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REDUCED BASIS COLLOCATION METHODS FOR PARTIAL
DIFFERENTIAL EQUATIONS WITH RANDOM COEFFICIENTS  *
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Abstract. The sparse grid stochastic collocation method is a new rddtitasolving partial diter-
ential equations with random cieients. However, when the probability space has high difoaaéty,
the number of points required for accurate collocationtimhg can be large, and it may be costly to
construct the solution. We show that this process can be made dficient by combining collocation
with reduced-basis methods, in which a greedy algorithnsésiuo identify a reduced problem to which
the collocation method can be applied. Because the reduoeélris much smaller, costs are reduced
significantly. We demonstrate with numerical experimehg this is achieved with essentially no loss
of accuracy.
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1. Introduction. Let (Q,X, %) be a complete probability space, whe&lés the
sample spacg; € 2 theo-algebra, aneP :  — [0, 1] the probability measure. Let
D c RY (d=1,2,3) be a bounded and connected domain with a polygonaidzoy
0D. We consider the problem of finding a random functigiR, w) € D x Q — R,
such thatP-a.e. inQ,

(1.1) LK wuXw) = f(X) VYXeD,
(1.2) b(% w; U, w) = g(X)  VYXedD,

where£ is a partial dfferential operator antlis a boundary operator, both of which
can have random cé&ients. In order to solve (1.1)-(1.2) numerically, the ran-
dom codficients in the operators should be represented by a finite euaflstandom
variables¢ = [¢1(w), ...,ém(w)]T. This could come from a variety of sources, for
example, a truncated Karhunen-Loéve (KL) expansion [2, ddme partitioning of

D into subdomains, or uncertain boundary conditions. Leflin:= [a, ;] denote
the image of;(w) andT := Hi"ﬂl I; the image of, (1.1)—(1.2) can be rewritten as:
find a functionu(X, &) € D x T, such that

(1.3) L(X&EUXKE)=F(X) V(X eDxT,
(1.4) b(REURE)) = g(R) V(X&) €D xT,

where£ andb are assumed to b&finely dependent og. It is of interest to identify
moments and cumulative distributions associated with dhatisn u(X, £). Our aim
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in this study is to develop a variant of tlsparse grid collocation methoidr con-
structing solutions to (1.3)—(1.4), usingduced-basis methods enhance féciency.

The sparse grid collocation method [21, 32] for stochastidial differential
equations (PDESs) is an example of a spectral method, in wiigtrete solutions
are constructed using polynomials in the random variélecombination with stan-
dard (e.qg., finite element) spatial discretization. Catam shares with Monte Carlo
methods the feature that only solutions of a set of spatidigrete problems at a
set of sample pointg&®} are required, and it exhibits rapid convergence (nearly ex-
ponential in the number of sample points [21]), which maltenadre dficient than
Monte Carlo methods when the dimensighof the sample space is modest, say, on
the order of 100 or smaller [18, 19]. However, the number ofiga (collocation)
points needed may still be large when accuracy requirenagatstrong, and if this is
coupled with fine discretization for spatial accuracy, ttiencosts of stochastic collo-
cation may be high. To address this issue, we combine ctibocaith reduced-basis
methodd4, 13, 20], in which parameterized discrete PDEs are ptegemto spaces
of significantly smaller dimension. The reduced-basis w#ttogy is designed to de-
crease the cost of simulation of parameter-dependent widadehis study, we show
that this idea can be used with stochastic collocation tc#mee &ect.

An outline of the rest of the paper is as follows. In Sectiorsnd 3, we re-
view the collocation and reduced basis methods, and in @edti we present our
algorithm for combining them. In Sections 5 and 6, we denratstthe éiciency
of the combined method for solving stochastic versions efdifusion equation and
the incompressible Navier-Stokes equations. Finally, éctin 7 we make some
concluding remarks.

2. Stochastic collocation on sparse gridsThe main idea of stochastic colloca-
tion methods is to seek a numerical approximation to thetes@ation of (1.3)—(1.4)
in the form

(2.1) WX E) = ) Ue(X9) Law (©),

£0cO

where® c T is a given sample se{i§<k>(§)} are some global interpolation polynomi-
als defined il” (e.g., Lagrange polynomials) and eachftioeent functionuc(x, £®)

is the solution of a deterministic problem corresponding tiven realizatiog® of
the random variablég,

(2.2) £(x&9u(x M) =f(x)  vReD,
(2.3) b(x &9 u(xeW))=g(x)  VXeaD.

We will be concerned with sparse grid collocation as descriim Xiu and Hes-
thaven [32], which is based on the methodology of sparse igt@polation. We
begin with a brief review of this interpolation technique.ith@ut loss of general-
ity, the image of is assumed in this section to bé := [-1,1]M, since any finite
I'= Hi“ﬂl[ai, bi] can be mapped tb*. First, we consider a one-dimensional setting.
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Introducing a level indeke N, let®) = {f‘j, j = 1 : my} be a partitioning of the inter-
val [-1, 1], wherem; is the number of partitioning points. For an arbitrary fuoit
v(€) € C([-1,1)]), its Lagrange interpolant is

UMW) = > V(&)L @),

=1

3

where

_ m o
Bo=[] =

k=1k#] §k - fk

A straightforward generalization for a function bf variablesv(¢) € C(I™) is the
tensor-product interpolant

rnl
(Ure-eUM)W =) - Z L EN L (D) LY (En)
=1 jm=1

This requires the function values BE", m nodes, which is of exorbitant size for
large M andm. The number of nodes can be reduced dramatically using aespar
grid (Smolyak) operator [3],

(2.4) AGM) = > (-)F "'(M “ll)(U‘l@---@uiM),

g-M+1<lil<q
wherei e NM il =iy + --- + iy and the indexg > M is called the sparse grid level.
The sparse grid operator depends on function values apérse grid points
0= |J (fe---s0}).
g-M+1<lil<q

The size of the sample set (i.e., the number of sparse gndg)@,| can typically be
chosen to be much smaller thﬁﬂ‘il m; without significantly sacrificing interpolation
accuracy [3].

