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DECAY ESTIMATES FOR STEADY SOLUTIONS OF THE
NAVIER–STOKES EQUATIONS IN TWO DIMENSIONS IN THE

PRESENCE OF A WALL∗

CHRISTOPH BOECKLE† AND PETER WITTWER‡

Abstract. Let ω be the vorticity of a stationary solution of the two-dimensional Navier–Stokes
equations with a drift term parallel to the boundary in the half-plane Ω+ = {(x, y) ∈ R2 | y > 1},
with zero Dirichlet boundary conditions at y = 1 and at infinity, and with a small force term of
compact support. Then |xyω(x, y)| is uniformly bounded in Ω+. The proof is given in a specially
adapted functional framework, and the result is a key ingredient for obtaining information on the
asymptotic behavior of the velocity at infinity.
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1. Introduction. In this paper we consider the steady Navier–Stokes equations
in a half-plane Ω+ = {(x, y) ∈ R2 | y > 1} with a drift term parallel to the boundary,
a small driving force of compact support, with zero Dirichlet boundary conditions
at the boundary of the half-plane and at infinity. See [14] and [15] for a detailed
motivation of this problem. Existence of a strong solution for this system was proved
in [14] together with a basic bound on the decay at infinity, and the existence of weak
solutions was shown in [15]. By elliptic regularity weak solutions are smooth, and their
only possible shortcoming is the behavior at infinity, since the boundary condition may
not be satisfied there in a pointwise sense. In [15] it was also shown that for small
forces there is only one weak solution. This unique weak solution therefore coincides
with the strong solution and as a consequence satisfies the boundary condition at
infinity in a pointwise sense.

The aim of this paper is to provide additional information concerning the behavior
of this solution at infinity by analyzing the solution obtained in [14] in a more stringent
functional setting. More precisely, we obtain more information on the decay behavior
of the vorticity of the flow. Bounds on vorticity as a step towards bounds on the
velocity are a classical procedure in asymptotic analysis of fluid flows (see the seminal
papers [7], [8], and [1]). In [14] and the current work, the equation for the vorticity
is Fourier-transformed with respect to the coordinate x parallel to the wall, and then
rewritten as a dynamical system with the coordinate y perpendicular to the wall
playing the role of time. In this setting information on the behavior of the vorticity
at infinity is studied by analyzing the Fourier transform at k = 0, with k the Fourier
conjugate variable of x. In the present work, we also control the derivative of the
Fourier transform of the vorticity, which yields more precise decay estimates for the
vorticity and the velocity field in direct space than the ones found in [14]. Our proof
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is then based on a new linear fixed point problem involving the solution obtained in
[14] and the derivative of the vorticity with respect to k.

Since the original equation is elliptic, the dynamical system under consideration
contains stable and unstable modes and no spectral gap, so that standard versions of
the center manifold theorem are not sufficient to prove existence of solutions. Func-
tional techniques that allow one to deal with such a situation go back to [6] and were
adapted to the case of the Navier–Stokes equations in [16] and in [17], [18]. For a
general review, see [11]. The linearized version of the current problem was studied in
[13]. A related problem in three dimensions was discussed in [9].

The results of the present paper are the basis for the work described in [2], where
we extract several orders of an asymptotic expansion of the vorticity and the velocity
field at infinity. The asymptotic velocity field obtained this way is divergence-free
and may be used to define artificial boundary conditions of Dirichlet type when the
system of equations is restricted to a finite subdomain to be solved numerically. The
use of asymptotic terms as artificial boundary conditions was pioneered in [3], [4] for
the related problem of an exterior flow in the whole space in two dimensions, and in
[10] for the case in three dimensions.

Let x = (x, y), and let Ω+ = {(x, y) ∈ R2 | y > 1}. The model under con-
sideration is given by the Navier–Stokes equations with a drift term parallel to the
boundary,

−∂xu+Δu = F+u · ∇u+∇p ,(1.1)

∇ · u = 0 ,(1.2)

subject to the boundary conditions

u(x, 1) = 0 , x ∈ R ,(1.3)

lim
x→∞u(x) = 0 .(1.4)

The following theorem is our main result.
Theorem 1.1. For all F ∈ C∞

c (Ω+) with F sufficiently small in a sense to be
defined below, there exist a unique vector field u = (u, v) and a function p satisfying the
Navier–Stokes equations (1.1), (1.2) in Ω+ subject to the boundary conditions (1.3) and
(1.4). Moreover, there exists a constant C > 0, such that |y3/2u(x, y)|+ |y3/2v(x, y)|+
|y3ω(x, y)|+ |xyω(x, y)| ≤ C for all (x, y) ∈ Ω+.

This theorem is a consequence of Theorem 5.4, which is proved in section 5. The
crucial improvement with respect to [14] is the bound on the function xyω(x, y).

