥∥∥
L1(Ω)

,

where the z update can be obtained as described earlier.
Regarding the c update (53), it comes down to solving in a L1 sense:

(54)

(
Iiaj(z

k)

Ijai(zk)

)c
=

hi(z
k, ck) · n(zk)

hj(zk, ck) · n(zk)
.

Taking the logarithm of both members, this is rewritten as

(55) c log ((Iiaj)/(Ijai)) = log
((
hi · n

)
/(hj · n)

)
.

Solving this equation in the L1 sense, the c update is given by

(56) ck+1 =median
{

log
((
hi · n

)
/(hj · n)

)
/ log ((Iiaj)/(Ijai))

}
.

We note that (56) allows for estimating one c value per pixel, and thus it is possible to
deal with scenes containing objects of various reflectances without the need for performing any
segmentation. However, if a scene is known to contain a single object of uniform reflectance,
c can be set to the mean of c to get a more accurate estimate.

As challenging proof of concept, we demonstrate the working principle of our method on
synthetic data from the MERL dataset [35] as well as real image scenario.
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5. Experiments. We now demonstrate experimentally, both on synthetic and real-world
datasets, the benefits of using the proposed approaches while showing the superiority of the
variational method over the characteristics solver and comparing them with other approaches.

5.1. Quantitative evaluation on synthetic datasets. To quantitatively evaluate the ro-
bustness of our method, we first performed tests on synthetic data. To provide fair comparison
with state-of-the-art methods, we considered orthographic projection (f = ∞), directional
lightings, and two well-established reflectance models, namely, the purely diffuse Lambertian
model (c = 1) and the purely specular Blinn–Phong model (c = 0.4). In both cases, in
order to evaluate the robustness to outliers, we simulated self-shadowing effects, and in the
case of Lambertian reflectance we also added specular spots (according to the bichromatic
Blinn–Phong model).

To create the data, we used the seven real-world sets of normals provided in the Harvard
dataset,1 which we integrated into a depth map using our solver (setting B as in (45)). Then
the normals were recomputed by finite differences and a synthetic albedo map was computed
by overlapping the hestain.png built-in image from MATLAB. Finally, the images were
generated under 8 different directional lightings (Figure 2).

Figure 2. Synthetic images used for quantitative evaluation. Top: images simulated according to Lambert’s
law, with self-shadowing effects and additive specular spots. Both of these effects are outliers to Lambert’s law,
and hence are useful to evaluate the robustness of our method to real-world outliers. Bottom: specular images
computed using c = 0.4, so as to produce wide lobes.

We first evaluated the performances of the proposed variational recovery of the depth with
respect to the presence of outliers (self-shadows and specular spots) and compared it to the
traditional least-squares [62] and state-of-the-art l1 [27] estimation of the normals. Then we
evaluated its ability to recover objects whose reflectance is purely specular, and compared
it with the results obtained using state-of-the-art robust Lambertian PS [27] and general
reflectance PS [26].

In both cases, we evaluated the mean error (ME) and the standard deviation (std) on the
orientation of the normals (computing in our case the normals by the same finite differences
as above) and on the depth (for [62] and [27], and the depth was computed with the same
l1 solver we used to generate the ground truth). All codes were written in MATLAB and
executed on an i7 at 3.4 GHz. We considered as stopping criteria reaching a relative residual
inferior to 10−4. The results shown in Tables 1 and 2 indisputably prove both the robustness
of our approach and its ability to reconstruct specular objects with few images.

1http://vision.seas.harvard.edu/qsfs/Data.html
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Table 1
Robustness to outliers, for least-squares estimation of the normals [62], l1 estimation of the normals [27],

and the proposed l1 estimation of the depth, on synthetic data with orthographic projection, Lambertian re-
flectance with self-shadows and specular spots. We show the error on the normals orientations n in degrees and
the absolute error on the depth z in pixels. Our method systematically outperforms state-of-the-art methods
regarding robustness to outliers: considering the depth, rather than the normals, seems to improve the results
because the inherent smoothing it brings will tend to limit the appearance of artifacts, for instance, in low-albedo
areas. It is remarkable that, though the normals are approximated using finite differences, after running our
method, they are more accurate than those recovered using dedicated methods.