Different choices of the one-dimensional partitioning s@fls} lead to diferent
sparse grid operators, e.g., nested Clenshaw-Curtissalsc|3, 32] and non-nested
Gauss abscissae [8]. When nested abscissae are Asgi))(v) is an interpolant
of v(¢&) for any arbitraryv(¢) € C(I'). This is not true in general when non-nested
abscissae are used.

In this study, we consider Clenshaw-Curtis interpolatishpse abscissae are the
extrema of Chebyshev polynomials (see [32]), &ndrefers to the set consisting of
Clenshaw-Curtis sparse grids. From [38g| ~ ZQ‘MWiM)! < [TM, m. For this
interpolation rule,

AGMV) € D (Pn,1®:+-® Py, 1),
lil=q
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whereP,_1 is the set of polynomials with degree at most- 1 and

1 =t
M=12-141 i>1

In addition, A(q, M)(v) = v whenever € Yji_q(Pm,-1®---® Py 1). Like the
generic form of collocation solutions (2.1), the specifiovidor sparse grid sampling
is denoted by

(2.5) use(%.6%) = Z Ue (%69 Lew ().

£We0y,

where the interpolation polynomialts«} come from the definition of the Smolyak
operator (2.4Y.

We can also use the sparse grid formulation to perform qua@rto approximate
the moments ofig®. For example, the Clenshaw-Curtis quadrature rule (selef¢22
details) computes the meanf(x, &),

E(Uu(X.¢)) = fr Ug" (X&) p (€) dé,
in the form

(2.6) E(uFx8) = > uc(%9)p(£9) we,

£e0yq

where{wgw } are the weights of the Clenshaw-Curtis sparse grid quaeraliican be
seen that the evaluation of the mean function (2.6) doesmtatl @valuation of the
interpolation polynomial s in (2.5). An estimate for the variance can be computed
in the same way.

Note that this Clenshaw-Curtis quadrature rule with ley& exact for polyno-

mials in the space

lil=q
This impliesE(U3%(X, £)) = E(uac(i, £)) whené is uniformly distributed, i.e., when
the density functiom(£) is a constant.

3. Discretization and reduced basis approximation.In this section, we dis-
cuss finite element approximation and reduced basis metbotize problem (2.2)—
(2.3). To simplify the presentation in this section, we vadilsume the problem sat-
isfies homogeneous Dirichlet conditions. It is straightfard to generalize the ap-
proach to nonhomogeneous conditions, which will be dissdigs Section 6.

In general, we denote the weak form of the deterministic lprab(2.2)—(2.3)
corresponding to a given realizationby

Be(u(,€),v) = I(v).

1We refer to the MATLAB toolbox SPINTERP [16] for evaluatirllgm ©).
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Let X" be a spatial finite element approximation space (e.g., wiseelinear or
quadratic polynomial spaces) of dimensiNp. A finite element formulation seeks
an approximationun(-, &) € X" such that

(3.1) B (Un (- €),v) = 1(v) Yve X

In the following, for anyé, the finite element solutionn, (-, €) is referred to as a
snapshot associated with Grouping solutions of (3.1) with respect to &lle T
together, we define a set consisting of all snapshots

Sr={un (&), €T},

We will refer to this as théull snapshot setSimilarly, for a given finite se® c T,
we define a finite snapshot set

Se = {un(-,¢), £ € O).

The matrix form ofSg is denoted bySg € ROl je. each column o8 is the
vector of nodal point values of a finite element solution.

In this study, we assume that the spatial mesh fEcsently fine so that the fi-
nite element discretization error is acceptable (we refetandard a posteriori error
estimation techniques, e.g., [1, 10, 29]). With this asdionp the Galerkin equa-
tion (3.1) typically has many degrees of freedom. On therdtla@d, the size of the
sample sef@q| approximately equals®2M W!—M)! [32]. Although this may be much
smaller than the size of the tensor sample set, it may stiltdog large if high ac-
curacy with respect to collocation error is needed. The doation of large-scale
spatial discretization and large numbers of sample (cation) points can cause the
cost of sparse grid collocation to be unacceptably high. @mehence is to show
that these costs can be reduced through the use of redudsarmbkods.

That is, suppose we have a set of basis functi@ns {ds, ..., gn} € X", where
N <« Np. In the Galerkin formulation of the reduced basis method,seek an

approximate solutiong(X, £) € span(Q) such that

(3.2) B (UR(.E).V) =1(v) Vve spar(Q).

The reduced problem (3.2) tends to be much smaller than therblem (3.1)

[4, 20, 30]. Because of this, it is also likely to be cheapesatve, especially if
the computation is done carefully using precomputed gtiesitivhen possible. In
the following, we demonstrate this approach using two tymesenchmark prob-
lems. For the first, we use theflision equation as a prototypical example of a linear
problem; the approach considered is generally applicabliee¢ar problems, such as
the Stokes equations. For the second, we explore the métigydor quadratic prob-
lems as examplified by the Navier-Stokes equations. Folyhigdnlinear operators,
we refer to [7].



3.1. Linear operators. When the operatoy. of (1.3) is linear as a spatial dif-
ferential operator, the discrete weak formulation (3.Agketo a linear system

of orderNy. SinceL is linear,A; is independent afi,, and by assumption it isi@nely
dependent on the parametee I'. That is, it has the form

K
(3.4) N AGLT
i=1

where{A;} are parameter-independent matrices @iié) € R.

