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STABILITY FOR SOME INVERSE PROBLEMS FOR TRANSPORT
EQUATIONS

FIKRET GÖLGELEYEN† AND MASAHIRO YAMAMOTO‡

Abstract. In this article, we consider inverse problems of determining a source term and a
coefficient of a first-order partial differential equation and prove conditional stability estimates with
minimum boundary observation data and relaxed condition on the principal part.
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1. Introduction and main results. Let Ω ⊂ R
n be a bounded domain with

smooth boundary ∂Ω and let ν(x) be the unit outward normal vector to ∂Ω. Let us
consider

∂ty(x, t) +H(x) · ∇y(x, t) + V (x)y(x, t) = f(x)R(x, t), x ∈ Ω, 0 < t < T (1.1)

and

y(x, 0) = 0, x ∈ Ω. (1.2)

We assume that H := (h1, ..., hn) ∈ {C1(Ω)}n and V ∈ L∞(Ω).
Throughout this paper, we set x = (x1, ..., xn) ∈ R

n, ∂j = ∂
∂xj

for j = 1, 2, ..., n

and ∂t =
∂
∂t
, ∇ = (∂1, ..., ∂n), ∆ =

∑n
j=1 ∂

2
j , and H · J denotes the scalar product of

H, J ∈ R
n.

The main problems in this paper are
Inverse source problem

Let H , V , R, Γ ⊂ ∂Ω, T > 0 be given suitably. Determine f(x), x ∈ Ω from y|Γ×(0,T ).

Moreover we consider

∂tu(x, t) +H(x) · ∇u(x, t) + V (x)u(x, t) = 0, x ∈ Ω, 0 < t < T (1.3)

and

u(x, 0) = a(x), x ∈ Ω. (1.4)

Inverse coefficient problem
Let a and H be suitably given. Determine V (x) and/or H(x) by data u|Γ×(0,T ).

Equations (1.1) and (1.3) are transport equations and are models in physical
phenomena such as Liouville equation and the mass conservation law. Moreover the
transport equation is related to the integral geometry (e.g., Amirov [1]). As for other
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physical backgrounds such as neutron transport and medical tomography, see e.g.,
Case and Zweifel [8], Ren, Bal and Hielscher [18].

Our inverse problem is formulated with a single measurement, and Gaitan and
Ouzzane [9], Klibanov and Pamyatnykh [15], Machida and Yamamoto [17] discuss the
uniqueness and the stability for inverse problems for initial/boundary value problems
for transport equations by Carleman estimates. The papers [15] and [17] discuss
transport equations with integral terms where solutions y and u depend also on the
velocity as well as the location x and the time t.

The main methodology in [9], [15], [17] is based on Bukhgeim and Klibanov
[7]. After that, there have been many works. Limited to hyperbolic and parabolic
equations, we can refer for example to Baudouin, de Buhan and Ervedoza [3], Beilina
and Klibanov [4], Bellassoued and Yamamoto [6], Imanuvilov and Yamamoto [11],
[12], Klibanov [14], Yamamoto [21] and the references therein. Here we do not intend
to give any complete lists of the references. In [9] and [15], the key Carleman estimate
is the same as the Carleman estimate for a second-order hyperbolic equation and in
order to apply the Carleman estimate one has to extend the solutions y and u to (1.1)
and (1.3) to the time interval (−T, 0). Such an extension argument makes the proofs
longer, and requires an extra condition to unknown coefficients and initial value as in
[15]. In Sections 2 and 4, we prove Carleman estimates (Lemmata 1 and 3), which can
directly estimate initial values. Thanks to our Carleman estimates, we can simplify
the proofs of the stability and relax the constraints of the principal coefficients H ’s.

As for inverse problems for transport equations with many measurements, see
surveys Bal [2], Stefanov [20] and the references therein. Klibanov and Yamamoto
[16] established the exact controllability for the transport equations by a Carleman
estimate.

Unlike [2] and [20], we discuss the inverse problems for a single initial/boundary
value problem where we need not change initial values or boundary values. More
precisely, in the formulation for the inverse problems in [2] and [20], we have to change
boundary inputs on some subboundary and repeat measurements of the corresponding
boundary outputs on other subboundary. One can apply the method of characteristics
to the same kind of inverse problem for the first-order equation and see Belinskij [5],
Chapter 5 of Romanov [19] for example.

We set

Q = Ω× (0, T )

and
{

∂Ω+ = {x ∈ ∂Ω; (ν(x) ·H(x)) > 0},
∂Ω− = {x ∈ ∂Ω; (ν(x) ·H(x)) < 0}.

Throughout this paper, we assume that ψ ∈ C2(Ω) and H = (h1, ..., hn) ∈
{C1(Ω)}n satisfy

µ := min
x∈Ω

(H(x) · ∇ψ(x)) > 0. (1.5)

We here note by (1.5) that |H(x)| 6= 0 for x ∈ Ω.
We give four cases where (1.5) holds.

Case 1. We assume

|∇d| > 0 on Ω, H(x) = ∇d(x), x ∈ Ω
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with some d ∈ C2(Ω). Then (1.5) holds if we choose ψ(x) = d(x), x ∈ Ω.
Case 2. Let us assume that {(h1(x), ..., hn(x)); x ∈ Ω} ⊂ R

n is separated from
(0, ..., 0) by a hyperplane a1x1 + · · · + anxn = 0 with some a1, ..., an ∈ R and |a1| +
· · ·+ |an| 6= 0. Then ψ(x) = a1x1 + · · ·+ anxn or ψ(x) = −a1x1 − · · · − anxn satisfies
(1.5). In particular, (1.5) holds if H(x) is a constant vector because {H(x); Ω} is
composed of one point. In fact, the separation condition means that |(H(x)·∇ψ(x))| =
|a1h1(x) + · · ·+ anhn(x)| > 0 for all x ∈ Ω or < 0 for all x ∈ Ω.
Case 3. Let 0 ∈ Ω. We assume that there exists a constant δ0 > 0 such that

|H(x)| ≥ δ0, x ∈ Ω.

Then ψ(x) =
∑n
j=1 xjhj(x) satisfies (1.5) if maxx∈Ω |x| is sufficiently small.

Proof. By the Cauchy-Schwarz inequality, we have

(H(x) · ∇ψ(x)) =
n
∑

ℓ=1

hℓ(x)
2 +

n
∑

ℓ=1

hℓ(x)

n
∑

j=1

xj∂ℓhj(x)

≥min
x∈Ω

|H(x)|2 −
(

n
∑

ℓ=1

hℓ(x)
2

)
1
2







n
∑

ℓ=1

∣

∣

∣

∣

∣

∣

n
∑

j=1

xj∂ℓhj(x)

∣

∣

∣

∣

∣

∣

2






1
2

≥δ20 − ‖H‖{L∞(Ω)}n





n
∑

ℓ=1





n
∑

j=1

|xj |2








n
∑

j=1

|∂ℓhj(x)|2








1
2

≥δ20 −max
x∈Ω

|x|‖H‖{L∞(Ω)}n‖∇H‖{L∞(Ω)}n×n .

Therefore (1.5) holds true if

0 < max
x∈Ω

|x| < minx∈Ω |H(x)|2
‖H‖{L∞(Ω)}n‖∇H‖{L∞(Ω)}n×n

.

Case 4. We assume that there exists i0 ∈ {1, 2, ..., n} such that hi0(x) > 0 for all x ∈
Ω. Then we choose sufficienly small b ∈ R such that Ω ⊂ {(x1, x2, ..., xn); xi0 > b}.
Setting ψ(x) = (xi0 − b)2, we verify that (1.5) holds. In fact,

(H(x) · ∇ψ(x)) = 2hi0(x)(xi0 − b) > 0 for x ∈ Ω.

