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Abstract

The problem to be studied in this work is within the context of coefficient iden-

tification problems for the wave equation. More precisely, we consider the problem

of reconstruction of the refractive index (or equivalently, the dielectric constant) of

an inhomogeneous medium using one backscattering boundary measurement. The

goal of this paper is to analyze the performance of a globally convergent algorithm of

Beilina and Klibanov on experimental data acquired in the Microwave Laboratory at

University of North Carolina at Charlotte. The main challenge working with experi-

mental data is the the huge misfit between these data and computationally simulated

data. We present data pre-processing steps to make the former somehow look simi-

lar to the latter. Results of both non-blind and blind targets are shown indicating

good reconstructions even for high contrasts between the targets and the background

medium.

Keywords: Coefficient identification, wave equation, globally convergent algorithm,

experimental data, data pre-processing.

AMS classification codes: 35R30, 35L05, 78A46.

1 Introduction

In this paper, we consider the problem of the reconstruction of the refractive indices (equiv-

alently, the relative permittivities, or dielectric constants) of unknown targets placed in

a homogeneous medium using experimental measurements of back-scattered electromag-

netic waves in time domain. Mathematical speaking, this is a coefficient inverse problem
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(CIP) for the time-dependent wave-like equation: we reconstruct a spatially varying co-

efficient of this equation using measurements on a part of the boundary of the domain of

interest. Potential applications of this problem are in the detection and characterization

of explosives, including improvised explosive devices (IEDs). Note that IEDs are often lo-

cated above the ground surface [15], which is somewhat close to our case of targets located

in the air. The case when targets are buried in the ground will be reported in a future

publication.

Different imaging methods have been applied to this type of measurements to obtain

geometrical information such as shapes, sizes and locations of the targets, see e.g. [13,

18]. However, the refractive indices, which characterize the targets in terms of their

constituent materials, are much more difficult to estimate. This is a motivation of the

current publication.

For conventional gradient-based optimization approaches, there is a huge literature,

see e.g. [2, 10, 11] and the references therein. It is well-known that their convergence

is guaranteed only if the starting point of iterations is chosen to be sufficiently close to

the correct solution. This means that they require some a priori information about the

targets being found, which is not always available in many practical situations. Unlike

these, a different method was proposed in [5, 6, 14, 15] and results were summarized in the

book [4]. This method provides a good approximation for the exact coefficient without

a priori knowledge of a small neighborhood of this coefficient. Its global convergence

has been rigorously proved for an approximate mathematical model, see Theorem 2.9.4

in [4] and Theorem 5.1 in [6]. Due to this model, it is referred to as an approximately

globally convergent method (globally convergent method in short). In [14] the authors

demonstrated good reconstruction results for a transmitted experimental data set using

this method, whereas a gradient based method with Tikhonov regularization, starting

from the homogeneous medium as the first guess, failed.

The goal of this paper is to show how this globally convergent method performs on a

backscattering experimental data. While previously it was demonstrated how this method

works on transmitted real data [4, 5, 14], the case of backscattering data is much more

complicated, because backscattered signals are much weaker than transmitted ones. In ad-

dition, a number of unwanted scattering signals caused by objects present in the room of

experiments (e.g. furniture) occur in the backscattering case. Although in [15] backscat-

tering data were treated, they were 1-d data only, while we work here with the 3-d data.

To collect these data, an experimental apparatus was built in the Microwave Laboratory

of University of North Carolina at Charlotte, using support of US Army Research Office.

The main challenge working with our experimental data is a huge misfit between these

data and computationally simulated ones, also see [4, 5, 14, 15] for the same conclusion.

From the Functional Analysis standpoint this means that the function expressing exper-

imental data is far away in any reasonable norm from the range of the operator of our

forward problem. And this operator should be inverted to solve the inverse problem.

Hence, any inversion algorithm would fail to produce satisfactory results, if being applied

to the raw data.
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Therefore, the central procedure before applying the globally convergent algorithm is

a heuristic data pre-processing procedure. This procedure makes the data look somewhat

similar to the data provided by computational simulations. In other words, it moves the

data closer to the range of that operator. The pre-processing of the current paper is

substantially different from pre-processing procedures of [4, 5, 14, 15] because the data

are different. We describe our data pre-processing procedure in section 3.

The pre-processed data are used as the input for the globally convergent method. Our

goal is to image refractive indices and locations of the targets. In addition, we want to

estimate sizes of those targets. We should mention that results of this method can be used

as initial guesses for locally convergent methods in order to refine images, especially the

targets’ shapes. For example, it was shown in [4, 5, 7] that the adaptive finite element

method has significantly improved images of shapes for transmitted experimental data

in the case when its starting point was the solution obtained by the globally convergent

method.

The experimental data sets of this paper include both non-blind and blind cases.

“Blind” means that the targets were unknown for the computational team (NTT, LB,

MVK) but known to MAF, who was leading the data collection process. Moreover, refrac-

tive indices of these targets were measured after the reconstruction results were obtained.

Then computational results were compared with directly measured ones. Our results in-

dicate that we not only reconstruct accurately refractive indices and locations of targets,

but also can differentiate between metallic and non-metallic targets.

2 Problem statement and the globally convergent method

In this section we state the forward and inverse problems under consideration as well

briefly outline the globally convergent method of [4] for reader’s convenience. We refer to

[4] and [6] for more details.