Forg € Q, let g; be the vector of nodal céiécient values associated wit,
and letQ = [y, ...,qn] € RNN be the matrix representation @ Then the linear
system associated with the reduced problem (3.2) can beewes

(3.5) Q"A.Ql; = Q'f.
With the expansion (3.4), (3.5) can be written as

K
3.6 i A ) =Q'f .
(3.6) (;¢@Q%Qw %:

Once the parameter-independent reduced matfisgg and vectorfr are precom-
puted, the reduced problem (3.5) for any arbitrary pdgind I" can be assembled
with O(N?) operations. Foug defined by (3.2), we will also need an estimate for a
norm of the erroe; := up(-, ¢) — Ur(:, €), which we would also like to compute with
complexity dependent only oN and notNy. This means that standard a posteriori
error estimators [1, 14, 17] for finite element methods sthdwal excluded, since they
would incur a cost proportional tN},. An effective alternative is thdual-basedn-
dicator developed in [25, 30, 31], which depends on an estirfaa the coercivity
constant associated with the problem. If only a rough erstinete is required, we
can use a simple residual indicator

IAQU, — f[l
(3.7) NQ.e = ———t =
lIfll2
We will use this in our experiments. It can be computéitiently using the relation

IAQu, — fllg = (A Qul, - f,A.Ql, - f) = (A,QU,, AQl,) — 2(AQ0,T) + (f,f)

35 oo 3o (3o

i=1 1

K K
(3.8) =l [Z > ¢i¢jQTAiTAjQ] fi, — 20]

i=1 j=1

(6iQTATf) +fTF.

o

Il
ey

Once the matricefQTATAjQ}, vectors{QTATf} andf'f are precomputed, the cost
for computingng; is O(N?). Similar economies can be achieved with dual-based
estimators [30, 31]. We refer to the reduced dense matritg@svectorsAg;}, fr in
(3.6), andQTATA;Q}, {QTATf}, fTf in (3.8) asoffline reduced matrices and vectors.
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3.2. Quadratic operators. When£ depends quadratically on the solutiarthe
algebraic form of the discrete problem (3.1) can be written a

(39) Au,gu = f’

whereA, ; is linearly dependent on, i.e., if the solution takes the foron= }}; ciu;,
then

(3.10) Aue= ) GAyc
i

Solving (3.9) requires a nonlinear iteration that entdils $olution of a linearized
problem at every step, for example, as in Picard and Newsopations [10, pp. 327—
329]. At iteration stem, the linearized problem for computing the solution at step
n+ 1 can be written as

(3.11) Ay U™t =1,

Like (3.5), the reduced version of (3.11) is

(3.12) QTAr, QU™ = QTH,

whereu" = QU" = i'\il a'g; with G" = [U”,...,UR‘]T andQ = [qy,....qn]. Using

(3.10), we can rewrite (3.12) as

N
(3.13) [ ai”QTAqi,fQ] gt = QTf.
i=1
Under the assumption thal, . is afinely parameter-dependent, which implies
K
(3.14) Age = ), 9i @ Aq.is
=1
the reduced linear system for quadratic operators can héy/fatated as
N K
(3.15) (2D e@mQAQfe -t
i=1 j=1 T
5]

Once the parameter-independent and solution-independatrices{A j} are pre-
computed, the reduced system (3.15) can be assembled wagi@(@®). Similarly
to (3.8), we can also develop a reduced version of the rdsiadiaator

Ay, QU — fll2
(3.16) N0.en = HIT

With some precomputeditine reduced matrices and vectors as discussed in Section
3.1, it can be verified that computing the reduced residudicator for quadratic
operators also cosB®(N3). Cf. [30] for eficient methods for computing dual-based
error estimates.

In the next section, a systematic way for constructing tliiced basi€ to-
gether with computing the collocation solution is introddc



4. Reduced basis collocationWe introduce a reduced basis collocation method
for cheaply computing the collocation solutiaff(-,¢) in (2.5). Our main idea is to
useuR, the solution of the reduced problem (3.2), to serve in ptddbe collocation
codficient functionuc(:, £) in (2.5) wherever possible. That is, given a collocation
point£®, we computaur(-, £9) and an error indicator such as (3.7) or (3.16). If this
error indicator is smaller than some specified toleranceyseer(-, £0); if the error
indicator is too large, then we compute the snapsh6t®) and use it asi(-, £) in
(2.5). In the latter case, we also augment the reduced b#sighis snapshot. Our
strategy is described in detail as follows.

1. Starting with levelp = M (the set®y has only one point, which is denoted
by £9)), compute the snapshat(-, £©). Initialize the reduced basi® =
{Un(-, €O}, In addition, useun(-,¢©@) to serve as the céicient function
ue(-, @) in (2.5).

2. Consider one higher level, i.p+ 1. Looping over sparse grid points in level
p+ 1, for each point®, compute the reduced solutior(-, £&®) in (3.2) and
estimate a norm of the errefw = un(-, &) — ur(-, &Y).

(a) If the estimated error is smaller than a given toleransepr(-, éX¥) to
serve as the cdigcient functionug(-, £M) in (2.5).

(b) If the estimated error is larger than the tolerance, atefhe snapshot
un(-, €M) and augment the reduced ba€isvith it. Then, usaun(-, £®)
to serve as the cdigcient functionug(-, €M) in (2.5).

3. Update the sparse grid level (i.e. [e p + 1), and repeat step 2, until the
level p reaches the given maximum lel

This strategy is stated more formally in Algorithm 1 belower#,tol stands for
a given tolerance and the orthogonal complenTgotw) is defined as

T(uw) = U — g (U,w),

wherellg(u.w) is the image ofiw under thel2-projection fromR™ to spar{g;}Y, .
T(u.w) can be computed using the Gram—Schmidt process, as implechén the
MATLAB function gr. In the sequel, the sparse grid collocation solution assedi
with Algorithm 1 is denoted by, and the full sparse grid collocation solution
whose cofficient functions are standard finite element solutions, otk byugsc.

In general, computing(> should be much less expensive than compuﬂ@?@, and
as we will show in the following sections, the accuracy of teduced solution is
often comparable to that of the full solution.