Now we state the first main result concerning the stability for the inverse source
problem.
Theorem 1
Let y ∈ H1(Q) satisfy (1.1) and (1.2), and let (1.5) be satisfied with some constant
µ > 0. We assume that

R(x, 0) 6= 0, x ∈ Ω (1.6)

and

∂ty, ∂tR ∈ H1(Q), ∂tR ∈ L2(0, T ;L∞(Ω)).
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Let

T >
maxx∈Ω ψ(x)−minx∈Ω ψ(x)

µ
. (1.7)

(i) We assume

‖∂ty‖L2(Q) ≤M

with fixed constant M > 0. Then there exist constants θ ∈ (0, 1) and C > 0, which
are dependent on Ω, T,H, ‖V ‖L∞(Ω), ψ,M, ‖∂tR‖L2(0,T ;L∞(Ω)), such that

‖f‖L2(Ω) ≤ C







(

∫ T

0

∫

∂Ω+

(H · ν)|∂ty|2dSxdt
)

θ
2

+

(

∫ T

0

∫

∂Ω+

(H · ν)|∂ty|2dSxdt
)

1
2







for all f ∈ L2(Ω).
(ii) Without the assumption in (i) concerning ‖∂ty‖L2(Q), there exists a constant
C > 0, which is dependent on Ω, T,H, ‖V ‖L∞(Ω), ψ, ‖∂tR‖L2(0,T ;L∞(Ω)), such that

‖f‖L2(Ω) ≤ C

(

∫ T

0

∫

∂Ω

|(H · ν)||∂ty|2dSxdt
)

1
2

for all f ∈ L2(Ω).
(iii) In addition to (1.1) and (1.2), we assume

y = 0 on ∂Ω− × (0, T ). (1.8)

Then there exists a constant C > 0, which is dependent on Ω, T,H, ‖V ‖L∞(Ω), ψ,
‖∂tR‖L2(0,T ;L∞(Ω)), such that

C−1

(

∫ T

0

∫

∂Ω+

(H · ν)|∂ty|2dSxdt
)

1
2

≤ ‖f‖L2(Ω) ≤ C

(

∫ T

0

∫

∂Ω+

(H · ν)|∂ty|2dSxdt
)

1
2

(1.9)
for all f ∈ L2(Ω).

The conclusion of (i) is a stability estimate of Hölder type and holds under a
priori boundedness ‖∂ty‖L2(Q) ≤ M , which is called conditional stability. On the
other hand, the conclusions of (ii) and (iii) are Lipschitz stability and in particular,
with (1.8) we can have both-sided estimate (1.9) for our inverse problem.

We apply Theorem 1 to the inverse coefficient problem of determining V (x).
Theorem 2

For j = 1, 2, let uj , ∂tuj ∈ H1(Q) and let

∂tuj +H(x) · ∇uj + Vj(x)uj(x, t) = 0 in Q, (1.10)

uj(x, 0) = a(x), x ∈ Ω (1.11)
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and

uj = h(x, t) on ∂Ω− × (0, T ) (1.12)

with suitably given a and h. We assume that there exists ψ ∈ C2(Ω) satisfying (1.5)
for H , (1.7) holds and

uj, ∂tuj ∈ H1(Q) ∩ L2(0, T ;L∞(Ω)), j = 1, 2.

Moreover we assume

‖Vj‖L∞(Ω), ‖∂tuj‖L2(0,T ;L∞(Ω)) ≤M, j = 1, 2 (1.13)

and

|a| > 0 on Ω, (1.14)

where M > 0 is arbitrarily fixed constant.
Then there exists a constant C > 0 depending on Ω, T,H, ψ, a,M such that

C−1‖∂t(u1 − u2)‖L2(∂Ω+×(0,T )) ≤ ‖V1 − V2‖L2(Ω) ≤ C‖∂t(u1 − u2)‖L2(∂Ω+×(0,T )).

(1.15)

Similarly to Theorem 2, we can discuss the determination of H , but we have to
determine n functions as the components of H , and so repeats of measurements of
boundary data after changing initial values suitably are necessary but arguments can
be repeated similarly to the proof of Theorem 2. Here we omit detailed discussions
for the determination of all the components of H , but we consider the determination
of the potential in the case of potential flows. That is, we consider

{

∂tρ(x, t) + div (ρ∇d(x)) = 0 in Q,
ρ(x, 0) = a(x), x ∈ Ω.

(1.16)

The first-order partial differential equation in (1.16) describes the mass conservation
under stationary potential flow ∇d(x). Then we discuss the inverse problem of deter-
mining the stationary potential d.

For the statement of the main result, we define an admissible set of unknown
potentials d’s. Let constants M > 0, δ0 > 0 and functions g1 ∈ C2(∂Ω), g2 ∈ C1(∂Ω)
be arbitrarily chosen. We define the admissible set of d’s by

D = D(δ0,M, g1, g2) := {d ∈ C2(Ω); |∇d| ≥ δ0 > 0 on Ω,

‖d‖C2(Ω) ≤M, d|∂Ω = g1, ∂νd|∂Ω = g2}. (1.17)

For the function g2 given in (1.17), we set
{

Γ+ = {x ∈ ∂Ω; g2(x) > 0},
Γ− = {x ∈ ∂Ω; g2(x) < 0}. (1.18)

We state our final main result.
Theorem 3
For j = 1, 2, let ρj , ∂tρj ∈ H1(Q) and let

∂tρj(x, t) + div (ρj∇dj(x)) = 0 in Q (1.19)
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and

ρj = h on Γ− × (0, T ), ρj(x, 0) = a(x), x ∈ Ω (1.20)

with suitable a and h. We assume (1.14),

T >
supd∈D(maxx∈Ω d(x) −minx∈Ω d(x))

δ20
(1.21)

and
{

∂tρj ∈ L2(0, T ;W 1,∞(Ω)) ∩H1(Q),
‖ρj‖L2(0,T ;H1(Ω)) ≤M, j = 1, 2.

(1.22)

Then there exists a constant C > 0 depending on Ω, T, a, δ0,M, g1, g2 such that

C−1‖∂t(ρ1 − ρ2)‖L2(Γ+×(0,T )) ≤ ‖d1 − d2‖H2(Ω) ≤ C‖∂t(ρ1 − ρ2)‖L2(Γ+×(0,T )) (1.23)

for all d1, d2 ∈ D.

The proofs of Theorems 1-3 are based on an argument by the Carleman estimates,
which was originated by Bukhgeim and Klibanov [7]. Here we used a modified ar-
gument by Imanuvilov and Yamamoto [11], [12] which discussed for inverse problems
for second-order hyperbolic equations.

The paper is composed of four sections and an appendix. In Section 2, we prove
a relevant Carleman estimate for the proofs of Theorems 1 and 2, and an energy
estimate, and in Section 3, the proofs of Theorems 1 and 2 are completed. In Section
4, we prove another Carleman estimate for the proof of Theorem 3 whose weight
function gives a Carleman estimate also for the Laplacian and complete the proof of
Theorem 3. In Appendix, we prove the Carleman estimate for the Laplacian.

2. Key Carleman estimate and energy estimate. We recall that

Q = Ω× (0, T )

and we set

Pu = ∂tu+H(x) · ∇u+ V (x)u, P0u = ∂tu+H(x) · ∇u, (x, t) ∈ Q,

M0 = β‖divH‖L∞(Ω)‖div (H(H · ∇ψ))‖L∞(Ω)

and

ϕ(x, t) = −βt+ ψ(x), (x, t) ∈ Q (2.1)

with ψ ∈ C2(Ω) and β > 0, and

B(x) := ∂tϕ+ (H · ∇ϕ) = −β + (H(x) · ∇ψ), x ∈ Ω. (2.2)

First we prove
Lemma 1
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(i) We have

s

∫

Ω

B(x)|u(x, 0)|2e2sϕ(x,0)dx+ s2
∫

Q

B2(x)|u(x, t)|2e2sϕdxdt

≤2

∫

Q

|Pu|2e2sϕdxdt+ (sM0 + 2‖V ‖2L∞(Ω))

∫

Q

|u(x, t)|2e2sϕdxdt

+s

∫ T

0

∫

∂Ω

B(x)(ν ·H)|u|2e2sϕdSxdt

for all s > 0 and u ∈ H1(Q) satisfying u(·, T ) = 0 in Ω.
(ii) We assume (1.5) and

0 < β < µ := min
x∈Ω

(H(x) · ∇ψ(x)). (2.3)

Then

s

∫

Ω

|u(x, 0)|2e2sϕ(x,0)dx+
s2(µ− β)2

2

∫

Q

|u(x, t)|2e2sϕdxdt

≤ 2

∫

Q

|Pu|2e2sϕdxdt+ s

∫ T

0

∫

∂Ω+

B(H · ν)|u|2e2sϕdSxdt (2.4)

for all s ≥ s0 and u ∈ H1(Q) satisfying u(·, T ) = 0 in Ω, where

s0 = max

{

4M0

(µ− β)2
,

√
8‖V ‖L∞(Ω)

µ− β

}

.