2.1 Forward and inverse problems

As the forward problem, we consider the propagation of the electromagnetic wave gen-

erated by a point source in R3. Below, x = (x, y, z) denotes a point in R3. Since in

our experiments only one component of the electric wave field E is generated from the

transmitting horn antenna (source) and the detector measures only that component of the

scattered electric field, we model the wave propagation by the following Cauchy problem

for the scalar wave equation

ε(x)utt(x, t) = ∆u(x, t), (x, t) ∈ R3 × (0,∞), (1)

u(x, 0) = 0, ut(x, 0) = δ(x− x0), (2)

where u is the total wave which is equal to the sum of the incident wave ui and the scattered

wave us caused by the scattering from the inhomogeneous medium. To further justify our

use of the single equation (1) instead of the full Maxwell’ system, we refer to [3], where
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it was shown numerically that the component of E which was initially incident upon the

medium, dominates two other components, at least for a rather simple medium, such as we

work with, see section 7.2.2 of [3]. Besides, equation (1) was previously successfully used

to work with transmitted experimental data [4, 5, 7]. In (1), ε(x) represents the spatially

distributed dielectric constant, while n(x) :=
√
ε(x) is referred to as the refractive index of

the medium in which the wave propagates. In our analysis, we assume that the coefficient

ε(x) is unknown inside of a bounded convex domain Ω ⊂ R3 with ∂Ω ∈ C3. We also

assume the existence of a positive constant d such that

ε(x) ∈ [1, 1 + d], ∀x ∈ R3, ε(x) ≡ 1, ∀x /∈ Ω. (3)

In other words, the medium is assumed to be homogeneous outside of the domain Ω.

Moreover, for theoretical analysis, we assume that the coefficient ε ∈ C3(R3). We also

assume that the source is placed outside of Ω, i.e. x0 /∈ Ω.

For the convenience of the theoretical analysis, we state the inverse problem for the

case when the data at the entire boundary are given. However, in our experiments, only

back-scattering data are measured. In section 4, we explain how do we work with this

type of data.

CIP. Reconstruct the coefficient ε(x) (or equivalently, the refractive index n(x)) for

x ∈ Ω, given the measured data at ∂Ω for a single source position x0 /∈ Ω̄.

u(x, t) = g(x, t),x ∈ ∂Ω, t ∈ (0,∞). (4)

The function g(x,t) represents the time dependent measured data at the boundary

of the domain of interest. The assumption of the infinite time interval in (4) is not a

restrictive one, because in our method we apply the Laplace transform to g(x,t) with

respect to t. Since the kernel of this transform decays exponentially with respect to t,

then the Laplace transform effectively cuts off to zero values of the function g(x,t) for t

larger than some value T .

Concerning the uniqueness of this CIP, global uniqueness theorems for multidimen-

sional CIPs with a single measurement are currently known only under the assumption

that at least one of initial conditions does not equal zero in the entire domain Ω. All these

theorems were proven by the method, which was originated in [9]; also, see, e.g. sections

1.10, 1.11 in [4] about this method. This technique is based on Carleman estimates. Since

both initial conditions (2) equal zero in Ω, then this method is inapplicable to our case.

However, since we need to solve numerically our CIP anyway, we assume that uniqueness

takes place.

We remark that equation (1) is invalid if metallic objects are present in the domain

Ω. To deal with this type of targets, we follow the suggestion of [15]. It was established

numerically in [15] that metals can be modeled as dielectrics with a high dielectric constant,

which is referred to as the “appearing” dielectric constant of metals. It is suggested in

[15] that this dielectric constant can be chosen as

ε (metals) ∈ [10, 30] . (5)
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2.2 The globally convergent method

The globally convergent method of [4] works with the Laplace transformed data. However,

we do not invert the Laplace transform. Let

w(x, s) =

∞∫
0

u(x, t)e−stdt, (6)

where the positive parameter s is referred to as the pseudo frequency. We assume that

s ≥ s > 0, where the number s is large enough, so that the Laplace transforms of u and

its derivatives Dku, k = 1, 2, converge absolutely. It follows from (1) that the function w

satisfies the equation

∆w(x, s)− s2ε(x)w(x, s) = −δ(x− x0),x ∈ R3, s ≥ s. (7)

It was proved in Chapter 2 of [4] that w(x, s) > 0 and lim
|x|→∞

w(x, s) = 0. Define the

function v,

v :=
lnw

s2
. (8)

Substituting w = evs
2

into (7) and keeping in mind that x0 /∈ Ω, we obtain

∆v + s2|∇v|2 = ε(x),x ∈ Ω. (9)

Equation (9) shows that the coefficient ε(x) can be computed directly via the function v.

To compute v, we eliminate the unknown coefficient ε(x) from (9) by taking the derivative

with respect to s both sides of (9). Denote by q := ∂sv. Then

v = −
∞∫
s

qdτ = −
s̄∫
s

qdτ + V, (10)

where s̄ > s is a large number and V (x) := v(x, s̄). The number s̄ plays the role of a

regularization parameter in the globally convergent method and it is chosen numerically

in the computational practice. The function V (x) := v (x, s) is called the “tail function”.

It follows from (8) and (10) that

V (x) =
lnw(x, s̄)

s̄2
. (11)

From (9) we obtain the following differential integral equation involving q and V

∆q −2s2∇q ·
s̄∫
s

∇q(x, τ)dτ + 2s2∇V · ∇q + 2s

∣∣∣∣∣∣
s̄∫
s

∇q(x, τ)dτ

∣∣∣∣∣∣
2

−4s∇V ·
s̄∫
s

∇q(x, τ)dτ + 2s |∇V |2 = 0,x ∈ Ω. (12)
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Equation (12) is coupled with the following Dirichlet boundary condition for q, which

follows from (4),

q(x, s) = ψ(x, s),x ∈ ∂Ω, (13)

where

ψ(x, s) =
∂

∂s

[
ln(ϕ)

s2

]
=
∂sϕ

s2ϕ
− 2 ln(ϕ)

s3
. (14)

Here ϕ is the Laplace transform of the measured data, i.e. ϕ(x, s) =
∞∫
0

g(x, t)e−stdt.

Note that equation (12) has two unknown functions q and V . In order to approximate

both of them we treat them differently. In particular, we use an iterative procedure with

respect to the tail function V as described below.