5. Numerical study for diffusion problems. In this section, we consider fili-
sion problems, whose governing equations are

(5.1) -V-a(,&dvu(,¢é =1 in DxT,
(5.2) u(¢é =0 on 9dDpxT,
(5.3) M =0 on dDyXT,

on



Algorithm 1 Reduced basis collocation, homogeneous boundary comslitio
ComputeSeg,, (®m contains only one point).
Initialize the reduced basis mati@ := Sg,, /|1Se,, |l2-
Construct the filine reduced matrices and vectors.
for p=1:qdo
for k=1:|0m4pl do
Computeil by solving (3.6) and compute an error indicator, eqg .« of
(3.7).
if NQ,¢k < tol then
Use the reduced solution derived frdip to serve asi(-, &) in (2.5).
else
Compute the full solution vectar,w by solving (3.3).
Use the full solution derived frorm, to serve asic(, €M) in (2.5).
ComputeT (u,w), the orthogonal complement afw with respect t@Q.
Augment the reduced basis mat@x:= [Q, T (u,w)].
Reconstruct theffline reduced matrices and vectors.
end if
end for
end for

wheregD = §Dp U dDy. The weak formulation is to find(-, &) € Hcl)(D) such that
(@vu,vv) = (L v) for all v € Hé(D). We discretize in space using a biline&]
finite element approximation [5, 10].

To assess the accuracy of solutions obtained using the ridlireduced basis
collocation methods, we use thdfdrences between the means of the solutions and
that of a reference solution. In particular, we introduce qoantities

(5.4) en = [[B (=) - B (P9, /HfE(U'?SC) 0
(5.5) er = [ () - B (9], JE (=],

where thereference collocation solution¥f is a full collocation solution with a
large grid levelr (we taker > g+ 2) and the norm is the function&P-norm. We
will also examine the performance of Monte Carlo simulatising a sample séy,¢
consisting of®,d realizations of, where the Monte Carlo error is measured as

{ﬁ > (-8 [ (=)

£€Omc 0

(5.6) €me = — & (uPs9)

0

We note that reduced basis methods can also be combined wiiteMarlo methods,
as discussed in [4].

5.1. Testproblem 1: piecewise constant ffusion codficient. We consider the
diffusion problem posed on the spatial dom@is- (-1, 1) x (-1, 1), divided intoNp
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equal-sized subdomains. A pure Dirichlet condition is &gup{i.e., 0Dy = 0). Figure
5.1 illustrates two cases of domain partitionings. The gedoiity codficienta(:, &)
is defined to be constant on each subdomain, i.e.,

a("é:)'Dk = é:k’ k=1: ND

where the random variable = [£1, .., &, ....énp] T IS independently and uniformly
distributed inI" := [0.01, 1]"\°. It is also assumed that the flag., £)Vu(-, &) is con-

tinuous across subdomain interfaces. We consider twontar@ this example, one
where the domains consist of vertical strips, the othergusgquares (see Figure 5.1).

Din| —  Pir
Dl DND
b e
(a) case 1Np subdomains (b) case Rtp = N x N subdomains

Fic. 5.1. Domain partitionings.

It follows from (3.2) that the reduced basis method seekdudisn in the space
spanQ). If each function in the full snapshot s&t can be approximated well by a
linear combination of a finite set of linearly independentdiions (referred to as a
“basis” of Sr), then with this set as the reduced ba3ighe reduced solutiong(:, &)
is close to the finite element solutiap(-, £). The size of this basis (we refer to it
below as the “rank” ofsy) is then crucial. If the rank dbr is much smaller thaiy,
then Algorithm 1 can cheaply compute an accurate reducdatedion solution (i.e.,
uasc ~ ugsgl

For this test problem, we check the rankSf as follows. We first generate a
sample se® consisting of 3000 random points ihand construct the corresponding
snapshot seBg.> We use the MATLAB functiorrank to compute the rank og
(the matrix ofSg, see Section 3). Due to the large number of sample poinsstahk
can serve an estimate of the rank of the full snapshdbset

Tables 5.1 and 5.2 show the estimated ranks for the two \arnidithe benchmark
diffusion problems, using threefffirent mesh sizes for the spatial discretization. It
can be seen that the ranks tend to increase linearly withuhebar of subdomains,
and they exhibit little dependence on the size of the grids Shggests that the rank
depends on properties of the underlying PDE and it indicttasfine-grid discrete
problems can be projected into subspaces of significantBllemdimensions with-
out sacrificing accuracy. (Although for lardgé,, in the cases of 36 or more square

2We have repeated this test more than ten times ffierdint random sets, and no significantly
different results were found.
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TasLe 5.1
Estimated rank for the full snapshot st & test problem 1, case 1.

Np
Grid 2 3 4 5 6 7 8 9 10
332 =1089 3 12 18 30 40 53 55 76 84
65 = 4225 3 12 18 30 40 48 55 70 87

129 =16641 | 3 12 18 28 39 48 55 72 81

TaBLE 5.2
Estimated rank for the full snapshot st & test problem 1, case 2.

Np
Grid 4 9 16 25 36 49 64
332 =1089 27 121 193 257 321 385 449
65 = 4225 28 148 290 465 621 769 897

129 = 16641 | 28 153 311 497 746 1016 1298

subdomains (see Table 5.2), the ranks are growing as the imesfined, they also
appear to be tending to a limit with increasing number of gaéhts.) We also note
that for some of these cases (of laiyg), the large ranks will make the reduced
problems expensive to solve, although these costs woulchb#es than those of the
full system solves for fine enough spatial discretization.

Next, we use Algorithm 1 to compute the collocation soluidor a collection
of examples of test problem 1. Tables 5.3-5.4 show resuitsa®ee 1 (vertical sub-
domains) and Tables 5.5-5.6 for case 2 (square subdomalh#)gse experiments
used a 6% 65 discrete spatial grid. The tables show the number of figlesn solves
N+uil solve and the size of the sample $6¢|. For example, in the case of22 sub-
domains andol = 10~ (Table 5.5), there are seven full system solves at the sparse
grid levelq = 5, which means that the residual error indicator is abovedlegance
at seven sparse grid points among the total of nine spardecgliocation points.
This is not surprising, since the size of the reduced basierig small at this stage
(it grows from 1 to 8), and in this trivial case, there is no @uhage for the reduced
basis. For higher levels of sparse grids, however, the adgas become clear. At
levelq = 6, there are 41 sparse grid points, and full system solvesemaed at 12 of
them, and at leved = 7, full solves are needed at just 3 of 137 sparse grid poirts. F
levels higher than 7, no full system solve is needed, whicanmsghat the reduced
basis with sizeN = 23 can provide as accurate (with respect to the error irmficat
a solution as the full collocation solution. This trend refdr all the examples: the
number of full system solves required to generate the retlackocation solution is
dramatically smaller than the number of collocation poirisreover, the required
number of full system solves needed for the the reduced msimmparable to the
ranks of the sets of full snapshots shown in Tables 5.1-502 ekample, with four
(2 x 2) square subdomains, the rank is 28.
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TaBLE 5.3
Number of full system solves for test problem 1, case 1, 5vitH subdomains (M = 5) and a
65 x 65 spatial grid.