Inequality (2.4) is an estimate of Carleman’s type, which holds uniformly for suffi-
ciently large s > 0. We emphasize that Carleman estimate (2.4) can estimate also the
initial value u(x, 0), and the weight function is linear in t. In [17] such a linear weight
function is used for proving a stability estimate for an inverse problem for a transport
equation. For the transport equation, the works [9] and [15] used the same weight

function as the second-order hyperbolic equation, that is, ϕ(x, t) = eλ(d(x)−βt
2). Our

choice (2.1) of the weight function enables us not to need to take any extensions of u
to (0,−T ) in discussing the inverse problem. In [15], the extension argument requires
an extra assumption on the initial value and unknown coefficients in addition to (1.14).

Proof of Lemma 1 (i).
First we assume that V = 0. We set w(x, t) = esϕ(x,t)u(x, t) and (Lw)(x, t) =
esϕ(x,t)P0(e

−sϕw). Then

Lw = {∂tw + (H(x) · ∇w)} − sB(x)w.
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Hence by u(·, T ) = 0, we have
∫

Q

|P0u|2e2sϕdxdt =
∫

Q

|Lw|2dxdt

=

∫

Q

|∂tw + (H · ∇w)|2dxdt+
∫

Q

|sB|2w2dxdt− 2s

∫

Q

Bw(∂tw + (H · ∇w))dxdt

≥−2s

∫

Q

B(∂tw +H · ∇w)wdxdt + s2
∫

Q

B2w2dxdt

=−s
∫

Q

(B∂t(w
2) +BH · ∇(w2))dxdt + s2

∫

Q

B2w2dxdt

=s

∫

Q

(∂tB + (divBH))w2dxdt− s

∫ T

0

∫

∂Ω

B(ν ·H)w2dSxdt

+s2
∫

Q

B2w2dxdt + s

∫

Ω

B(x)|w(x, 0)|2dx

≥−M0s

∫

Q

w2dxdt− s

∫ T

0

∫

∂Ω

B(ν ·H)w2dSxdt

+s2
∫

Q

B2w2dxdt + s

∫

Ω

B(x)|w(x, 0)|2dx.

Substituting w = esϕu, we have

s

∫

Ω

B(x)|u(x, 0)|2e2sϕ(x,0)dx+ s2
∫

Q

B2(x)|u|2e2sϕdxdt

≤
∫

Q

|P0u|2e2sϕdxdt+M0s

∫

Q

|u|2e2sϕdxdt+ s

∫ T

0

∫

∂Ω

B(x)|(H · ν)||u|2e2sϕdSxdt.

(2.5)
Next let V ∈ L∞(Ω), 6≡ 0. Then

|P0u|2 = |P0u+ V u− V u|2 ≤ 2|P0u+ V u|2 + 2|V u|2

≤2|Pu|2 + 2‖V ‖2L∞(Ω)|u|2.

Therefore (2.5) completes the proof of Lemma 1 (i).
Proof of Lemma 1 (ii).
By (2.2) and (2.3), we have B(x) ≥ µ− β > 0 on Ω. Therefore we absorb the second
term on the right-hand side of the conclusion of Lemma 1 into the left-hand side.
More precisely, we have

s2
∫

Q

B2(x)|u|2e2sϕdxdt ≥ (µ− β)2s2
∫

Q

|u|2e2sϕdxdt,

and so we easily see that if s ≥ s0, then

(µ− β)2s2 −M0s− 2‖V ‖2L∞(Ω)

≥ (µ− β)2

2
s2 +

(

(µ− β)2

4
s2 −M0s

)

+

(

(µ− β)2

4
s2 − 2‖V ‖2L∞(Ω)

)

≥ (µ− β)2

2
s2.
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Thus, by noting

∫ T

0

∫

∂Ω

B(x)(H · ν)|u|2dSxdt ≤
∫ T

0

∫

∂Ω+

B(x)(H · ν)|u|2dSxdt,

the proof of the part (ii) is completed.

Next we show the classical energy estimate.
Lemma 2.
Let ‖V ‖L∞(Ω) ≤ M and ‖H‖{C1(Ω)}n ≤ M with arbitrarily fixed constant M > 0.

Let w ∈ H1(Q) satisfy

{

∂tw +H(x) · ∇w + V w = F (x, t) in Q,
w(x, 0) = a(x), x ∈ Ω.

(2.6)

Then there exists a constant C > 0, depending on Ω, T,M , such that

∫

Ω

|w(x, t)|2dx +

∫ T

0

∫

∂Ω+

(H · ν)|w|2dSxdt

≤ C

(

‖a‖2L2(Ω) + ‖F‖2L2(Q) +

∫ T

0

∫

∂Ω−

|(H · ν)||w|2dSxdt
)

, 0 ≤ t ≤ T. (2.7)

Proof.
Multiplying ∂tw +H · ∇w + V w = F by 2w and integrating over Ω, we have

∂t

∫

Ω

|w(x, t)|2dx+

n
∑

ℓ=1

∫

Ω

hℓ∂ℓ(|w|2)dx + 2

∫

Ω

V |w|2dx = 2

∫

Ω

Fwdx.

Setting E(t) =
∫

Ω |w(x, t)|2dx and integrating by parts, we obtain

E′(t) = −
∫

∂Ω

(H · ν)|w|2dSx +
∫

Ω

(divH)|w|2dx

−2

∫

Ω

V w2dx+ 2

∫

Ω

Fwdx.

Therefore, noting that 2
∫

Ω |Fw|dx ≤
∫

Ω |F |2dx+
∫

Ω |w|2dx and integrating over (0, t),
we have

E(t)− E(0) = −
∫ t

0

(

∫

∂Ω+

+

∫

∂Ω−

)

(H · ν)|w|2dSxdt+
∫ t

0

∫

Ω

(divH)|w|2dxdt

−2

∫ t

0

∫

Ω

V w2dxdt +

∫ t

0

∫

Ω

|F |2dxdt +
∫ t

0

E(ξ)dξ.

Therefore

E(t) +

∫ t

0

∫

∂Ω+

(H · ν)|w|2dSxdt ≤ ‖a‖2L2(Ω) + ‖F‖2L2(Q)



10 FIKRET GÖLGELEYEN AND MASAHIRO YAMAMOTO

+(2‖V ‖L∞(Ω) + ‖divH‖L∞(Ω) + 1)

∫ t

0

E(ξ)dξ +

∣

∣

∣

∣

∣

∫ t

0

∫

∂Ω−

(H · ν)|w|2dSxdt
∣

∣

∣

∣

∣

(2.8)

for 0 ≤ t ≤ T . Since
∫ t

0

∫

∂Ω+
(H · ν)|w|2dSxdt ≥ 0, 0 ≤ t ≤ T , omitting the second

term on the left-hand side of (2.8), we apply the Gronwall inequality, and we obtain

E(t) ≤ CeCT
(

‖a‖2L2(Ω) + ‖F‖2L2(Q))

+

∫ T

0

∫

∂Ω−

|(H · ν)||w|2dSxdt
)

, 0 ≤ t ≤ T. (2.9)

Substituting (2.9) into the third term on the right-hand side of (2.8), we complete the
proof of the lemma.