Remark 1.2. The smallness condition for the force F is necessary because of
the techniques used in the proofs of the current theorem as well as in the existence
theorem of [14], and in the uniqueness theorem proved in [15]. To our knowledge,
for forces F that are large nothing is known concerning the decay at infinity beyond
what follows from the existence theorem of weak solutions in [12], i.e., that the L2

average of the velocity on circles of radius R is absolutely continuous and converges to
zero as R goes to infinity. Moreover, for large forces, one does not expect uniqueness
of solutions. In any case, stationary solutions are expected to become unstable, and
physically relevant solutions will be time dependent.

The paper is organized as follows. In section 2 we rewrite (1.1) and (1.2) as a
dynamical system with y playing the role of time, and Fourier-transform the equations
with respect to the variable x. Then, in section 3, we recall the integral equations for
the vorticity discussed in [14] and complement them by the ones for the derivative
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with respect to k. We then introduce in section 4 certain well-adapted Banach spaces
which encode the information concerning the decay of the functions at infinity. Finally,
in section 5, we reformulate the problem of showing the existence of the derivative
of vorticity with respect to k as the fixed point of a continuous map, based on the
existence of solutions proved in [14]. We present in sections 6 and 7 the proofs of
the lemmas used in section 5. In the appendix, we recall results from [14] which are
needed here.

2. Reduction to an evolution equation. We recall the procedure used in [14]
to frame the Navier–Stokes equations for the studied case as a dynamical system. Let
u = (u, v) and F = (F1, F2). Then (1.1) and (1.2) are equivalent to

ω = −∂yu+ ∂xv ,(2.1)

−∂xω+Δω = ∂x(uω) + ∂y(vω) + ∂xF2 − ∂yF1 ,(2.2)

∂xu+ ∂yv = 0 .(2.3)

The function ω is the vorticity of the fluid. Once (2.1)–(2.3) are solved, the pressure
p can be obtained by solving the equation

Δp = −∇ · (F+u · ∇u)

in Ω+, subject to the Neumann boundary condition

∂yp(x, 1) = ∂2yv(x, 1) .

Let

q0 = uω ,(2.4)

q1 = vω ,(2.5)

and furthermore let

Q0 = q0 + F2 ,(2.6)

Q1 = q1 − F1 .(2.7)

We then rewrite the second order differential equation (2.2) as a first order system

∂yω = ∂xη +Q1 ,(2.8)

∂yη = −∂xω + ω +Q0 .(2.9)

Note that, unlike the right-hand side of (2.2), the expressions for Q0 and Q1 do not
contain derivatives. This is due to the fact that, in contrast to standard practice, we
did not set, say, ∂yω = η, but we chose with (2.8) a more sophisticated definition.
The fact that the nonlinear terms in (2.8), (2.9) do not contain derivatives simplifies
the analysis of the equations considerably. An additional trick allows one to reduce
complexity even further. Namely, we can replace (2.3) and (2.1) with the equations

∂yψ = −∂xϕ−Q1 ,(2.10)

∂yϕ = ∂xψ +Q0(2.11)

if we use the decomposition

u = −η + ϕ ,(2.12)

v = ω + ψ .(2.13)
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The point is that in contrast to u and v the functions ψ and ϕ decouple on the linear
level from ω and η. Since on the linear level we have Δϕ = 0 and Δψ = 0, it will turn
out that ϕ and ψ have a dominant asymptotic behavior which is harmonic when Q0

and Q1 are small.

Equations (2.8)–(2.11) are a dynamical system with y playing the role of time.
We now take the Fourier transform in the x-direction.

Definition 2.1. Let f̂ be a complex valued function on Ω+. Then we define the
inverse Fourier transform f = F−1[f̂ ] by the equation

f(x, y) = F−1[f̂ ](x, y) =
1

2π

∫
R

e−ikxf̂(k, y)dk

and ĥ = f̂ ∗ ĝ by

ĥ(k, y) = (f̂ ∗ ĝ)(k, y) = 1

2π

∫
R

f̂(k − k′, y)ĝ(k′, y)dk′

whenever the integrals make sense. We note that for a function f which is smooth
and of compact support in Ω+ we have f = F−1[f̂ ], where

f̂(k, y) = F [f ](k, y) =

∫
R

eikxf(x, y)dx ,

and that fg = F−1[f̂ ∗ ĝ].
With these definitions we have in Fourier space, instead of (2.8)–(2.11), the equa-

tions

∂yω̂ = −ikη̂ + Q̂1 ,(2.14)

∂y η̂ = (ik + 1)ω̂ + Q̂0 ,(2.15)

∂yψ̂ = ikϕ̂− Q̂1 ,(2.16)

∂yϕ̂ = −ikψ̂ + Q̂0 .(2.17)

From (2.6) and (2.7) we get

Q̂0 = q̂0 + F̂2 ,(2.18)