q 5 6 7 8 9 10 11 12 13 16
ol Ol 1 11 61 241 801 2433 6993 19313 51713 869505
1073 1 10 9 O 0 0 0 0 0 0
0% Jj1 1012 1 0 O O 0 0 0
10° 1 10 13 O 0 0 0 0 0 0

TaBLE 5.4
Number of full system solves for test problem 1, case 1,3ithsubdomains (N = 9), tol = 10
and a65 x 65 spatial grid.

q 9 10 11 12 13 14 15 16 17
|Og| 1 19 181 1177 6001 26017 100897 361249 1218049
Nfu” solve l 18 34 2 1 1 0 0 0

For the cases of & 1 and 2x 2 subdomains, Figure 5.2 provides a more refined
assessment of accuracy, using the relative mean functiors€b.5) (fortol = 1074),
where the reference levels are taken torbe 18 for five vertical subdomains and
r = 17 for four square subdomains. The figure also shows similantities for the
Monte Carlo methodenc Of (5.6). The errors for the full collocation means, of
(5.4)) are also plotted, but there is no visudtalience betweeg, ander. Thus, the
reduced collocation solution is as accurate as the fulbcation solution, and it is
considerably more accurate than the Monte Carlo solution.

5.2. Test problem 2: truncated KL expansion cofficients. The spatial do-
main for this test problem iB = (0, 1) x (0,1). Mixed boundary conditions are ap-
plied — the condition (5.2) is applied on the lett£ 0) and right & = 1) boundaries,
and (5.3) is applied on the top and bottom boundaries. Thagmois discretized in
space on a uniform 6% 65 grid.

The difusion codicient for this test problem is assumed to be a random field
with mean functioreg(X), constant variance and covariance functio8(X, y),

5.7) C(R.Y) = o-exp(—lxl ; yil 1% ; Y2|)’

wherec is the correlation length. This random field can be approtechdy a trun-
cated Karhunen—Loéve expansion [2, 8, 11]

M
a(x.€) ~ ao(X) + ), VAka(X)é
k=1

whereak(X) and Ak are the eigenfunctions and eigenvalues of (5.7), and thdoran
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TaBLE 5.5
Number of full system solves for test problem 1, case 2, 2vitt2 subdomains (M = 4) and a
65 x 65 spatial grid.

q 4 5 6 7 8 9 10 11 12 15
tol 1Ol 1 9 41 137 401 1105 2929 7537 18945 271617
1073 1 7 11 3 0 0 0 0 0 0
104 1 7 12 3 0 0 0 0 0 0
10°° 1 7 13 2 3 0 0 0 0 0
TaBLE 5.6

Number of full system solves for test problem 1, case 2 dxithsubdomains (N = 16), tol = 107
and a65 x 65 spatial grid.

q 16 17 18 19 20 21
(O 1 33 545 6049 51137 353729
Nfutsove | 1 32 168 27 3 4

variables{&y} are assumed to be independently and uniformly distributed i=
[-1, M.

The error associated with truncation of the Karhunen—keo&xpansion depends
on the amount of total variance capturég, := (Ziﬁ"zl A)/(ID|o?) [6, 26]. We chose
M to be large enough so thét; > 95%. The correlation length has affiext on this
requirement — smatt leads to largeM.

For our experiments, we sa§(X) = 1 ando = 0.5 and examine two values of
the correlation lengthc = 4 with M = 5 andc = 2.5 with M = 8. Tables 5.7 and 5.8
show the numbers of full system solves needed in Algorithforlyarious choices of
the levelqg and toleranceol. Figure 5.3 shows the relative errags er andeme. The
reference solutions correspond to reference levelsl2 for M = 5 andr = 15 for
M = 8.

The results for this example are consistent with those foblpm 1. As the tol-
eranceol decreases or the sparse grid ley@hcreases, somewhat more full systems
need to be solved, but as above the number of such solvesnistically lower than
is needed for full collocation. Moreover, the sizes of thdueed basis are very small,
so the reduced system solves are inexpensive. In partiéafahe extreme cases in
the two examples, the full collocation method required 248d@ 15713 solves re-
spectively, in contrast to at most 62 and 115 for reducedsbasliocation. Figure
5.3 shows again that that there is little significarifetience between the full colloca-
tion and reduced collocation solutions, and that mild sohees for constructing the
reduced basis can achieve acceptable accuracy in the tedoldecation solution.

5.3. Tolerance and error indicator in Algorithm 1. We discuss some issues
related to the use of the residual error indicator (3.7) &edtbleranceol in Algo-
rithm (1). For the error indicator, first, as observed ab@readvantage of (3.7) is
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——Monte Carlo
—o—full collocation —o—full collocation
——Reduced Collocation || ——Reduced Collocation

—o—Monte Carlo

error

10 10 10’ 10* 10° 10 1’ 10’ 10* 1°
number of sample points number of sample points

(a) 5% 1 subdomains (b) & 2 subdomains
Fic. 5.2. Test problem 1¢g (for tol = 107%), &, and enc.