Cat Frog
n z n z

ME std ME std ME std ME std

[62] 7.7 4.6 19 15 6.6 4.0 14 12

[27] 6.7 5.3 17 13 5.7 4.3 12 11

Ours 6.0 5.7 13 10 4.6 5.1 9.1 8.8

Hippo Lizard
n z n z

ME std ME std ME std ME std

[62] 8.3 5.5 23 15 7.6 4.8 13 9.2

[27] 7.2 6.0 21 14 7.0 5.8 12 8.6

Ours 6.9 6.5 20 11 6.9 5.9 12 8.5

Pig Scholar Turtle
n z n z n z

ME std ME std ME std ME std ME std ME std

[62] 7.1 4.5 13 12 6.8 4.2 21 11 7.4 5.0 9.3 8.8

[27] 6.3 5.0 12 11 5.7 4.5 18 10 6.6 5.5 8.5 8.7

Ours 5.8 5.6 10 9.2 5.1 4.8 13 7.4 6.5 6.2 7.6 8.0

5.2. Handling arbitrary reflectances. In this section, we question the ability of the pro-
posed BRDF model (4) to handle real-world reflectances (Figures 3 and 4). To this purpose,
we recovered the shape of a piece of sphere rendered according to the BRDFs of the MERL
database [35]. First, we applied the proposed variational scheme using N = 56 images while
imposing c = 1; some partly retroreflective materials (pickled-oak-256) are handled since
this effect can be considered an outlier. However, since many materials in this database are
mostly specular, it is not realistic to assume that specularities are outliers to a diffuse model;
hence the slopes are overestimated in most cases (alum-bronze). On the other hand, when
simultaneously estimating the shape and the reflectance, as discussed in section 4.5, most
materials of the database are reasonably recovered. Notable exceptions include very dark
materials (black-obsidian) or highly retroreflective materials (polyethylene).

We also used this dataset to perform experiments on the required number of input images.
Figure 3 shows that reliable 3D reconstruction results of highly specular materials are obtained
from as few as twenty images. This has to be compared with the hundreds of images used
in state-of-the-art approaches [26]: reducing so much the required number of inputs is made
possible by increasing quadratically the number of equations due to image ratios, and by using
robust variational recovery.
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Table 2
Specular surface reconstruction. We compare the results of robust Lambertian estimation of the normals

[27], general isotropic reflectance estimation of the normals [26], and the proposed method (c = 0.4) on the
same data as in Table 1, but with purely specular images. Since considering purely specular reflectance is
significantly different from assuming outliers to the Lambertian model, it is no surprise that [27] performs
poorly. Given the low number of images we take into account, even the general isotropic reflectance method
from [26] fails to recover consistent normals in areas where little information is available, though such artifacts
tend to be smoothed after integration. On the other hand, since our algorithm uses an explicit BRDF model,
and because the proposed PDE/variational approach tends to smooth artifacts, our method provides accurate
3D reconstruction even with few data.

Cat Frog
n z n z

ME std ME std ME std ME std

[27] 8.5 5.3 17 13 7.2 4.7 13 11

[26] 11 6.1 12 9.6 9.7 5.3 11 7.6

Ours 2.4 1.1 7.9 4.1 2.3 1.0 5.9 4.1

Hippo Lizard
n z n z

ME std ME std ME std ME std

[27] 8.9 6.0 19 14 8.3 5.3 10 7.8

[26] 11 6.6 15 10 11 6.3 9.1 6.3

Ours 2.8 1.2 7.9 5.3 3.2 1.1 15 7.7

Pig Scholar Turtle
n z n z n z

ME std ME std ME std ME std ME std ME std

[27] 9.0 5.2 14 11 8.1 4.9 20 12 8.5 5.8 10.9 8.6

[26] 11 6.6 13 8.4 11.2 6.4 21 13 11 6.3 13 8.8

Ours 2.6 1.1 5.0 3.4 3.0 1.0 11.8 8.6 3.1 1.2 6.8 4.3
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N = 56, c = 1

N = 56, autom. c

N = 23, autom. c

N = 16, autom. c

N = 11, autom. c

Figure 3. RMSE on the depth as a function of the BRDF. Most specular materials are correctly handled
with a dozen images and automatic reflectance estimation.
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pickled-oak-260 pvc alum-bronze

# 1 #2 #10

two-layer-silver black-obsidian polyethylene

#24 #83 #97

Figure 4. 3D reconstruction results for several materials from the MERL database, sorted according to
their ranking in Figure 3. Bottom row shows the ground-truth surface and reflectance; middle row shows the
shape recovered while estimating automatically c using (53); top row shows the results with c = 1.