2.3 Discretization and description of the algorithm

Divide the pseudo frequency interval [s, s̄] into N uniform sub-intervals by s̄ = s0 > s1 >

· · · > sN = s, sn − sn+1 = h. We approximate q by q(x, s) ≈ qn(x), s ∈ (sn, sn−1], n =

1, . . . , N. We also set q0 ≡ 0. Then after some manipulations, a system of elliptic equations

for functions qn (x) is derived from (12) using the so-called “Carleman Weight Function”

exp [λ (s− sn−1)] , s ∈ (sn, sn−1) , where λ >> 1 is a certain parameter. We take λ = 20

in all our computations. This system is

∆qn + A1,n∇qn · (∇Vn −∇qn−1)

= A2,n|∇qn|2 +A3,n

(
|∇qn−1|2 + |∇Vn|2 − 2∇Vn · ∇qn−1

)
, (15)

where Ai,n, i = 1, 2, 3, are some coefficients, depending on sn and λ, which are analytically

computed, and ∇qn−1 = h
∑n−1

j=0 ∇qj . Here we indicate the dependence of the tail function

V := Vn on the number n, because we approximate V iteratively. The discretized version

of the boundary condition (13) is given by

qn(x) = ψn(x) :=
1

h

sn−1∫
sn

ψ(x, s)ds ≈ 1

2
[ψ(x, sn) + ψ(x, sn−1)],x ∈ ∂Ω. (16)

One can prove that |A2,n| ≤ C/λ for sufficiently large λ, where C > 0 is a certain con-

stant. Hence, the first term on the right hand side of (15) is dominated by the other

terms. Therefore, in the following we set A2,n|∇qn|2 := 0 and ignore this term in our

computations. The system of elliptic equations (15) with boundary conditions (16) can be

solved sequentially starting from n = 1. To solve it, we make use of the iterative process:

For a given n and some approximation qn,i−1 of qn, we find the next approximation qn,i of

qn by solving (15)–(16). Denote by mn the number of these iterations. The full algorithm

is described as follows.
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Globally convergent algorithm

• Given the first tail V0. Set q0 ≡ 0.

• For n = 1, 2, . . . , N

1. Set qn,0 = qn−1, Vn,1 = Vn−1

2. For i = 1, 2, . . . ,mn

– Find qn,i by solving (15)–(16) with Vn := Vn,i.

– Compute vn,i = −hqn,i − qn−1 + Vn,i,x ∈ Ω.

– Compute εn,i via (9). Then solve the forward problem (1)–(2) with the

new computed coefficient ε := εn,i, compute w := wn,i by (6) and update

the tail Vn,i+1 by (11).

End (for i)

3. Set qn = qn,mn , εn = εn,mn , Vn = Vn,mn+1 and go to the next frequency interval

[sn+1, sn] if n < N. If n = N , then stop.

Stopping criteria of this algorithm with respect to i, n should be addressed computa-

tionally, see details in section 4.

2.4 The initial tail function and the global convergence

We remark that the convergence of this algorithm depends on the choice of the initial tail

function V0. In [4], see also [6], the global convergence of this algorithm was proved within

the context of an approximate mathematical model. First, it has been proved in [4] that

under some conditions, there exists a function p(x) ∈ C2+α
(
Ω
)

such that

V (x, s) =
p(x)

s
+O

(
1

s2

)
, s→∞, (17)

where C2+α
(
Ω
)

is the Hölder space. Due to this asymptotic behavior, we assume that

the exact tail is given by

V (x, s) =
p (x)

s
=

lnw (x, s)

s2
,∀s ≥ s. (18)

We use this assumption only on the initializing iteration to obtain V0 (x) . That is, we make

use of only the first order term in the asymptotic expansion (17). Under this assumption,

it follows from (12), (13) that p (x) satisfies

∆p(x) = 0,x ∈ Ω, p ∈ C2+α
(
Ω
)
, (19)

p|∂Ω = −s2ψ (x, s) , (20)

As the first guess for the tail function we take

V0 (x) :=
p (x)

s
,x ∈ Ω. (21)
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With this choice of the initial tail function, it was proved in Chapter 2 of [4], Theorem 2.9.4

(see also Theorem 5.1 in [6]) that the proposed algorithm is convergent in the following

sense: it delivers some points in a sufficiently small neighborhood of the exact coefficient

ε(x). The latter is sufficient for computational purposes. The size of this neighborhood

depends on the noise in the data ψ, the discretization step size h of the interval [s, s] and

the domain Ω. We note that no a priori information about the unknown coefficient is used

here. Therefore, we say that the algorithm is globally convergent within the framework of

the approximation (18).

In our computations, the bound constraints (3) is used to truncate the coefficient

εn,i(x) on each iteration.

2.5 Numerical solution of the forward problem

Although a point source is used in the forward model (1)–(2) for theoretical analysis, we

make use of an incident plane wave in our numerical implementation. Moreover, since it is

impossible to solve the forward problem numerically in the infinite space R3, we consider

the wave equation in a bounded domain G ⊂ R3 such that Ω ⊂ G. For simplicity, we

choose G as the prism

G := {x ∈ R3 : Xl ≤ x ≤ Xu, Yl ≤ y ≤ Yu, Zl ≤ z ≤ Zu}.

We denote by ∂Glz := {z = Zl}, ∂Guz := {z = Zu} and ∂Gxy = ∂G \ (∂Glz ∪ ∂Guz ).

An incident plane wave of a short time period is excited at ∂Guz and propagates in the

negative z direction. At the plane ∂Glz we assume that the absorbing boundary condition

is satisfied, and at ∂Gxy we assign the homogeneous Neumann boundary condition. More

precisely, we solve the following problem

ε(x)utt(x, t) = ∆u(x, t), (x, t) ∈ G× (0, T ), (22)

u(x, 0) = 0, ut(x, 0) = 0,x ∈ G, (23)

∂νu = f(t), (x, t) ∈ ∂Guz × (0, t1), (24)

∂νu = −ut, (x, t) ∈ ∂Guz × (t1, T ), (25)

∂νu = −ut, (x, t) ∈ ∂Glz × (0, T ), (26)

∂νu = 0, (x, t) ∈ ∂Gxy × (0, T ), (27)

where ν is the outward normal vector of ∂G and t1 := 2π/ω is the duration of the excitation

of the incident plane wave. Function f is the incident waveform chosen by

f(t) = sin(ωt), 0 ≤ t ≤ t1 = 2π/ω.