TaBLE 5.7
Number of full system solves foec4 with M = 5 in test problem 2.

qg |5 6 7 8 9 10
(O

tol 1 11 61 241 801 2433 Total

10° 1 9 8 3 0 2 23
1 2 1

_10° |1 10 12 10 2 1| 36
1077 1 10 21 9 7 2 50
108 1 10 26 18 5 2 62

that it can be computed at cost independentpfising (3.8). However, this advan-
tage holds only if the tolerance is not too small. In paracubkince (3.8) requires
a subtraction, the floating point computation will be actairenly if it not strongly
affected by cancellation, which is true only when the squardéefésidual norm is
significantly larger than the machine precision. Thus, weuse this (economical)
strategy only if the tolerance is not too small, on the ordeiG” or larger.

For the results shown in Tables 5.3, 5.7 and 5.8, we found {8.18e reliable for
the tolerances above the dotted lines. For the results bblese lines, we computed
the residual norm directly, which incurs a cost proportldoa\,,. Our expectation is
that this cost can be avoided through use of a mffiective error indicator such as
the dual-based method of [25, 30].

Tables 5.3-5.8 together with Figures 5.2 and 5.3 show thadingf thetol on
the performance of Algorithm 1. For test problem 1, Figur2 $hows that with a
modest valugol = 107*, the errors for reduced collocation are virtually idenitica
to those for full collocation, and (for both methods) as téxel g is increased, the
relative errors are reduced by approximately six ordersagmitude. We also found
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TaBLE 5.8
Number of full system solves foec2.5 with M = 8 in test problem 2.

q 8 9 10 11 12 13

tol 1O 1 17 145 849 3937 15718 Total
10°° 1 14 16 4 1 1 37
_10° 116 27 6 10 2| 62
1077 1 16 50 9 8 2 86
108 1 16 69 16 5 8 115

error
error

——tol=1e-5
10| | ——tol=1e-6
—+—tol=1e-7
—+—tol=1e-8
10 7| ——Monte Carlo =17~

—e—full collocation ]

—+—tol=1e-5
1070} |+ tol=1e-6
——tol=1e-7
——tol=1e-8
—e—Monte Carlo

—o—full collocation

10' 10° 10° 10* 10' 10° 10° 10* 10°
number of sample points number of sample points

(@)c=4withM =5 (b)c=25withM = 8

Fic. 5.3. Test problem 2&, and eg.

there to be virtually no dierence between these results and thoseoloe 1072 or,

for 2 x 2 subdomainstol = 107°. Performance for test problem 2 is more sensitive
to tolerance (Figure 5.3). A tolerance of froduces solutions with approximately
six digits of accuracy for fine enough sparse grid, althouginenstringent tolerance
is needed for accuracy comparable to that of the full cotionamethod.

6. Numerical study for incompressible flow problems. We next consider a
nonlinear example, the steady-state Navier-Stokes enmnsati

6.1) —v(.EVAU(,E) +U(E) VU, +Vp(,€& =0 in DxI,
(6.2) V.d(,&)=0 in DxT,
(6.3) G(,&) =g(.&) on dDxT.

The notation in (6.1)—(6.3) is standam;, &) is the flow velocity,p(-, &) is the scalar
pressure and(-,&) > 0 is the fluid viscosity parameter. We assume that there may
be some uncertainty in the viscosity parameteré) (for example, in models of
multiphase flows [15, 23, 28]) or the boundary dgfas).

6.1. Specification of the problem.As discussed in Section 2, stochastic collo-
cation methods solve a deterministic problem at each sapgpheé € 0. With the
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standard function space notation

H¥:= HY(Q)?2, keN, Hi = {de H'|U=g(.¢& onaQ},
Hy={de H'|U=00onoQ}, L4Q):={qeL?Q) [,qd2=0},

the weak form of the deterministic problem associated wWath)-(6.3) is: findd €
Ht andp € L3(D), such that

(6.4) (vV0, VW) + (- V4, V) - (p,V-¥) =0 Ve H,
(6.5) (V-0,0) =0 VqeL3(D).

Mixed finite element approximation of (6.4)—(6.5) is obtinby choosing finite di-
mensional subspaceq, X andM" of HL, H} andM", respectively. This leads to
the discrete Galerkin formulation: firigle XE andp € M" such that (6.4) holds for
all v e X{ and (6.5) holds for allj € M". We use the div-stabl@,—P_; (biquadratic
velocity — linear discontinuous pressure [10]) spatiatditization and denote the
dimensions o) andM", i.e., the numbers of velocity and pressure degrees of free-
dom, byNh, andNp p respectively.

To handle the quadratic terndi ( Vd, V) in (6.4), we use a Picard iteration as
discussed in [10, pp. 324-327] and implemented in the IFI38vare package [9,
27]; it is straightforward to extend the results in this g@tto Newton iteration. To
start the Picard iteration, we can solve a discrete Stokasgan to obtain an initial
guess: findi® e X andp® € M" such that

(6.6) (va®, w) - (p°,V-v) =0 wie X,
(6.7) (v-d%g) =0 vgeM".

The Picard iteration then computes a sequence of correctibstem: find o0 € Xg
andsp € MM, such that

(vVsu, V) + (@" - vsd, V) — (sp, V - V)
(6.8) = —(vva", W) - (@" - va",v) + (p", V-¥) Wve X},
(6.9) (V-sd,q)=—(V-d",q VYgeM"

The velocity and pressure are then updated by
am™t =ad"+od, p™t=p"+op.

Since the reduced basis methods discussed in Section iki@hibmogeneous
Dirichlet conditions, some care must be taken in treatmémhmmogeneous condi-
tions. We use an approach described in [12], which is to fmstdi particular function
USC that satisfies the Dirichlet boundary conditions and theitewr

u® = a2 +al,
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where? satisfies homogeneous boundary conditions. We refaf tas theinterior
part of the Stokes solution. Then, for the initial step (6.6)#{6we solve a modified
Stokes problem: find® e X3 andp® € M" such that

(6.10) (Va2, V) - (0%, V - V) = ~(Vd2, VW) wve X,

(6.11) (V-02.0) = —(V-02.0) VgeM".

We have some flexibility in the choice of the particular fuonujgc. We use a simple
one in whicht®. is the interpolant of the boundary daj@, £); that is, we definet®
andd?_as

d® on spatial grid points ifD
0 _ B
(6.12) Un = { 0 on spatial grid points 08D,
0 on spatial grid points iiD,
0 _
(6.13) Uy = { g(-,&) on spatial grid points oAD.