5.3. Synthetic experiments comparing with double-lobe BRDFs. We generated more
challenging synthetic datasets by relaxing the assumptions of the orthographic viewing ge-
ometry and the directional lighting. For that, we considered a virtual camera of 12mm focal
length placed around 70mm away from an object of size around 30mm. In addition, we
employed more realistic shading models, namely, full Blinn–Phong (BP) and Cook–Torrance
(CT). More precisely, the assumed irradiance equation for the full Blinn–Phong model is
given by

(57) IBP = a(ρs(N ·H)m + ρd(N · L)),

where ρs is specular albedo, ρd is diffuse albedo (ρs+ρd = 1), a is the light attenuation defined
in (9), and m = 10 is the specularity coefficient. We note that (57) is quite different from our
irradiance equation (4), as it has separate lobes for the diffuse and the specular reflection.

We also considered the Cook–Torrance reflectance model given by

ICT = a

(
ρs

FDG

π(N · L)(N · V )
+ ρd(N · L)

)
, where(58)

F = F0 + (1− F0)(1− (V ·H))5,(59)

D =
1

πR2(N ·H)4
e

(
(N·H)2−1

R2(N·H)2

)
,(60)

G = min

(
1,

2(N ·H)(N · V )

(V ·H)
,
2(N ·H)(N · L)

(L ·H)

)
,(61)

setting F0 = 0.75, R = 0.09 in the experiments.
For each reflection model we performed two experiments, one with equal specular and

diffuse albedos (ρs = ρd = 0.5) and one with mostly specular (ρs = 0.75, ρd = 0.25). This was
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done in order to test our single-lobe BRDF on the more realistic scenario of additive specular
and diffuse reflectances.

Each experiment contained 6 images of resolution 800×600 pixels with light sources placed
on a ring around the camera at 50mm. The images were rendered with OpenGL code adapted
from http://renderman.pixar.com.

The results are shown in Figure 5. For quantifying the reconstruction quality, we use two
metrics: the mean error in normal orientation (NE) and the mean error in depth (ZE).

BP (ρs = ρd) BP (ρs = 4ρd) CT (ρs = ρd) CT (ρs = 4ρd)

NE=10.6o NE=19.9o NE=14.5o NE=23.2o

ZE=1.05mm ZE=2.19mm ZE=1.15mm ZE=2.24mm

Figure 5. Synthetic data rendered with various reflection models. Row one: 1 sample image for each
dataset. Row two: normal error maps. Row three: reconstructions.

5.4. Robustness to noise and shadows. Finally, we tested the robustness of our algorithm
to noise and shadows. We start with the Cook–Torrance rendered sequence of Figure 5 with
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ρs = ρd (i.e., third column) and added up to 15% Gaussian noise as shown in the first three
columns (from left to right) of Figure 6. In the last three columns of Figure 6, images with
missing data (i.e., “shadows”) are simulated by setting a subset of image pixels black. We
chose a repeated small rectangles pattern of width 10 pixels and height 5 to 15 pixels. Each
one of the 6 images of the sequence has the patterns slightly displaced in order to avoid having
regions that are always in shadow.

The last three rows of Figure 6 emphasize the robustness of our L1 variational solver,
showing a comparison with other state-of-the-art methods [27, 38, 47]. Note that in order to
get depth estimates for [27, 47], our variational solver was used on top of the obtained normals.
Finally, we compare the variational approach with the upwind characteristic strip expansion of
(43). Due to the lack of evident experimental difference between the implementation proposed
in [38] and (43), we compare the characteristic strip expansion as similarly conceived from
[38]. In order to compare it fairly with the proposed variational method, we use an estimate
of the shininess coefficient computed from the variational approach in order to approximate
the only depth using the characteristic strip expansion.