Here ω represents the angular frequency of the incident plane wave. The forward problem

(22)–(27) is solved using the software package WavES [19] via the hybrid FEM/FDM

method described in [8].
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3 The experimental setup and data pre-processing

3.1 Data acquisition

Our experimental configuration is shown in Figure 1. The setup of our measurements

included a horn antenna (transmitter) fixed at a given position and a detector scanned

in a square of a vertical plane, which we refer to as the measurement plane. Consider

the Cartesian coordinate system Oxyz as shown in Figure 1(b). The scanning area was

1 m by 1 m with the step size of 0.02 m, starting at (x, y) = (−0.5,−0.5), and ends at

(x, y) = (0.5, 0.5).

(a) (b)

Figure 1: (a): A picture of our experiment setup; (b) Diagram of our setup.

In our model (1)–(2), we assumed that the source point x0 is in R3 \ Ω. However,

due to some technical difficulties with the mechanical scanning system, the horn antenna

was not placed behind but in front of the measurement plane (between the measurement

plane and the targets). Therefore a small area in the center of the scanning area on the

measurement plane was shaded by the horn. The horn was placed at the distance of

about 0.2-0.25 m from the measurement plane and the distances from the targets to the

measurement plane are about 0.8 m.

At each position of the detector, a number of electric pulses were emitted by the horn.

The detector received two types of signals: the direct signals from the source and the

backscattered signals by the targets. The direct signals are used for time reference in data

pre-processing. There were also other unwanted signals due to scattering by some objects

in the room. To reduce the instability of the recorded signals in terms of magnitude, the

measurements were repeated 800 times at each detector position and the recorded signals

were averaged. By scanning the detector and repeating the measurements, we obtained

essentially the same signals as using one incident signal and multiple detectors at the same

time.

Pulses were generated by the Picosecond Pulse Generator 10070A. The scattered sig-

nals were measured by a Tektronix DSA70000 series real-time oscilloscope. The emitted

pulses were of 300 picoseconds duration. The wavelength of the incident pulses was about
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0.03 m. The sampling rate (the step size in time between two consecutive records of

captured signals) was ∆t = 10 picoseconds. Each signal was recorded for 10 nanoseconds.

3.2 Data pre-processing

One of the biggest challenges in working with these experimental data is to deal with the

huge misfit between these data and the data produced via computational simulations, also

see [4, 5, 14, 15] for the same conclusion. There are several causes of this misfit such as (i)

the instability of the amplitude of the emitted signals (incident waves) which causes the

instability of the received signals, (ii) unwanted scattered waves by several existing objects

around our devices (see Figure 2(a)), (iii) the shadow on the measurement plane caused

by the transmitting horn antenna, and (iv) the difference between the experimental and

simulated incident waves. Figure 3 compares the Laplace transform of an experimental

scattered wave and the corresponding simulated one, which shows a huge misfit between

them. Note that the Laplace transform of the experimental wave was carried out after

removing the incident wave and unwanted parts, as shown in Figure 2(c).

Therefore, the central procedure before applying inversion methods is the data pre-

processing. This procedure is usually heuristic and cannot be rigorously justified. Our

data pre-processing consists of six steps described below. We do not describe steps 1-3 in

detail here, since they are straightforward.

Step 1. Off-set correction. The acquired signals are usually shifted from the zero mean

value. This can be corrected by subtracting the mean value from them.

Step 2. Time-zero correction. Time-zero refers to the moment at which the signal is

emitted from the transmitter. The recorded signals may be shifted in time. We use the

direct signals from the transmitter to the detector to correct the time-zero.

Step 3. Source shift. As mentioned above, the horn antenna in our experiments is placed

between the targets and the measurement plane. However, in data calibration, we need to

simulate the data for the case when the measurement plane is between the horn and the

targets. Therefore, we artificially “shift” the horn in the positive z−direction such that

it is 0.4 m further than the measurement plane from the targets. It is done by shifting

the whole time-dependent data by a number of samples which corresponds to the shifted

distance.

Step 4. Extraction of scattered signals. Apart from the signals backscattered by the

targets, our measured data also contain various types of signals as mentioned above.

What we need, however, is the scattered signals by the targets only. The extraction of

these scattered signals for each target is done as follows. First, we exclude the direct signals

and the unwanted signals, which come earlier than the scattered signals by the target (see

Figure 2(a)-(b)), by calculating the time of arrival. These unwanted signals are due to the

reflection of the direct signals by the metallic structure behind the measurement plane,

so we can estimate their times of arrival as we know the distance from the measurement

plane to this structure. Then, as we observed that the scattered signals by the target

are the strongest peaks of the remaining, we first detect, for each detector position, the
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(a)

(b) (c)

Figure 2: An experimental data set: (a) a 1D curve; (b) a 2D data on a horizontal scan;

(c) After steps 1-4 of the data pre-processing.

(a) (b)

Figure 3: Experimental vs. simulated scattered waves on the measurement plane after

Laplace transform: (a) measured data; b) simulated data.
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strongest negative peak after removing the aforementioned signals. Then, the scattered

signals by the target are taken as 7 peaks (4 negative peaks and 3 positive peaks) starting

from the first negative peak prior to the strongest one, if its amplitude is less than 80%

of the strongest one (see Figure 2(a)). Otherwise, we start from the second negative peak

prior to the strongest one. The reason for choosing 7 peaks for the scattered signals is due

to the fact that the incident pulses also contain 7 strong peaks. We note that having the

scattered signals by the target, we can easily determine the distance from its front side to

the measurement plane by calculating the time of arrival.

Step 5. Data propagation. After getting the scattered signals, the next step of data

pre-processing is to propagate the data closer to the targets, i.e. to approximate the

scattered waves on a plane closer to the targets, compared to the measurement plane.

There are two reasons for doing this. The first one is that since the Laplace transform

decays exponentially in terms of the time delay, which is proportional to the distance

from the targets to the measurement plane, then the amplitude of the data after the

Laplace transform on the measurement plane is very small and can be dominated by the

computational error. The second reason is that this propagation procedure helps to reduce

the computational cost substantially as the computational domain Ω is reduced. We have

also observed that the data propagation helps to reduce the noise in the measured data.