Then for the Picard iteration step, no special treatmenbahdaries is needed, since
the correction functiodd satisfies a homogeneous boundary condition.
The algebraic equations associated with (6.10)—(6.11peanritten as

o ]-la)
p° G |’
and for the Picard step (6.8)—(6.9), the correspondingteansaare
%) (&z]
op Gunpre |

where [, p"]T is the solution vector at the most recent iteration step,Niad is the
guadratic term considered in (3.11).

A BT
B O

A+ Ny, BT
B 0

6.2. Formulation of the reduced problem. We follow the development in Sec-
tion 3 to define the reduced versions of (6.10)—(6.11) ar&){66.9). To begin, we in-
troduce reduced bas€y, := {Uy, ..., Uy} C Xg for velocity andQp := {ds, ...,On,} C
MM for pressure withN, < Ny < Np,. We then seekid € sparfQy} and pf, €
spar{Qp} such that

(6.14) (Vag, VW) — (pR, V - V) = —(Va2, V¥) WV e spaniQy),
(6.15) (V-03,a) =—(V-02,q Vvqe spariQp).

A Picard iteration step entails findidgir € sparfQu} andspr € spar{Qp} such that

(VV5UR, V\7) + (Ulg . lejR, \7) - (5pR, V. \7)
(6.16) = —(vVag, VW) — (4§ - VIR, V) + (pR, V- V) ¥V e spariQu},
(6.17) (V-6Ur,Q) = —(V-0R.Q) Yqe sparQp}.
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With Qy andQp representing the matrix form of the reduced velocity andgpre
sure bases respectively, the linear system for the reducddem (6.14)—(6.15) is

QuAQu QiB'Qp H a° ]_[ Qu fe ]
QpBQu 0 PO || Qpge |’
and for (6.16)—(6.17),

(6.19) [ Ql (A +Nan ) Qu QUBTQp H i ]_[ i ]

QpBQu 0 op |

(6.18) [

TAHr
pgﬁ",ﬁ",f

where [i", p"]" is the reduced solution vector at the most recent step. Tdigual
error indicator is taken to be the discrete nonlinear redidgsociated with (6.4)—
A+ Ngn, BT H Qu" ]

(6.5),

Using the techniques introduced in Section 3.1 and 3.2, offiiee reduced matrices
and vectors are precomputed, the reduced linear systeif®) @nd (6.19) can be
assembled with cos®(N2) andO(N2) respectively, and for modest tolerances, the
residual indicator can be evaluated with a cOg3).2

The details of reduced basis collocation for the steady $tavier-Stokes equa-
tions are presented in Algorithm 2 below. In the algorith‘l‘in,(-,f(")) is the interior

part ofa(-,f(")) (see (6.12)). For the reduced basis, we note that the spanesaged
by a set of snapshots

[ Un (.,g(l)) ] [ tn (.,g(N>) )
p(.,f(l)) v p(.,f(N))
do not automatically satisfy an inf-sup condition

. ,V-¥
YR = min M > y* >0
0#0ResParQp} GevrespariQy) [VRIL I1ARI0

(6.20) NQ.en = H

2

for y* independent o, andQ,. To ensure stability in this sense, we use an approach
described in [24], which enriches the set of velocity snapskwith (-, {0)} | sat-

isfying
(6.21) (VP (- €9),v9) = (p(-.£9).V-V) weX].
These enriching functions aseipremizershat satisfy [24]

oK) _ (p(-,g(k)),v-\?)
r(,f )_argvzgéo 9 .

3In the experiments described below, the error indicatorsemsputed directly at co€(N,).
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It follows that the reduced bases generated in AlgorithmeZXgable in the sense that

X (q’ V : \7)
0#0eM" Gvexty V11 11dllo

(6.22) YR Yh =

In addition, it is clear thalN, = 2N, for Q, andQp generated in Algorithm 2.

Algorithm 2 Reduced basis collocation for Navier-Stokes problems
Start with levelM (@y = {£©}), and computei(-, £?) and p(-, £?).
Compute the supremizer functio, £?) of (6.21).

Initialize the reduced basi®, = {tin(-, &?), F(-, )} andQ, = {p(:, £)}.
Construct the filine reduced matrices and vectors.
for p=1:qdo
fork=1:|®upldo
Compute the reduced solution and an error indica¢pgw n
if NQ,¢M,n < tol then
Use the reduced solution to servewgé, £M) in (2.5).
else
o Compute the full solutions(-, £¥) and p(-, £&¥).
e Use the full solution to serve ag(-, £¥) in (2.5).
o Compute the supremizer functiof, £®) of (6.21).
o AugmentQy with {tin (-, £Y), F(-,é4)} andQp with {p(-, £X)),
by Gram-Schmidt orthogonalization.
e Reconstruct theffline reduced matrices and vectors.
end if
end for
end for

6.3. Test problem 3: driven cavity flow with uncertainty in viscosity. The
flow domain here is the squake= (-1, 1) x (-1, 1). The velocity profile

(6.23) u=1-x4 v=0,

is imposed on the top boundary & 1), and all other boundaries are no-slip and
no-penetration so that = (0, 0). As in test problem 1, we divide the square domain
into Np subdomains and the viscosity is defined to be constant onseditomain,
v (-, €)lp, = ék, K= 1: Np, where the random variabfe= [¢1, . .. ,Enp] T is uniformly
distributed inI" = [0.01, 1]N°. Two examples are shown in Figure 6.1. In case 1,
the square domain is equally divided into two parts, and sec, the domain is
subdivided into an interior square centered abjGand two square annuli. Each of
the subdomains has width40 Results for uniform 3% 33 and 65x 65 spatial grids
are reported below.

The number of full system solves are shown in Tables 6.1 aaddos.domain
case 1 and case 2 respectively, where two tolerance valOgsgad 10°) are tested.
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Exactly as for the dfusion equations (5.4)—(5.6), we compute the mean function
errors for the velocity and pressure solutions. FiguresaB@® 6.3 show the errors,

D2

Dy

(a) case 1

(b) case 2

Fic. 6.1. Domain partitionings for driven cavity flow.

where we used the reference levet 11 for both types of domain.