3. Proofs of Theorems 1 and 2.
Proof of Theorem 1.
Henceforth C > 0 denotes generic constants which are independent of s > 0. We
note that Py = ∂ty +H · ∇y + V y and µ = minx∈Ω(H(x) · ∇ψ(x)) > 0, and we set
R = maxx∈Ω ψ(x) and r = minx∈Ω ψ(x). By (1.7), we can choose β > 0 such that

T >
R− r

β
, 0 < β < µ. (3.1)

In fact, it suffices to choose β > 0 such that β ∈ (0, µ) is sufficiently close to µ.
With this β > 0, we set

ϕ(x, t) = −βt+ ψ(x), (x, t) ∈ Q. (3.2)

Then (3.1) implies

ϕ(x, T ) ≤ R− βT < r ≤ ϕ(x′, 0), x, x′ ∈ Ω.

Therefore by ϕ ∈ C1(Q), there exist δ1 > 0 and r0, r1 such that R−βT < r0 < r1 < r,

{

ϕ(x, t) > r1, x ∈ Ω, 0 ≤ t ≤ δ1,

ϕ(x, t) < r0, x ∈ Ω, T − 2δ1 ≤ t ≤ T.
(3.3)

For applying Lemma 1, we need a cut-off function χ ∈ C∞
0 (R) such that 0 ≤ χ ≤ 1

and

χ(t) =

{

1, 0 ≤ t ≤ T − 2δ1,
0, T − δ1 ≤ t ≤ T.

(3.4)

We set

z = (∂ty)χ.

Then z(x, T ) = 0, x ∈ Ω and

Pz = χf(∂tR) + (∂tχ)∂ty, (x, t) ∈ Q
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and

z(x, 0) = f(x)R(x, 0), x ∈ Ω.

Applying Lemma 1 (ii) to z, we obtain

s

∫

Ω

|z(x, 0)|2e2sϕ(x,0)dx ≤ C

∫

Q

|χf(∂tR)|2e2sϕdxdt+C
∫

Q

|(∂tχ)∂ty|2e2sϕdxdt+CeCsD2

(3.5)
for all large s > 0. Here

D2 =

∫ T

0

∫

∂Ω+

(H · ν)|∂ty|2dSxdt.

Since ∂tχ = 0 for 0 ≤ t ≤ T − 2δ1 or T − δ1 ≤ t ≤ T , by (3.3) and the a priori bound
‖∂ty‖L2(Q) ≤M , we have

∫

Q

|(∂tχ)∂ty|2e2sϕdxdt =
∫ T−δ1

T−2δ1

∫

Ω

|(∂tχ)∂ty|2e2sϕdxdt ≤ Ce2sr0
∫ T−δ1

T−2δ1

∫

Ω

|∂ty|2dxdt

(3.6)
and

∫

Q

|(∂tχ)∂ty|2e2sϕdxdt ≤ Ce2sr0M2 (3.7)

for all large s > 0. Moreover R(x, 0) 6= 0 for x ∈ Ω and z(x, 0) = f(x)R(x, 0), x ∈ Ω,
we have

∫

Ω

|z(x, 0)|2e2sϕ(x,0)dx ≥ C

∫

Ω

|f(x)|2e2sϕ(x,0)dx.

Therefore (3.5) yields

s

∫

Ω

|f(x)|2e2sϕ(x,0)dx ≤ C

∫

Q

|f(x)|2e2sϕ(x,t)dxdt + CM2e2sr0 + CeCsD2.

Since ϕ(x, t) ≤ ϕ(x, 0) for (x, t) ∈ Q, we have

s

∫

Ω

|f(x)|2e2sϕ(x,0)dx ≤ C

∫ T

0

∫

Ω

|f(x)|2e2sϕ(x,0)dxdt + CM2e2sr0 + CeCsD2

≤CT
∫

Ω

|f(x)|2e2sϕ(x,0)dx+ CM2e2sr0 + CeCsD2,

that is,

(s− CT )

∫

Ω

|f(x)|2e2sϕ(x,0)dx ≤ CM2e2sr0 + CeCsD2

for all large s > 0. Using ϕ(x, 0) > r1 by (3.3) and choosing s > 0 large, we obtain

se2sr1
∫

Ω

|f(x)|2dx ≤ CM2e2sr0 + CeCsD2,
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that is,

‖f‖2L2(Ω) ≤ CM2e−2sr∗ + CeCsD2 (3.8)

for all large s > s∗, where s∗ > 0 is a sufficiently large constant. Here we set
r∗ := r1 − r0 > 0. We separately consider the two cases: D ≥M and D < M .
Case 1 D ≥M :
Estimate (3.8) implies

‖f‖2L2(Ω) ≤ (Ce−2sr∗ + CeCs)D2. (3.9)

Case 2 D < M :
Replacing C by CeCs∗ , we see that (3.8) holds for all s > 0. We make the right-hand
side of (3.8) small in s. We choose M2e−2sr∗ = eCsD2, that is,

s =
2

C + 2r∗
log

M

D
.

Therefore (3.8) is reduced to

‖f‖L2(Ω) ≤ 2CM1−θDθ,

where θ = 2r∗
C+2r∗

∈ (0, 1). Thus the proof of Theorem 1 (i) is completed.
Next we prove Theorem 1 (ii). We have

{

∂t(∂ty) +H(x) · ∇∂ty + V ∂ty = f(x)∂tR, (x, t) ∈ Q,

(∂ty)(x, 0) = f(x)R(x, 0), x ∈ Ω.

Applying Lemma 2 to ∂ty, we obtain

∫

Ω

|∂ty(x, t)|2dx +

∫ T

0

∫

∂Ω+

(H · ν)|∂ty|2dSxdt

≤ C‖f‖2L2(Ω) + C

∫ T

0

∫

∂Ω−

|(H · ν)||∂ty|2dSxdt (3.10)

for 0 ≤ t ≤ T . Therefore, omitting the second term on the left-hand side of (3.10)
and applying it to (3.6), we obtain

∫

Q

|(∂tχ)∂ty|2e2sϕdxdt ≤ Ce2sr0‖f‖2L2(Ω) + Ce2sr0
∫ T

0

∫

∂Ω−

|(H · ν)||∂ty|2dSxdt

and similarly to (3.8), from (3.5) we can obtain

‖f‖2L2(Ω) ≤ Ce−2sr∗‖f‖2L2(Ω) + CeCs
∫ T

0

∫

∂Ω

|(H · ν)||∂ty|2dSxdt.

Choosing s > 0 large, we can absorb the first term on the right-hand side into the
left-hand side, and complete the proof of (ii).
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Finally we prove (iii). By (1.8), the conclusion of (ii) immediately yields the
second inequality in (1.9). Next, by (1.8) and (3.10), we have

∫ T

0

∫

∂Ω+

|(H · ν)||∂ty|2dSxdt ≤ C‖f‖2L2(Ω),

which proves the first inequality in (1.9). Thus the proof of Theorem 1 (iii) is com-
pleted.

Proof of Theorem 2.
Theorem 2 can be derived directly by Theorem 1. In fact, setting y = u1 − u2,
f = V1 − V2 and R = −u2, by (1.10) - (1.14) we have







∂ty +H(x) · ∇y + V1y = f(x)R(x, t), (x, t) ∈ Q,

y(x, 0) = 0, x ∈ Ω,
y|∂Ω−×(0,T ) = 0,

and ∂ty ∈ H1(Q), ‖∂tR‖L2(0,T ;L∞(Ω)) ≤ M , R(x, 0) = −a(x) 6= 0 for x ∈ Ω. Thus
Theorem 1 (iii) yields the conclusion of Theorem 2, and the proof of Theorem 2 is
completed.

4. Proof of Theorem 3.
We set

Pdu = ∂tu+∇d · ∇u + u∆d.