Step 6. Data calibration. Finally, since the amplitude of the experimental incident and

scattered waves are usually quite different from simulations, we need to bring the former

to the same level of the amplitude as the latter. This is done using a known target referred

to as calibrating object.

Figure 2 shows an original data set and data after steps 1-4 for a horizontal scan of

the detector. One can see that steps 1-4 help to remove the unwanted signals. In the

following, we present our methods for steps 5 and 6.

3.2.1 Data propagation

Denote by Pm the measurement plane and by Pp the propagation plane, which is closer to

the targets than Pm. Without a loss of the generality, we denote by Pm = {z = a} and Pp =

{z = 0}, where the number a > 0. Moreover, denote by Γ = (−0.5, 0.5)×(−0.5, 0.5)} ⊂ R2

the scanning area of the detector on the plane Pm. Let Γm = {(x, y, a) ∈ R3 : (x, y) ∈ Γ}
and Γp = {(x, y, 0) ∈ R3 : (x, y) ∈ Γ}. We also denote by us(x, t) the scattered wave.

Note that the medium between Pm and Pp is homogeneous with ε = 1 and the scattered

wave us propagates in the direction from Pp to Pm. The aim of the data propagation is

to approximate us
∣∣
Γp×(0,∞)

from the measured data g̃(x, y, t) := us
∣∣
Γm×(0,∞)

.

To do this, we make use of a time reversal method. Its idea is to reverse the scattered

wave in time via solution of an initial boundary value problem for the time-reversed wave

function. We proceed as follows.

Since short pulses are used as incident waves, it is reasonable to assume that the scat-

tered wave us in the domain between Pm and Pp vanishes along with its time derivative

ust after some time T . Therefore in the following we only consider the finite time interval
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(0, T ). Denote τ := T − t. Then the time-reversed wave function ur(x, τ) := us(x, t)

satisfies the homogeneous wave equation. Moreover, it propagates in the negative z direc-

tion, i.e. from Pm to Pp. To find ur
∣∣
Γp

, we consider the domain D := {x ∈ R3 : (x, y) ∈
Γ, b < z < a} with b < 0. Note that Γp ⊂ D. The reason for choosing this larger domain

is that we need to assign boundary conditions at ∂D. Indeed, we assume that ur satis-

fies the absorbing boundary condition at Γb := {(x, y, b) : (x, y) ∈ Γ}. On Γb, far from

our propagation plane, this boundary condition means, heuristically, that we “send back”

the original scattered wave us recorded at Pm. On the other hand, we impose the zero

Neumann boundary condition at the rest of the boundary of D, except of Γm. Denote

QT = D × (0, T ) and Γ3 := ∂D \ (Γm ∪ Γb). We obtain the following problem for the

function ur(x, τ)

urττ = ∆ur, (x, τ) ∈ QT , (28)

ur (x, 0) = urτ (x, 0) = 0,x ∈ D, (29)

ur
∣∣
Γm×(0,T )

= g̃(x, y, T − τ), (30)

(∂νu
r + ∂τu

r)
∣∣
Γb×(0,T )

= 0, (31)

∂νu
r
∣∣
Γ3×(0,T )

= 0. (32)

A similar procedure was proposed and numerically implemented for computationally sim-

ulated data in [1]. However, the absorbing boundary condition for the original scattered

wave us was applied in [1]. Since our time-reversed wave function ur propagates from

Γm to Γb, we believe that it is more natural to apply the absorbing boundary condition

on Γb to ur. Note that we do not locate scatterers here, since we know from our previ-

ous pre-processing steps an approximate distance to the targets. We refer the reader to

[12, 17] and the references therein for experimental time reversal mirror method, a similar

procedure but using a physical mirror to reverse the received signals in time and send back

to the targets.

Theorem 3.1 below shows the stability of the problem (28)–(32). We do not prove

this theorem here due to the space limit. This theorem can be extended to more general

domains. We note that its proof is similar with the proof of Theorem 4.1 of [3] for

the Maxwell’s system. For brevity we are not concerned here with minimal smoothness

assumptions and leave aside the question of existence. We conjecture that it can be

addressed via the technique of chapter 4 of [16].

Theorem 3.1. Assume that there exists a solution ur ∈ H2 (QT ) of the problem (28)-

(32). Also, assume that the function g̃ ∈ H2 (Γm × (0, T )) and there exists such a function

F ∈ H2 (QT ) that

F (x, 0) = Fτ (x, 0) = 0, (∂νF + Fτ ) |Γb×(0,T )= 0, ∂νF |Γ3×(0,T )= 0,

F |Γm×(0,T )= g̃ (x, t) , ‖F‖H2(QT ) ≤ C ‖g̃‖H2(Γm×(0,T )) ,

where C > 0 is a certain number. Then that solution ur is unique and the following

stability estimate holds with a constant C1 = C1 (C,QT ) > 0 depending only on the listed
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parameters

‖ur‖H1(QT ) ≤ C1 ‖g̃‖H2(Γm×(0,T )) .

By solving (28)–(32), we obtain an approximation of ur (x, τ) and then obtain an

approximation of us for x ∈ Γp. In this work, we use the finite difference method to solve

this problem. Since the formulation is very standard, we omit the details here. We note

that other methods can also be used to solve this data propagation problem such as the

Fourier transform method or the quasi-reversibility method. We will discuss these two

methods in future works.

3.2.2 Data calibration

Usually the experimental data have quite different amplitudes compared to the simulations,

see Figure 4 which shows that the minimum of the Laplace transform of the propagated

measured data is approximately −2× 10−5, whereas the minimum of the simulated data

is about −5 × 10−9. We choose a number, which is called calibration factor, to scale the

measured data to the same scaling as in our simulations. To do this, we make use of the

measured data of a single calibrating object whose location, shape, size and material are

known. The word “single” is important here to ensure that the calibration procedure is

unbiased, i.e. it remains the same for all targets.