TaBLE 6.1
Number of full system solves for test problem 3, domain case 1
q 2 3 4 5 6 7 8 9
. ©d |1 5 13 20 65 145 321 705 Total
tol Grids
104 33x33 14 5 6 6 7 6 3| 38
104 65x65 1 4 5 5 5 5 5 2 32
10° 33x33 1 4 8 7 8 10 11 5| 54
10° 65x 65 14 8 7 8 9 9 3| 49
TaBLE 6.2
Number of full system solves for test problem 3, domain case 2
q 3 4 5 6 7 8 9
ol Grids Ol 1 7 25 69 177 441 10783 Total
104 33x33 1 6 17 23 26 26 25 124
104 65x65 1 6 16 20 21 21 18 103
10° 33x33 1 6 18 29 40 44 41| 179
10 65x65 1 6 18 27 32 40 32 156

The reduced inf-sup constanjg for domain case 2 discretized on a 8565
spatial grid are shown in Table. 6.3. The square of the diséné-sup constant for
this element and mesh is known to’pﬁg: 0.2137 [10, p. 271]. It is evident from
Table 6.3 tha’yg is bounded below by.Q137, which is consistent with (6.22). As the

size of the reduced basis increasgsbecomes closer tgf.
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S10 210
o o
10°
——tol=le-4 0ol —+—tol=1e-4
——tol=1e-5 0 ——tol=1e-5
10 | —e—Monte Carlo —6—Monte Carlo
——full collocation Ll ——full collocation
7 8
10 : : 10 : :
10’ 10' 10° 10° 1’ 10" 10’ 10’
number of sample points number of sample points
(a) velocity mean error (b) pressure mean error

Fic. 6.2. Mean function errors of test problem 3 with domain casé5Lx 65 grid.

g10 810
o o
10°F
107 | ——tol=le-4 ——tol=1e-4
——tol=1e-5 3 ! ——tol=1e-5
——Monte Carlo * —o—Monte Carlo
—e—full collocation —o—full collocation
5 -6
10 . . . 10 , . !
10’ 10" 10’ 10° 10* 1’ 10" 10° 10° 10*
number of sample points number of sample points
(a) velocity mean error (b) pressure mean error

Fic. 6.3. Mean function errors of test problem 3 with domain casé3x 65 grid.

TaBLE 6.3
Inf-sup constants of reduced basis for test problem 3, domase 2.

Ny 2 4 20 50 100 200
y% 0.2431 0.2430 0.2374 0.2359 0.2327 0.2292

6.4. Test problem 4: driven cavity flow with uncertain bounday conditions.
The flow domain in this section is also the squ@re= (-1,1) x (-1,1), and the
boundary condition (6.23) is specified at the top boundanfikg Section 6.3 where
the other boundaries are assumed to be non-slip, we now aghiene is some un-
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(a) stretched 3% 33 grid (b) stretched 6% 65 grid

Fic. 6.4. Meshes for test problem 4.

certainty on these boundaries:

u=0, v:gl(l—y”'), for x = 1,
U=fz(1—X4), v=0, fory= -1,
u=0, V=§3(l—y4), for x = -1,

where¢ = [£1, &, &3]" is assumed to be independently and uniformly distributed in
[-0.1,0.1]%. The viscosity is taken to be a deterministic constant 1/500 here.
Instead of the uniform meshes used in previous exampletclséd meshes of sizes
33 x 33 and 65x 65 are used to discretiZ® (see Figure 6.4). Table 6.4 shows
the number of full system solves for this test problem forrageaof tolerances, and
Figure 6.5 shows the error in mean functions, where theanter level is = 11.

TaBLE 6.4
Number of full system solves for test problem 4.

q 3 4 5 6 7 8 9

: [©l 1 7 25 69 177 441 1073 total
tol Grids
10% 33x33 13 1 1 0 0 0 6
104 65x65 13 0 0 O 0 0 4
10° 33x33 16 7 4 1 0 0 19
10°° 65x65 1 4 4 3 1 0 0 13
106 33x33 1 6 15 10 8 2 0 42
106 65x65 1 6 10 5 2 0 0 24
107 33x33 1 6 17 27 18 10 5 84
107 65x65 1 6 16 13 9 4 1 50

“These are generated by IFISS [27] using the default setingnésh generation.
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error
error

|| tol=1e-4
10 | ——tol=1e-5
—+—tol=1e-6
——tol=1e-7
—o—Monte Carlo %
—e—full collocation
10° .
10

——tol=1e-4
——tol=1e-5
—+tol=1e-6
—+—tol=1e-7
—&—Monte Carlo

—o—full collocation

10’ 10 10" 10° 10
number of sample points number of sample points

(a) velocity mean error (b) pressure mean error

Fic. 6.5. Mean function errors of test problem 4, stretch&fix 65 grid.

The trends for all the examples in this section (test probi¢and the preceding
one (test problem 3) are consistent with those for tiiusiion equation. In particu-
lar, the number of full system solves required for reducesisbeollocation does not
increase as the number of the spatial degrees of freedomages, these numbers
are significantly smaller than what is needed for full caditten, and with moderate
values oftol (10~* for problem 3 and 1@ for problem 4) the reduced solutions are
as accurate as those obtained from full collocation.

7. Concluding remarks. We conclude with a brief summary of our observa-
tions from this study. The main one, seen in all the exampbesidered, is that the
reduced basis method can be used to significantly reducertension of the dis-
crete problems that need to be solved to construct collmtailutions of stochastic
partial diferential equations. Moreover, the computational resuoliicate that the
dimensions of the reduced bases do not depend on the sizks distrete spatial
problems that the reduced problems approximate. This stgjtjeat the reduced di-
mensions depend on properties of the underlying parti&mdintial equations and
that the combined reduced basis collocation method is @npiad benefit whenever
spatial accuracy is of importance.
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