For the proof, we further need a Carleman estimate for ∆ with the same weight
function for Pd. Unfortunately the weight function defined by (2.1) does not work
as weight for a Carleman estimate for ∆. Thus we have to introduce a second large
parameter in the weight function. That is, as the weight function, we set

ϕd(x, t) = eλ(−βt+d(x)), (x, t) ∈ Q, (4.1)

where λ > 0 is chosen later. The weight function in the form (4.1) has been known as
more flexible weight function producing a Carleman estimate (e.g., Hörmander [10],
Isakov [13]).

In the existing works on inverse problems by Carleman estimates, given weight
functions have been used, and to the best knowledge of the authors, Theorem 3 is
the first case where a Carleman estimate with unknown coefficient as the weight, is
seriously involved. The use of such a Carleman estimate is necessary in order that the
admissible set D of unknown coefficients d’s is generously formulated such as (1.17).
Otherwise the admissible set of unknown coefficients should be more restrictive. For
example, for inverse problems of determining principal parts for second-order hyper-
bolic equations, there are no works by Carleman estimate with weight function given
by unknown coefficient, so that choices of admissible sets of unknown coefficients of
the principal parts are very limited (e.g., Bellassoued and Yamamoto [6], Section 6
of Chapter 5). For it, we need a Carleman estimate where all the constants can be
taken uniformly for arbitrary d ∈ D.

We first show a Carleman estimate for Pd with weight (4.1), which should hold
uniformly for all d ∈ D. We fix β, T > 0 such that

0 < β < δ20 , T >
supd∈D(maxx∈Ω d(x) −minx∈Ω d(x))

β
, (4.2)
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where the constant δ0 characterizes D (see (1.17)). Henceforth we set

Jd(x, t) := ∂tϕd + (∇d · ∇ϕd) = λϕd(−β + |∇d|2).

Lemma 3
For each λ > 0 there exists a constant s0 > 0, which is dependent on λ, δ0,M , such
that we can choose a constant C > 0 satisfying

∫

Ω

sλϕd(x, 0)|u(x, 0)|2e2sϕd(x,0)dx+

∫

Q

s2λ2ϕ2
d|u(x, t)|2e2sϕddxdt

≤ C

∫

Q

|Pdu|2e2sϕdxdt+
∫ T

0

∫

∂Ω

sJd(∂νd)|u|2e2sϕddSxdt (4.3)

for all s ≥ s0, all d ∈ D and all u ∈ H1(Q) satisfying u(x, T ) = 0, x ∈ Ω.

Here we note that the choices of C and s0 in (4.3) are uniformly for d ∈ D.
Proof.
The proof is similar to Lemma 1 by noting the independency of the constant of d ∈ D.
Let d ∈ D be chosen arbitrarily. First we consider the case of Pdu = ∂tu +∇d · ∇u.
We set w = esϕdu, and

Lw = esϕdPd(e
−sϕdw) = ∂tw +∇d · ∇w − sJd(x, t)w.

We note ∂tJd(x, t) = −λ2βϕd(−β + |∇d|2), ∂kJd(x, t) = λ2ϕd(∂kd)(−β + |∇d|2) +
λϕd(∂k|∇d|2) and

Jd(x, t) ≥ λϕd(δ
2
0 − β), (x, t) ∈ Q, d ∈ D (4.4)

by (1.17). Then
∫

Q

|Pdu|2e2sϕddxdt =

∫

Q

|Lw|2dxdt

=

∫

Q

|(∂tw +∇d · ∇w) − sJdw|2dxdt

=

∫

Q

|∂tw +∇d · ∇w|2dxdt + s2
∫

Q

J2
d |w|2dxdt − 2s

∫

Q

(Jdw)(∂tw +∇d · ∇w)dxdt

≥s2
∫

Q

J2
d |w|2dxdt− s

∫

Q

Jd(2w(∂tw))dxdt − s

∫

Q

Jd∇d · (2w∇w)dxdt

=:I1 + I2 + I3.

Henceforth C > 0 denotes generic constants which are independent of d ∈ D and
s > 0, but dependent on δ0,M, λ. Next integration by parts yields

I2 = −s
∫

Q

Jd∂t(|w|2)dxdt = −s
∫

Ω

[Jd|w|2]T0 dx+ s

∫

Q

(∂tJd)|w|2dxdt

≥s
∫

Ω

λϕd(x, 0)(−β + |∇d|2)|w(x, 0)|2dx− C

∫

Q

sλ2ϕd|w|2dxdt

≥s(δ20 − β)

∫

Ω

sλϕd(x, 0)|w(x, 0)|2dx− C

∫

Q

sλ2ϕd|w|2dxdt
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and

I3 = −s
∫

Q

n
∑

k=1

(Jd∂kd)∂k(|w|2)dxdt

=− s

∫ T

0

∫

∂Ω

n
∑

k=1

Jd(∂kd)νk|w|2dSxdt+ s

∫

Q

n
∑

k=1

∂k(Jd∂kd)|w|2dxdt

≥−
∫ T

0

∫

∂Ω

sJd(∂νd)|w|2dSxdt− C

∫

Q

sλ2ϕd|w|2dxdt.

Hence
∫

Ω

sλϕd(x, 0)|w(x, 0)|2dx+

∫

Q

s2λ2ϕ2
d|w|2dxdt

≤ C

∫

Q

|Lw|2dxdt + C

∫

Q

sλ2ϕd|w|2dxdt+
∫ T

0

∫

∂Ω

sJd(∂νd)|w|2dSxdt. (4.5)

We choose

s0 > 2Ceλ(βT+M).

Then, since ϕd(x, t) ≥ e−λβT−λM for (x, t) ∈ Q and d ∈ D, if s ≥ s0, then

s2λ2ϕ2
d − Csλ2ϕd = s2λ2ϕ2

d

(

1− C

sϕd

)

≥s2λ2ϕ2
d

(

1− Ceλ(βT+M)

s0

)

≥ 1

2
s2λ2ϕ2

d.

Therefore (4.5) yields
∫

Ω

sλϕd(x, 0)|w(x, 0)|2dx+
1

2

∫

Q

s2λ2ϕ2
d|w|2dxdt

≤ C

∫

Q

|Lw|2dxdt+
∫ T

0

∫

∂Ω

sJd(∂νd)|w|2dSxdt (4.6)

for all s ≥ s0. Henceforth s0 > 0 denotes generic constants which are dependent on
λ, δ0,M . Since w = uesϕd , we rewrite (4.6) in view of u, so that

∫

Ω

sλϕd(x, 0)|u(x, 0)|2e2sϕd(x,0)dx +

∫

Q

s2λ2ϕ2
d|u|2e2sϕddxdt

≤ C

∫

Q

|Pdu|2e2sϕddxdt+

∫ T

0

∫

∂Ω

sJd(∂νd)|u|2e2sϕddSxdt

for all s ≥ s0. Here we note that C > 0 and s0 > 0 may vary line by line, but
dependent only on λ, δ0,M . Next

|∂tu+∇d · ∇u+ (∆d)u|2 ≤ 2|∂tu+∇d · ∇u|2 + 2|(∆d)u|2

≤2|∂tu+∇d · ∇u|2 + 2M2|u|2
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in Q for each d ∈ D. Similarly to the proof of Lemma 1 (i), we can finish the proof of
(4.3).

Next we show a Carleman estimate for ∆ with the weight function ϕd(x, 0).
Lemma 4
There exists a constant λ0 = λ0(δ0,M) > 0 such that for any λ ≥ λ0, there exists a
constant s1 = s1(λ, δ0,M) > 0 satisfying: we can choose C > 0 such that

∫

Ω

(sλ2ϕd(x, 0)|∇f(x)|2 + s3λ4ϕd(x, 0)
3|f(x)|2)e2sϕd(x,0)dx

≤C
∫

Ω

|∆f |2e2sϕd(x,0)dx

for all s ≥ s1, d ∈ D, f ∈ H2
0 (Ω).