(a) (b)

Figure 4: Laplace transform of the scattered wave on the propagation plane Pp: (a)

measured data; b) simulated data.

First, we computationally simulate the data on Γp for the calibrating object by solving

problem the (22)–(27). Next, we compute the Laplace transform (6) of this computa-

tionally simulated solution. Just as in [4], in studies below we work with s ∈ [s, s] .

Numbers s, s are chosen numerically, see section 4. Denote by wtsim (x, s), wssim (x, s)

and wisim (x, s) respectively the Laplace transforms of the total wave, the scattered wave

and the incident wave of the simulated solution for the calibrating object. Clearly,

wssim (x, s) = wtsim (x, s) − wisim (x, s). It can be proved that wssim (x, s) ≤ 0, see Fig-

ure 4(b). Figure 4(b) displays the function wssim (x, s) for x ∈ Γp and qualitatively this is
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a typical behavior for all targets. Let

dsim,s = min
Γp

wssim (x, s) .

Next, for x ∈ Γp let wsexp (x, s) be the Laplace transform of the propagated experimental

data for the calibrating object, see Figure 4(a). Denote by

dexp,s = min
Γp

wsexp (x, s) .

The number dsim,s/dexp,s is used as the calibration factor for all targets at pseudo-frequency

s. That means, the propagated measured data of all targets are multiplied by this cali-

bration factor before being used in the inversion algorithm.

For the data sets used in this paper, we have two types of targets: dielectric and metallic

targets. We have observed that two different calibration factors should be used for these

two types of targets, because the signals from them have different levels of amplitude.

First of all, we differentiated these two types of targets by comparing the amplitudes of

the recorded signals. Indeed, we have consistently observed that the maximal values of

amplitudes of measured signals are at least two times larger for metallic targets than for

dielectric ones on those positions of detectors which are most sensitive to the presence of

targets. Next, we chose in each type a known object as the calibrating object. In other

words, we should use a dielectric calibrating object for all dielectric targets and another

metal calibrating object for all metallic targets.

The value of ε (x) for the dielectric calibrating object was taken as ε (x) = 4.28 inside

that target and ε (x) = 1 outside of it. For the metallic calibrating object, as suggested

by (5), we took ε (x) = 12 inside and ε (x) = 1 outside of it.

4 Numerical implementation and reconstruction results

Now we describe some details of the numerical implementation and present reconstruction

results for our experimental data using the globally convergent algorithm of section 2.2.

In our computations, the frequency of the simulated incident wave was chosen as ω = 30.

There were ten data sets tested in this paper. Each data set consisted of only one

target numbered from 1 to 10. Four of them (targets 1 - 4) were non-blind and six of

them (targets 5 - 10) were blind. In our data pre-processing, we chose target 1 (a piece of

wood) and target 3 (a metallic sphere) as our calibrating objects.

4.1 Dimensionless variables

The spatial dimensions in our experiment were given in meters. Since the scanning step

in our measured data was 0.02 m in both x and y directions, we chose the dimensionless

spatial variable x′ to be x′ = x/1(m). Next, to scale the wave speed to be 1 in the

homogeneous medium, as in our simulations, we chose the dimensionless time t′ by t′ = 0.3t

where t is the time given in nanoseconds (ns). The factor 0.3 is the speed of light in meters
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per nanosecond in the free space. For the simplicity of notations, we use x and t again to

denote the dimensionless variables.

4.2 Choosing the domains

Before applying the inversion algorithm, some information about the targets was in place

already from the measured data due to the data pre-processing. First, we obtained the

distance from the targets to the measurement plane. Second, by the data propagation,

the targets’ locations in the xy plane were estimated. Thirdly, we also differentiated

between nonmetallic and metallic targets directly from the measured data based on signal

amplitudes.

Given the estimated distances from the targets to the measurement plane, which were

about 0.8 m, we propagated the measured data from the measurement plane Pm = {z =

0.8} to the plane Pp = {z = 0.04}. This means that the distance from the front sides of

the targets to the backscattering boundary of our inversion domain was about 0.04 m. The

reason for choosing this distance was due to good reconstruction results we have obtained

for several non-blind targets. The domain Ω was chosen by

Ω = {x ∈ (−0.5, 0.5)× (−0.5, 0.5)× (−0.1, 0.04)} . (33)

For solving the forward problem (22)–(27), using the hybrid FDM/FEM method, we chose

the domain G as

G = {x ∈ (−0.56, 0.56)× (−0.56, 0.56)× (−0.16, 0.1)} .

This domain G was decomposed into two subdomain: G = Ω ∪ (G \ Ω). We recall that

ε(x) = 1 in G \ Ω. Therefore, it is only necessary to solve the inverse problem in Ω. In Ω

we use a FEM mesh with tetrahedral elements, while in G \ Ω we use a FDM mesh with

the mesh size of 0.02 by 0.02 by 0.02 in Test 1 and 0.01 by 0.01 by 0.01 in Test 2 below.

The reason for using the FEM mesh in Ω is that it is possible to refine the reconstruction

using adaptive mesh refinement. However, we do not discuss this step in this work. We

refer to [4, 7] for more details about the adaptivity.

The time interval (0, T ) in the forward problem (22)–(27) was chosen equal to (0, 1.2).

Since the explicit scheme in time was used in WaveES, the time step size was chosen as

∆t = 0.0015 which satisfies the CFL stability condition.

The pseudo frequencies sn were chosen from s = 8 to s = 10 with the step size h = 0.05.

This frequency interval was chosen because it gave good reconstructions of the non-blind

targets.

4.3 Estimation of the xy projection

During our data pre-processing for non-blind targets, we observed that the xy projection

of a target can be roughly estimated directly from the propagated data. Indeed, we define

ΓT as

ΓT = {(x, y) : vprop(x, y, s̄) < 0.85 min vprop(x, y, s̄)}, (34)
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where vprop is the function v in (8) which is constructed from the propagated measured

data on the propagation plane Γp. Note that the function vprop has a negative peak

corresponding to each target, see Figure 4. The truncation value 0.85 was chosen based

on trial-and-error tests on some non-blind targets with known sizes. We observed that

ΓT provided a good approximation for the xy projection of a target. Note that the same

truncation was applied to blind targets as well. Hence, it is not biased.