5.5. Qualitative evaluation on real-world datasets.
Medium-scale scene. We performed tests on several real-world datasets featuring objects of

different materials, depth discontinuities, and shadows. Again we compare with other state-
of-the-art methods as explained in section 5.4. As [38] performs very badly in the presence
of outliers (see last row of Figure 6), we do not use it here. Samples from these datasets are
presented in Figure 7.

The fist dataset contained an Egyptian statue and a metallic tea box placed approximately
50cm away from a calibrated pinhole camera (f ≈ 32mm). We used 8 LEDs with known
positions, situated between the camera and the objects (approximately at 30cm from the
scene). To get the best reconstruction quality we manually segmented the two objects of
interest and forced the optimization to select a uniform shininess parameter c (see explanation
after (56)).

The second dataset contained a Buddha statue placed 12cm away from a camera with
f = 12mm. We used 8 LEDs with known positions on a ring of radius 5cm around the
camera. We let the optimization select different c values for each pixel so as to be able to deal
with small, highly specular spots that exist on the surface of this statue.

The final dataset featured a scene a various objects taken with the same setup as the first
dataset. We note that this is a particularly challenging dataset as the specular objects in
the middle of the scene (tea box and ball) are very badly illuminated, and the objects cast
shadows on each other (we present all 8 images of the dataset here as a clear illustration of the
challenge of this data). We note that we only performed manual background subtraction on
these images and let our algorithm do the rest in order to push it to its limits. Nonetheless,
we are able to get a reasonable reconstruction clearly outperforming the competitors (see
Figure 10).

Additionally, these results are compared in Figures 8 and 9 to several existing methods
for Lambertian PS, namely, the classical PS approach proposed by Woodham [62], the robust
approach from [27] dealing with both diffuse and specular reflectance, and a recent work on PS
with pointwise sources [47]. Figure 8 demonstrates the advantage of global L1-based recovery
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im
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sa
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le

noise=5% noise=10% noise=15% 5x10 10x10 15x10

o
u
r

NE=15.9o

ZE=1.26mm

NE=16.3o

ZE=1.36mm

NE=17.9o

ZE=1.62mm

NE=14.7o

ZE=1.16mm

NE=14.9o

ZE=1.18mm

NE=15.0o

ZE=1.19mm

[2
7
]

NE=17.8o

ZE=2.25mm

NE=17.9o

ZE=2.27mm

NE=18.3o

ZE=2.33mm

NE=18.4o

ZE=2.26mm

NE=19.9o

ZE=2.31mm

NE=21.9o

ZE=2.36mm

[4
7
]

NE=12.4o

ZE=2.23mm

NE=13.1o

ZE=2.27mm

NE=14.0o

ZE=2.32mm

NE=14.5o

ZE=2.16mm

NE=16.7o

ZE=2.22mm

NE=18.5o

ZE=2.19mm

[3
8
]

NE=23.8o

ZE=3.09mm

NE=24.8o

ZE=3.14mm

NE=25.6o

ZE=3.23mm

NE=34.0o

ZE=2.77mm

NE=42.4o

ZE=2.84mm

NE=46.4o

ZE=2.91mm

Figure 6. The first three columns show a comparison with increasing noise. Instead, the last three columns
compare the robustness of the methods having data with increasing missing parts (black patches on the images).

over local sparsity-enhancing techniques [27], and the importance of modeling appropriately
the lighting and the viewing. Besides these important considerations, Figure 9 shows that our
approach even provides satisfactory 3D reconstructions of specular objects.