Lemma 4 is a Carleman estimate for ∆ and the Carleman estimate for ∆ is well
known (e.g., Hörmander [10], Isakov [13]). However we need the uniformity of the
constants s0, C with respect to d ∈ D in the Carleman estimate. Thus in Appendix
we give a direct proof by integration by parts, which differs from [10], [13].

Now we proceed to
Proof of Theorem 3.
First Step. We set

m0 = sup
d∈D

(max
x∈Ω

d(x) −min
x∈Ω

d(x)).

By assumption (1.21): T > m0

δ20
of the theorem, for arbitrary d ∈ D, we can choose

β > 0 and fix such that

0 < β < δ20 , T >
m0

β
. (4.7)

We choose λ0 > 0 given in Lemma 4 and fix. Next we set s∗ = max{s0(λ0, δ0,M), s1(λ0, δ0,M)},
where sj(λ0, δ0,M), j = 0, 1 are proved to exist in Lemmata 3 and 4. Since ∂νd = g2
on ∂Ω for any d ∈ D, we note that the subboundaries Γ+ and Γ− defined by (1.18)
correspond to ∂Ω+ and ∂Ω− respectively. Since λ0 > 0 is fixed, henceforth by C

denoting generic constants which are independent of s ≥ s∗ and d ∈ D but dependent
on λ0, a, β, m0, Ω, T , noting (4.7) and (4.4), by Lemmata 3 and 4 we obtain

∫

Ω

s|y(x, 0)|2e2sϕd(x,0)dx+

∫

Q

s2|y|2e2sϕddxdt

≤ C

∫

Q

|Pdy|2e2sϕddxdt+ CeCs
∫ T

0

∫

Γ+

|y|2dSxdt (4.8)

and
∫

Ω

(s|∇f |2 + s3|f |2)e2sϕd(x,0)dx ≤ C

∫

Ω

|∆f |2e2sϕd(x,0)dx (4.9)
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for all s ≥ s∗, d ∈ D, y ∈ H1(Q) satisfying y(·, T ) = 0 in Ω and f ∈ H2
0 (Ω). Thus we

obtained two Carleman estimates which hold uniformly for arbitrary d ∈ D.
Second Step. We set y = ρ1 − ρ2, f = d1 − d2 and R(x, t) = −ρ2(x, t) in Q. Then,
by (1.19) and (1.20), we obtain







∂ty +∇d1 · ∇y + y∆d1 = ∇f · ∇R+R∆f in Q,
y(x, 0) = 0, x ∈ Ω,
y = 0 on Γ− × (0, T ).

We differentiate this partial differential equation with respect to y in t, noting that
∂ty ∈ H1(Q), ∂tR ∈ L2(0, T ;W 1,∞(Ω)) and R(x, 0) = −a(x). Then we have















∂t(∂ty) +∇d1 · ∇(∂ty) + (∂ty)∆d1
= ∇f · ∇∂tR+ (∂tR)∆f in Q,

∂ty(x, 0) = −∇f · ∇a− a∆f, x ∈ Ω,
∂ty = 0 on Γ− × (0, T ).

(4.10)

Applying Lemma 2 to (4.10) and estimating ∂ty, we readily verify the first inequality
in (1.23). Thus the rest part of this section is devoted to the proof of the second
inequality of (1.23).

Since y(·, T ) = 0 does not hold, for applying (4.8), we need a cut-off function.
Noting

ϕd1(x, 0) = eλ0d1(x) ≥ eλ0 min
x∈Ω

d1(x)

and

ϕd1(x, T ) = eλ0(−βT+d1(x)) ≤ e−λ0βT eλ0 maxx∈Ω d1(x)

for all x ∈ Ω. Henceforth we set

r0 =
1

2
λ0e

−λ0β−λ0M (βT −m0).

By (4.7) we have r0 > 0. We note that r0 > 0 is independent of s > 0 and special
choices of d1, d2 ∈ D, but dependent on δ0,M, λ0.

The mean value theorem implies

max
x∈Ω

ϕd1(x, T )−min
x∈Ω

ϕd1(x, 0) = e−λ0βT+λ0 max
x∈Ω

d1(x) − eλ0 min
x∈Ω

d1(x)

=eξ1λ0{(max
x∈Ω

d1(x)−min
x∈Ω

d1(x)) − βT } ≤ λ0e
ξ1(m0 − βT ),

where ξ1 is a number between λ0 minx∈Ω d1(x) and −λ0βT + λ0 maxx∈Ω d1(x).

Therefore, by d ∈ D, we have eξ1 ≥ e−λ0βT−λ0M , and

max
x∈Ω

ϕd1(x, T )−min
x∈Ω

ϕd1(x, 0) ≤ −λ0eξ1(βT−m0) ≤ −λ0e−λ0βT−λ0M (βT−m0) = −2r0.

(4.11)
For any d1 ∈ D, we have

|max
x∈Ω

ϕd1(x, T )−max
x∈Ω

ϕd1(x, t)| = | exp(λ0(−βT+max
x∈Ω

d1(x)))−exp(λ0(−βt+max
x∈Ω

d1(x))|

= | exp(λ0 max
x∈Ω

d1(x))||e−λ0βT − e−λ0βt| ≤ eλ0Mλ0β|T − t|. (4.12)
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At the last inequality, by d1 ∈ D and the mean value theorem, we have

max
x∈Ω

d1(x) ≤M

and

|e−λ0βT − e−λ0βt| = |e−ξ2(−λ0βT + λ0βt)| ≤ λ0β|T − t|,

where ξ2 ≥ 0 is some constant.
We fix a constant δ1 > 0 sufficienly small such that

2eλ0Mλ0βδ1 < r0.

Then, for T − 2δ1 ≤ t ≤ T and any d1 ∈ D, by (4.11) and (4.12), we have

max
x∈Ω

ϕd1(x, t) −min
x∈Ω

ϕd1(x, 0)

=max
x∈Ω

ϕd1(x, t) −max
x∈Ω

ϕd1(x, T ) + max
x∈Ω

ϕd1(x, T )−min
x∈Ω

ϕd1(x, 0)

≤|max
x∈Ω

ϕd1(x, t) −max
x∈Ω

ϕd1(x, T )| − 2r0 < eλ0Mλ0β|t− T | − 2r0

≤2eλ0Mλ0βδ1 − 2r0 < r0 − 2r0 = −r0.

Therefore

max
x∈Ω

ϕd1(x, t) < µ0 − r0, T − 2δ1 ≤ t ≤ T, (4.13)

where we set µ0 := supd∈D minx∈Ω e
λ0d(x).

Let χ ∈ C∞
0 (R) satisfy 0 ≤ χ ≤ 1 and (3.4) with here chosen δ1. We set

z = χ∂ty.

Then, by (4.10), we have















Pd1z = ∂tz +∇d1 · ∇z + z∆d1
= χ∇f · ∇∂tR+ χ(∂tR)∆f + (∂tχ)∂ty in Q,

z(x, 0) = −∇f · ∇a− a∆f, z(x, T ) = 0 x ∈ Ω,
z = 0 on Γ− × (0, T ).