(a) (b)

Figure 5: Estimation of target’s xy projection: (a): target 4 (a metallic cylinder); (b):

target 10 (a wooden doll partly filled with sand). Thin lines indicate boundaries of correct

xy projections.

Figure 5 shows the estimated xy projections of targets 4 and 10 in our experiments,

see Table 1. Although the corners of the targets are not well estimated, we see that their

shapes and sizes are reasonably good. For target 10, since its lower part was filled with

the sand and the upper part was air inside of a wooden cover (see section 4.7 for details),

we can see only the lower part due to its higher refractive index compared to the upper

part.

4.4 Complementing backscattered data

We recall that only backscattered signals were measured in our experiments. This means

that after data propagation, the function ψ(x, s) was known only on the side Γp = {x ∈
∂Ω : |x| , z = 0.04} of Ω. As in [6], we replace the missing data on the other parts of ∂Ω by

the corresponding solution of the forward problem in the homogeneous medium. In other

words, in our computations, function ψ is given by

ψ(x, s) =

{
ψprop(x, s),x ∈ Γp, s ∈ (s, s̄),

ψisim(x, s),x ∈ ∂Ω \ Γp, s ∈ (s, s̄),
(35)

where ψprop is the function ψ of (14) computed from the propagated measured data at Γp
and ψisim is computed from the simulated solution of the problem (22)–(27) with ε(x) ≡ 1
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in the wave equation (22). In the following, we also denote by Vprop(x) := vprop(x, y, s̄),

x ∈ Γp, s ∈ [s, s̄] the tail function (11) of the propagated measured data.

Recall that our measured data were collected with the step size of 0.02 m in x and

y directions. To obtain the data at the same grid size as in our computational domain,

we applied the linear interpolation to the Laplace transform of the propagated measured

data.

Below we present the reconstruction results of two different tests: Test 1 and Test

2. In Test 1, we made use of the first tail function computed from the boundary value

problem (19)–(20). As it was remarked in section 2.4, the global convergence with this

choice of the initial tail function is rigorously guaranteed. In Test 2, we choose the first

tail function from some information about the targets which we obtained in the data pre-

processing. Although the convergence of the resulting algorithm has not been rigorously

proved yet, our numerical results show good reconstructions. As we mentioned in section

2.3, stopping criteria of the algorithm should be addressed numerically. We will discuss

this in the following.

4.5 Test 1

When testing the algorithm for different non-blind targets in this test, we have developed

a reliable stopping criterion which includes two steps.

Stopping criterion for inner iterations with respect to i. The inner iterations

are stopped at i = mn such that either (36) or (37) is fulfilled,

En,i ≥ En,i−1 or En,i ≤ η, (36)

Dn,i ≥ Dn,i−1, or Dn,i ≤ η, (37)

where η = 10−6 is a chosen tolerance and Dn,i = ||Vn,i|Γp − Vprop||L2(Γp). In (36) En,i
represents the relative error of the coefficient, which is given by

En,i =
||εn,i − εn,i−1||L2(Ω)

||εn,i−1||L2(Ω)
.

Criterion for choosing the final coefficient. In Test 1, the inversion algorithm was

run for all pseudo frequencies in the chosen interval s ∈ [8, 10] and then the final recon-

structed coefficient was chosen as follows. On every pseudo frequency interval [sn, sn−1)

we took the norms Dn,first = Dn,1 and Dn,final := Dn,mn at the first and the final in-

ner iteration respectively. We have always observed in all ten sets of our data that the

first norm Dn,first increases first with respect to n, then decreases and attains an unique

minimum with respect to n ∈ [1, N ] = [1, 40] . On the other hand, the final norm Dn,final

has either one or two local minima, see Figure 6(a). Let n1 be the number of the it-

eration n at which the minimum of the first norms is achieved, e.g. n1 = 16 in Figure

6(a). As the reconstructed coefficient εrec (x), we first choose εrec (x) := εn1 (x) . Next, if

maxΩ εrec (x) < 5 or maxΩ εrec (x) > 10, then we take the function εrec (x) as the final

reconstruction. Suppose now that 5 ≤ maxΩ εrec (x) ≤ 10. Then we consider the iteration
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number n2 at which the smallest local minimum of the final norm Dn,final is achieved,

e.g. n2 = 33 in Figure 6(a). Then we take the function εrec (x) := εn2 (x) as the final

reconstruction.

As shown in Table 1, the reconstructed refractive indices are quite close to the true

values for all dielectric targets. Table 2 shows that reconstructed appearing dielectric

constants of metallic targets are always in the required range (5). However, the shapes

and sizes of the targets were not well reconstructed, in particular the “depth” in the

z−direction. To improve this, we use the following post-processing procedure. Let Pz0 :=

{z = z0} be the plane where the function εrec (x) achieves its maximal value. Then we

compute the truncated coefficient function ε̃rec (x) as

ε̃rec (x) =

{
εrec (x) if εrec (x, y, z0) > γmax εrec (x, y, z0) ,

1 otherwise,
(38)

where γ is a truncation factor chosen such that the area of {ε̃ (x, y, z0) > 1} is the same

as that of ΓT , see (34) for ΓT . Finally, we approximate the depth in the z direction by

truncating ε̃rec (x) by 90% of its maximal value. This truncation value is chosen based on

the trial-and-error tests with non-blind targets. Figure 7 shows imaging results for targets

4 and 10.

(a) (b)

Figure 6: (a) Behavior of the norms Dn,first (solid curve) and Dn,final (dash curve) of

Test 1; (b) Behavior of Dn,final of Test 2.

4.6 Test 2

In this test, we chose the mesh size of 0.01 by 0.01 by 0.01 in order to represent the

targets’ shapes more accurately. We use an information about the targets in our data pre-

processing to restrict the estimated coefficient ε in a subdomain of Ω and to choose the

first tail function. More precisely, for each target, let xt,min = min{x ∈ ΓT }, xt,max =
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max{x ∈ ΓT }. The numbers yt,min and yt,max are defined similarly. Then, we define the

extended projection by

ΓT,ext = {xt,min − 0.03 ≤ x ≤ xt,max + 0.03, yt,min − 0.03 ≤ y ≤ yt,max + 0.03}.