Micro-scale scene. Finally, we tested the ability of our approach to handle the images
recorded using a high focal camera, using a device similar to the portable one introduced by
Johnson et al. [31]. The LEDs illuminating the scene being inside the device, the light rays
reach the surface after bouncing off the walls of the device, rather than directly. Hence, it
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Figure 7. Top row: two samples images from our first two datasets (Egyptian & Box and Buddha).
Middle and bottom row: all 8 images of our third dataset consisting of a scene of multiple objects with varying
reflectance properties.

is not possible to consider any explicit lighting model such as the pointwise one. To deal
with this issue, the lightings were calibrated using a 3D-printed planar rig of patterns with
known geometry and albedo, from which the light directions and intensities can be extracted
at the center of each pattern. Eventually, these are interpolated, so as to obtain dense sets
li : Ω̄ → R3 and φi : Ω̄ → R, allowing us to use our algorithm without any change, simply
setting the attenuation terms to ai = φi. This process was performed with respect to each
color channel.

We tested this approach on a very challenging dataset consisting of 5 RGB pictures, of size
687× 964, of a highly specular coin (Figure 11). The camera calibration procedure provided
the mean camera distance z0 ≡ 69mm in the same time as the focal value f ≈ 150mm. We
set α = 0.2 in this experiment and let the algorithm run until convergence. Convergence
happened after only 3 iterations (approx. 10 seconds): indeed, there is neither shadow nor
discontinuity in this scene, and hence the l1 optimization converges almost instantly.

While the approach presented in [31] introduced a chemical gel between the camera and
the object, in order to make the reflectance of the object as diffuse as possible, we were able
to obtain a very reasonable 3D reconstruction using the images “as they are.”

6. Conclusion and perspectives. In this work we introduced a unifying irradiance equa-
tion describing both diffuse and specular reflection components in the most general lighting
setting. We derived a new formulation based on coupling those irradiance equations by con-
sidering their ratios. The resulting mathematical model consists of a set of quasi-linear PDEs

D
ow

nl
oa

de
d 

02
/0

3/
17

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

UNIFYING DIFFUSE AND SPECULAR REFLECTIONS 1883

[62] [27] [47] Ours

Figure 8. Results of several PS algorithms on the Egyptian (plaster) and Buddha (marble) statues. With
the classical approach [62] that assumes uniform lighting and orthographic viewing, artifacts due to shadows
are visible. By locally enforcing robustness as proposed in [27], these artifacts are still visible. The global
formulation of our approach provides better results, while also correcting the distortion due to pointwise lighting
and perspective viewing, as also assumed by [47].

having several advantages with respect to the usual tools aimed at solving the PS problem. In
fact, instead of considering specular highlights as outliers, we exploit geometric information
of the shape by modeling specular reflectance with a Blinn–Phong extension of the cosine law
for diffuse reflection. Furthermore, besides being independent from the albedo, the number
of unifying equations does not increase linearly with respect to the available images. Indeed,
instead of N (irradiance) equations, robustness is guaranteed by having a quadratic set of

(
N
2

)

(unifying) equations. The numerical tool we used for solving such a system of quasi-linear
PDEs is based on a variational approach performing l1 minimization. On the other hand,
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[62] [27] [47] Ours

Figure 9. Results of several PS algorithms on the tea box (metal) dataset. Our approach provides a more
reliable 3D reconstruction of this purely specular object, compared to other methods based on the Lambertian
assumption.

[62] [27]

[47] Ours

Figure 10. Results of several PS algorithms on multiple objects scene. The overall lighting of this scene
is very challenging (as objects cast shadows on each other; see Figure 7), and we also have to deal with non-
uniform reflectance properties completely automatically. Thus, the quality of reconstruction for the Egyptian
and the tea box are worse compared to Figures 8 and 9.
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UNIFYING DIFFUSE AND SPECULAR REFLECTIONS 1885

Figure 11. Reconstruction of a specular coin using arbitrary spatially varying lightings. From left to right:
three of the five RGB images, corresponding calibrated lightings associated to the red channel, and surface
reconstructed using our algorithm, with c = 0.2. Our general formulation allows us to reconstruct surfaces even
without any lighting model, thanks to the space dependency of the fields B and s.

research on speeding up our algorithm is foreseen in order to make the computation as close
as possible to real-time 3D shape providers.

We remark that this work brings very challenging goals closer to fruition. For instance,
such a big number of equations can be used for estimating parameters related to the material
of the surface, lightings (uncalibrated PS), etc.
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