(4.14)

Applying (4.8) to (4.14), we obtain

∫

Ω

s|a∆f +∇f · ∇a|2e2sϕd1
(x,0)dx

≤ C

∫

Q

|χ∇f ·∇∂tR+χ(∂tR)∆f |2e2sϕd1dxdt+C

∫

Q

|(∂tχ)∂ty|2e2sϕd1dxdt+CeCsD2

(4.15)
for all s ≥ s∗. Here and henceforth we set

D2 =

∫ T

0

∫

Γ+

|∂t(ρ1 − ρ2)|2dSxdt.
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Apply Lemma 2 to (4.10), by (1.21) we have

∫

Ω

|∂ty(x, t)|2dx ≤ C(‖∇f ·∇a+a∆f‖2L2(Ω)+‖∇f ·∇(∂tR)+(∂tR)∆f‖2L2(Q))+CD
2

≤ C(‖∆f‖2L2(Ω) + ‖∇f‖2{L2(Ω)}n +D2), 0 ≤ t ≤ T. (4.16)

Consequently, since ∂tχ 6= 0 only if T − 2δ1 ≤ t ≤ T − δ1 by (3.4), it follows from
(1.14) that (4.15) and (4.16) yield

∫

Ω

s|∆f |2e2sϕd1
(x,0)dx− C

∫

Ω

s|∇f |2e2sϕd1
(x,0)dx

≤C
∫

Ω

(|∆f |2 + |∇f |2)e2sϕd1
(x,0)dx

+C

(

∫ T−δ1

T−2δ1

∫

Ω

e2sϕd1dxdt

)

(‖∆f‖2L2(Ω) + ‖∇f‖2{L2(Ω)}n +D2) + CeCsD2

for all s ≥ s∗. For the first integral on the right-hand side, we used ϕd1(x, t) ≤
ϕd1(x, 0) for (x, t) ∈ Q, and so

∫

Q

|χ∇f · ∇(∂tR) + χ(∂tR)∆f |2e2sϕd1
(x,t)dxdt

≤C
∫

Q

(|∇f |2 + |∆f |2)e2sϕd1
(x,t)dxdt ≤ C

∫

Ω

(|∇f |2 + |∆f |2)e2sϕd1
(x,0)dx.

Therefore we obtain
∫

Ω

s|∆f |2e2sϕd1
(x,0)dx

≤C
∫

Ω

|∆f |2e2sϕd1
(x,0)dx+ Cs

∫

Ω

|∇f |2e2sϕd1
(x,0)dx

+C max
T−2δ1≤t≤T−δ1

max
x∈Ω

e2sϕd1
(x,t)(‖∆f‖2L2(Ω) + ‖∇f‖2{L2(Ω)}n)

+CeCsD2

for all s ≥ s∗. The first term on the right-hand side can be absorbed into the left-hand
side by choosing s > 0 large, and by (4.13) we have

∫

Ω

s|∆f |2e2sϕd1
(x,0)dx

≤ Cs

∫

Ω

|∇f |2e2sϕd1
(x,0)dx+ Ce2s(µ0−r0)(‖∆f‖2L2(Ω) + ‖∇f‖2{L2(Ω)}n) + CeCsD2

(4.17)
for all s ≥ s∗.

Since f = d1 − d2 ∈ H2
0 (Ω) by d1, d2 ∈ D, we can apply (4.9) to obtain

∫

Ω

(s2|∇f |2 + s4|f |2)e2sϕd1
(x,0)dx ≤ C

∫

Ω

s|∆f |2e2sϕd1
(x,0)dx.
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Substituting this into the left-hand side of (4.17), we obtain

∫

Ω

(s|∆f |2 + s2|∇f |2 + s4|f |2)e2sϕd1
(x,0)dx

≤Cs
∫

Ω

|∇f |2e2sϕd1
(x,0)dx+ Ce2s(µ0−r0)(‖∆f‖2L2(Ω) + ‖∇f‖2{L2(Ω)}n) + CeCsD2

for all s ≥ s∗, and absorbing the first term on the right-hand side into the left-hand
side again by choosing s > 0 large if necessary, we have

se2sµ0(‖∆f‖2L2(Ω) + ‖∇f‖2{L2(Ω)}n + ‖f‖2L2(Ω))

≤s
∫

Ω

(|∆f |2 + |∇f |2 + |f |2)e2sϕd1
(x,0)dx

≤Ce2s(µ0−r0)(‖∆f‖2L2(Ω) + ‖∇f‖2{L2(Ω)}n) + CeCsD2

for all s ≥ s∗. Noting C−1‖f‖2H2(Ω) ≤ ‖∆f‖2L2(Ω) + ‖∇f‖2{L2(Ω)}n + ‖f‖2L2(Ω) ≤
C‖f‖2H2(Ω), we see that

‖f‖H2(Ω) ≤ Cs−1e−2sr0‖f‖2H2(Ω) + CeCsD2

for all large s > s∗. Since r0 > 0, for large s > 0, we can absorb the first term on the
right-hand side into the left -hand side, so that

‖f‖2H2(Ω) ≤ 2CeCsD2.

Thus the proof of Theorem 3 is completed.

Appendix. Proof of Lemma 4
In order to clarify the dependence in the Carleman estimate on δ0 andM , for arbitrary
d ∈ D, we prove the lemma directly and the proof is similar for example to Section 3
in Yamamoto [21], where a Carleman estimate is proved for a parabolic equation.

By the usual density argument, it suffices to prove for f ∈ C2
0 (Ω). We set

ψd(x) = ϕd(x, 0), g(x) = esψd(x)f(x), q = ∆f

and

L0g(x) = esψd(x)∆(e−sψd(x)g(x)).

We have

L0g = ∆g − 2sλψd∇d · ∇g + s2λ2ψ2
d|∇d|2g − sλ2ψd|∇d|2g − sλψd(∆d)g in Ω. (1)

We set

A1 := −sλ2ψd|∇d|2 − sλψd(∆d). (2)

We note that

|A1(x, s, λ)| ≤ Csλ2ψd for x ∈ Ω and all large λ > 0 and s > 0.
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Here and henceforth by C,C1, etc., we denote generic constants which are independent
of s, λ, ψd but dependent on M, δ0 > 0, and these constants may change line by line.
Moreover we always assume that λ ≥ 1. Hence we use the following inequality:
λm ≤ λm

′

if 0 < m ≤ m′.

In view of A1, we have

L0g = ∆g − 2sλψd∇d · ∇g + s2λ2ψ2
d|∇d|2g +A1g = qesψd in Ω. (3)

Taking into consideration the orders of (s, λ, ψd), we split L0g as follows:

{

L1g = ∆g + s2λ2ψ2
d|∇d|2g +A1g,

L2g = −2sλψd∇d · ∇g in Ω.
(4)

Since ‖qesψd‖2L2(Ω) = ‖L1g + L2g‖2L2(Ω), we obtain

2

∫

Ω

(L1g)(L2g)dx ≤
∫

Ω

q2e2sψddx. (5)

Now we estimate

∫

Ω

(L1g)(L2g)dx

=−
∫

Ω

2sλψd(∇d · ∇g)∆gdx−
∫

Ω

2s3λ3ψ3
d|∇d|2(∇d · ∇g)gdx

−
∫

Ω

2sλψdA1(∇d · ∇g)gdx =:

3
∑

j=1

Jk. (6)

By the integration by parts and g = ∂νg = 0 on ∂Ω, we have

J1 =

∫

Ω

2sλψd

n
∑

j,k=1

(∂kd)(∂j∂kg)∂jgdx+

∫

Ω

2sλ
n
∑

j,k=1

∂j((∂kd)ψd)(∂jg)∂kgdx

=

∫

Ω

sλψd

n
∑

j,k=1

(∂kd)∂k(|∂jg|2)dx+

∫

Ω

2sλ

n
∑

j,k=1

∂j((∂kd)ψd)(∂jg)∂kgdx

=−
∫

Ω

sλ

n
∑

k=1

∂k((∂kd)ψd)|∇g|2dx+

∫

Ω

2sλ

n
∑

j,k=1

∂j((∂kd)ψd)(∂jg)∂kgdx.

Since

∂j((∂kd)ψd) = (∂j∂kd)ψd + (∂kd)∂jψd = λ(∂jd)(∂kd)ψd + (∂j∂kd)ψd,
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we have

J1 = −
∫

Ω

sλ2ψd|∇d|2|∇g|2dx−
∫

Ω

sλ(∆d)ψd|∇g|2dx

+

∫

Ω

2sλ2ψd

n
∑

j,k=1

(∂jd)(∂kd)(∂jg)∂kgdx+

∫

Ω

2sλψd

n
∑

j,k=1

(∂j∂kd)(∂jg)∂kgdx

=−
∫

Ω

sλ2ψd|∇d|2|∇g|2dx−
∫

Ω

sλ(∆d)ψd|∇g|2dx

+

∫

Ω

2sλ2ψd

∣

∣

∣

∣

∣

∣

n
∑

j,k=1

(∂jd)∂jg

∣

∣

∣

∣

∣

∣

2

dx +

∫

Ω

2sλψd

n
∑

j,k=1

(∂j∂kd)(∂jg)∂kgdx

≥−
∫

Ω

sλ2ψd|∇d|2|∇g|2dx−
∫

Ω

sλ(∆d)ψd|∇g|2dx

+

∫

Ω

2sλψd

n
∑

j,k=1

(∂j∂kd)(∂jg)∂kgdx.