Moreover, denote by zt,front the estimated location of the front side of the target in the z

direction. We then define the following domain ΩT,ext

ΩT,ext := {x ∈ Ω : (x, y) ∈ ΓT,ext, −0.1 ≤ z ≤ zt,front}.

Clearly, ΩT,ext ⊂ Ω. Moreover, this domain should contain the unknown target we are

looking for. Next, we chose the first tail function V0 as the function (11), where the

function w (x, s) is the Laplace transform (6) at s = s of the solution of the forward

problem (22)–(27) with the coefficient ε = ε0, where

ε0(x) = 1 + d, for x ∈ ΩT,ext, ε0(x) = 1, for x /∈ ΩT,ext.

Moreover, the coefficient is truncated by

εn,i(x) =


εn,i(x) if x ∈ ΩT,ext and 1 ≤ εn,i(x) ≤ 1 + d,

1, if εn,i(x) < 1,

1 + d, if εn,i(x) > 1 + d.

(39)

In this paper, we chose 1 + d to be 10 for nonmetallic targets and 20 for metallic ones.

Stopping criterion. In this test, the inner iterations were stopped using the same

criterion as in Test 1. However, we also set the maximum number of inner iterations to

be 5. That means, the inner iterations were stopped if either (36) or (37) was satisfied for

i < 5, or if i = 5.

Concerning the outer iterations, we have observed that the error Dn,final decreased

with respect to n first, and then increased after reaching a minimum, see Figure 6(b). At

that minimum, the estimated coefficient was a good approximation of the true one for

some non-blind targets. Therefore, we stopped the algorithm when this error function

attained the minimum.

We have observed through our tests that the shapes of the targets are quite well

reconstructed. Figure 8 shows the results of targets 4 and 10 using Test 2. For target 10,

we again obtained the lower part, which was filled with the sand, see Figure 5(c) for its

xy projection estimated from the data (recall that air was inside the wooden cover in the

upper part of that target).

4.7 Summary of reconstruction results

To compare our computational results with true ones, we have directly measured a poste-

riori refractive indices n =
√
ε of dielectric targets. In Tables 1, 2, the computed values of

the refractive index ncomp of dielectrics (respectively appearing dielectric constant εcomp of
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(a) Target 4, 3D view (b) Target 4, xy view (c) Target 4, yz view

(d) Target 10, 3D view (e) Target 10, xy view (f) Target 10, yz view

Figure 7: Some reconstruction results of Test 1. xy view means the projection of the

target on the xy plane. yz view means the projection of the target on the yz plane. Thin

lines indicate correct shapes.

Table 1: Computed and measured refractive indices of six dielectric targets. The average error in

direct measurements is 24%. The average error of Test 1 is 8% and Test 2 is 3.4%.

Target ID 1 2 5 8 10

blind/non-blind (yes/no) no no yes yes yes

Measured value, error 2.11, 19% 1.84, 18% 2.14, 28% 1.89, 30% 2.1, 26%

ncomp Test 1, error: 1.92, 10% 1.80, 2% 1.83, 17% 1.86, 2% 1.92, 9%

ncomp Test 2, error: 2.03, 4% 1.96, 7% 2.10, 2% 1.85, 2% 2.05, 2%

Table 2: Computed appearing dielectric constants εcomp of metallic targets.

Target ID 3 4 6 7 9

blind/non-blind (yes/no) no no yes yes yes

εcomp Test 1: 14.37 16.93 25.0 13.61 13.56

εcomp Test 2: 7.59 10.76 19.55 8.12 7.89
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(a) Target 4, 3D view (b) Target 4, xy view (c) Target 4, yz view

(d) Target 10, 3D view (e) Target 10, xy view (f) Target 10, yz view

Figure 8: Some reconstruction results of Test 2. Thin lines indicate correct shapes.
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metals) were chosen as the square root of the maximal values (respectively, the maximal

values) of the reconstructed coefficient. Table 1 lists both computed ncomp and directly

measured refractive indices n of dielectric targets for both Test 1 and Test 2. This table

also shows the measurement error in direct measurements of n. Table 2 lists computed

appearing dielectric constants εcomp of metallic targets. We see from Tables 1 and 2 that

(ncomp)2 < 5 for all dielectric targets, while εcomp > 13.56 for all metallic targets in Test

1 and εcomp ≥ 7.59 in Test 2. Thus, our algorithm can differentiate quite well between

dielectric and metallic targets.

It can be seen from Table 1 that both tests image refractive indices of both blind

and non-blind dielectric targets with only a few percent of error, which is even smaller

than the error of direct measurements. The average error of computed refractive indices

ncomp in Tests 1 and 2 is respectively three and seven times less than the average error of

direct measurements. Test 1 obtains higher appearing dielectric constant of some metallic

targets than Test 2. However, Test 2 provides better shapes.

Unlike targets 1 - 7, which are homogeneous, targets 8, 9 and 10 are heterogeneous.

Target 8 is a wooden doll with air inside. Target 9 is that doll with a piece of metal inside,

i.e. this is a metal covered by a dielectric. We can see that only the metal was imaged,

because its reflection is much stronger than that of the wood. Target 10 is the same

doll partially filled with sand inside (except of the top), i.e. this is one dielectric covered

by another one. One can see that only the part with the sand was imaged in target

number 10, since its dielectric constant is higher than the air inside the top. Moreover,

the reconstructed refractive index is about the average of those of the wood and the sand.

In conclusion, we can see from our tests that, with the proposed data pre-processing

procedure, the globally convergent algorithm can image quite well both geometries and

materials of the targets in our experimental data even though there is a huge misfit between

these data and simulations. Moreover, it can image large inclusion/background contrasts,

the case that is well known to be difficult for conventional least squares approaches.
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