Therefore

J1 ≥ −
∫

Ω

sλ2ψd|∇d|2|∇g|2dx− C

∫

Ω

sλψd|∇g|2dx. (7)

Moreover we have

J2 = −
∫

Ω

s3λ3ψ3
d|∇d|2

n
∑

k=1

(∂kd)∂k(|g|2)dx

=

∫

Ω

s3λ3
n
∑

k=1

∂k(ψ
3
d)|∇d|2(∂kd)|g|2dx+

∫

Ω

s3λ3ψ3
d

n
∑

k=1

∂k(|∇d|2∂kd)|g|2dx

=

∫

Ω

3s3λ4ψ3
d|∇d|4|g|2dx− C

∫

Ω

s3λ3ψ3
d|g|2dx (8)

and

J3 = −
∫

Ω

sλψdA1

n
∑

k=1

(∂kd)∂k(|g|2)dx

=

∫

Ω

n
∑

k=1

sλ∂k(ψdA1)(∂kd)|g|2dx+

∫

Ω

n
∑

k=1

sλψdA1(∂
2
kd)|g|2dx

≥ −C
∫

Ω

s2λ4ψ2
d|g|2dx. (9)

Therefore (6) - (9) yield

1

2

∫

Ω

|q|2e2sψddx ≥
∫

Ω

(L1g)(L2g)dx

≥−
∫

Ω

sλ2ψd|∇d|2|∇g|2dx+

∫

Ω

3s3λ4ψ3
d|∇d|4|g|2dx
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−C
∫

Ω

sλψd|∇g|2dx− C

∫

Ω

(s3λ3ψ3
d + s2λ4ψ2

d)|g|2dx. (10)

For the proof of the lemma, we have to estimate sλ2ψd|∇g|2 + s3λ4ψ3
d|g|2, but the

first and the second terms on the right-hand side have different signs. Thus we need
another estimate. That is, multiplying (3) with −sλ2ψd|∇d|2g and integrating over
Ω, we obtain

4
∑

j=1

Ik := −
∫

Ω

(∆g)sλ2ψd|∇d|2gdx+

∫

Ω

2s2λ3ψ2
d|∇d|2(∇d · ∇g)gdx

−
∫

Ω

s3λ4ψ3
d|∇d|4|g|2dx−

∫

Ω

sλ2ψdA1|∇d|2|g|2dx

= −
∫

Ω

qesψdsλ2ψd|∇d|2gdx. (11)

Hence, by integration by parts, we obtain

I1 =

∫

Ω

sλ2ψd|∇d|2|∇g|2dx+

∫

Ω

sλ2∇(|∇d|2ψd) · (∇g)gdx.

Here we have
∫

Ω

sλ2∇(|∇d|2ψd) · (g∇g)dx ≤ C

∫

Ω

sλ3ψd|g||∇g|dx

=C

∫

Ω

(sλ2ψd|g|)(λ|∇g|)dx ≤ C

2

∫

Ω

(s2λ4ψ2
d|g|2 + λ2|∇g|2)dx.

Consequently

I1 ≥
∫

Ω

sλ2ψd|∇d|2|∇g|2dx− C

∫

Ω

s2λ4ψ2
d|g|2dx− C

∫

Ω

λ2|∇g|2dx. (12)

Next

I2 =

∫

Ω

s2λ3ψ2
d|∇d|2(∇d · ∇(|g|2))dx

=−
∫

Ω

s2λ3
n
∑

k=1

∂k(ψ
2
d)|∇d|2(∂kd)|g|2dx−

∫

Ω

s2λ3ψ2
d

n
∑

k=1

∂k((∂kd)|∇d|2)|g|2dx

≥ −C
∫

Ω

(s2λ4ψ2
d + s2λ3ψ2

d)|g|2dx ≥ −C
∫

Ω

s2λ4ψ2
d|g|2dx. (13)

By (2), we see

I4 ≥ −C
∫

Ω

s2λ4ψ2
d|g|2dx. (14)

Since
∣

∣

∣

∣

∫

Ω

qesψdsλ2ψd|∇d|2gdx
∣

∣

∣

∣

≤ 1

2

∫

Ω

|q|2e2sψddx+
1

2

∫

Ω

s2λ4ψ2
d|∇d|4|g|2dx,
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it follows from (11) - (14) that
∫

Ω

sλ2ψd|∇d|2|∇g|2dx−
∫

Ω

s3λ4ψ3
d|∇d|4|g|2dx− C

∫

Ω

s2λ4ψ2
d|g|2dx− C

∫

Ω

λ2|∇g|2dx

≤1

2

∫

Ω

|q|2e2sψddx+
1

2

∫

Ω

s2λ4ψ2
d|∇d|4|g|2dx.

Therefore
∫

Ω

sλ2ψd|∇d|2|∇g|2dx−
∫

Ω

s3λ4ψ3
d|∇d|4|g|2dx

≤ 1

2

∫

Ω

|q|2e2sψddx+ C

∫

Ω

s2λ4ψ2
d|g|2dx+ C

∫

Ω

λ2|∇g|2dx. (15)

Thus we consider (10) + 2× (15):
∫

Ω

sλ2ψd|∇d|2|∇g|2dx+

∫

Ω

s3λ4ψ3
d|∇d|4|g|2dx

≤ 3

2

∫

Ω

|q|2e2sψddx+C

∫

Ω

(sλψd + λ2)|∇g|2dx+C

∫

Ω

(s3λ3ψ3
d + s2λ4ψ2

d)|g|2dx. (16)

Since |ψd(x)| ≥ e−λM for all x ∈ Ω and d ∈ D, we have

Cλ2 = sλ2ψd ×
Cψ−1

d

s
≤ sλ2ψd

CeλM

s
, (17)

Csλψd = sλ2ψd
C

λ
, Cs3λ3ψ3

d = s3λ4ψ3
d

C

λ
(18)

and

Cs2λ4ψ2
d = s3λ4ψ3

d

Cψ−1
d

s
≤ s3λ4ψ3

d

CeλM

s
. (19)

We choose sufficiently large λ0 = λ0(δ0,M) > 0 such that C
λ0

≤ 1
4 in (18). For any

given λ ≥ λ0, we choose s1 = s1(λ, δ0,M) such that Ce
λM

s1
≤ 1

4 in (17) and (19). Then

Cλ2, Csλψd ≤
1

4
sλ2ψd,

Cs3λ3ψ3
d, Cs2λ4ψ2

d ≤ 1

4
s3λ4ψ3

d

for all λ ≥ λ0 and s ≥ s1, and noting |∇d| ≥ δ0 > 0 for all d ∈ D, we can absorb the
second and the third terms on the right-hand side of (16) into the left-hand side to
obtain

1

2

∫

Ω

sλ2ψd|∇g|2dx+
1

2

∫

Ω

s3λ4ψ3
d|g|2dx ≤ C

∫

Ω

|q|2e2sψddx. (20)

We re-write by means of f . Replacing g = esψdf , we have |g|2 = |f |2e2sψd and

|∇f |2e2sψd = |∇g − sλ(∇d)ψdesψdf |2

≤2|∇g|2 + 2s2λ2|∇d|2ψ2
d|f |2e2sψd ≤ 2|∇g|2 + Cs2λ2ψ2

d|f |2e2sψd .

Substituting them into (20), we complete the proof of Lemma 4.
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