Q̂1 = q̂1 − F̂1 ,(2.19)

from (2.4) and (2.5) we get

q̂0 = û ∗ ω̂ ,(2.20)

q̂1 = v̂ ∗ ω̂ ,(2.21)

and instead of (2.12) and (2.13) we have the equations

û = −η̂ + ϕ̂ ,(2.22)

v̂ = ω̂ + ψ̂ .(2.23)
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3. Integral equations. We now reformulate the problem of finding a solution
to (2.14)–(2.17) which satisfies the boundary conditions (1.3) and (1.4) in terms of

a system of integral equations. The equations for ω̂, η̂, ϕ̂, and ψ̂ are as in [14]. In
particular we recall that

(3.1) ω̂ =

1∑
m=0

3∑
n=1

ω̂n,m ,

where, for n = 1, 2, 3, m = 0, 1,

(3.2) ω̂n,m(k, t) = Ǩn(k, t− 1)

∫
In

f̌n,m(k, s− 1)Q̂m(k, s)ds ,

where, for k ∈ R \ {0} and σ, τ ≥ 0,

Ǩn(k, τ) =
1

2
e−κτ for n = 1, 2 ,(3.3)

Ǩ3(k, τ) =
1

2
(eκτ − e−κτ ) ,(3.4)

and

f̌1,0(k, σ) =
ik

κ
eκσ − (|k|+ κ)

2

κ
e−κσ + 2 (|k|+ κ) e−|k|σ ,(3.5)

f̌2,0(k, σ) = 2 (κ+ |k|)
(
e−|k|σ − e−κσ

)
,(3.6)

f̌3,0(k, σ) =
ik

κ
e−κσ ,(3.7)

f̌1,1(k, σ) = eκσ +
(|k|+ κ)

2

ik
e−κσ − 2

|k| (|k|+ κ)

ik
e−|k|σ ,(3.8)

f̌2,1(k, σ) = 2

( |k| (|k|+ κ)

ik
− 1

)
e−κσ − 2

|k| (|k|+ κ)

ik
e−|k|σ ,(3.9)

f̌3,1(k, σ) = −e−κσ ,(3.10)

and where I1 = [1, t] and I2 = I3 = [t,∞).
We introduce the integral equation for ∂kω̂, noting that ω̂ is continuous at k = 0

(see [14]). From (3.2) we get that

(3.11) ∂kω̂ =
1∑

m=0

3∑
n=1

3∑
l=1

∂kω̂l,n,m ,

where, for n = 1, 2, 3, m = 0, 1,

∂kω̂1,n,m(k, t) = ∂kǨn(k, t− 1)

∫
In

f̌n,m(k, s− 1)Q̂m(k, s)ds ,(3.12)

∂kω̂2,n,m(k, t) = Ǩn(k, t− 1)

∫
In

∂kf̌n,m(k, s− 1)Q̂m(k, s)ds ,(3.13)

∂kω̂3,n,m(k, t) = Ǩn(k, t− 1)

∫
In

f̌n,m(k, s− 1)∂kQ̂m(k, s)ds ,(3.14)
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where, for k ∈ R \ {0} and σ, τ ≥ 0,

∂kǨn(k, τ) =
1

4

2k − i

κ
e−κτ for n = 1, 2 ,(3.15)

∂kǨ3(k, τ) =
1

4

2k − i

κ
(eκτ + e−κτ ) ,(3.16)

where f̌n,m is as above, where

∂kf̌1,0(k, σ) =
i

2κ
(eκσ + e−κσ − 2e−|k|σ)− ik2

2κ3
(eκσ − e−κσ)

+
2

κ

k2 + |k|κ
k

(e−|k|σ − e−κσ) + i
k2 + κ2

2κ2
(eκσ − e−κσ)σ

+
k2 + |k|κ

k

k2 + κ2

κ2
e−κσσ − 2

k2 + |k|κ
k

e−|k|σσ ,(3.17)

∂kf̌2,0(k, σ) =
(|k|+ κ)2

κk
(e−|k|σ − e−κσ)

− 2
κ+ |k|
κk

(
|k|κe−|k|σ − k2 + κ2

2
e−κσ

)
σ ,(3.18)

∂kf̌3,0(k, σ) =
k

2κ3
e−κσ − i

k2 + κ2

2κ2
σe−κσ ,(3.19)

∂kf̌1,1(k, σ) = i
(|k|+ κ)

2

κ|k| (e−|k|σ − e−κσ) +
k2 + κ2

2κk
(eκσ + e−κσ)σ

+ 2i
k2 + |k|κ

k2

(
k2 + κ2

2κ
e−κσ − |k|e−|k|σ

)
σ ,(3.20)

∂kf̌2,1(k, σ) = i
(|k|+ κ)

2

κ|k| (e−κσ − e−|k|σ) + i(|k|+ κ)
k2 + κ2

k2
e−κσσ

− 2i (|k|+ κ) e−|k|σσ ,(3.21)

∂kf̌3,1(k, σ) =
k2 + κ2

2κk
e−κσσ ,(3.22)

and where the functions

∂kQ̂0 = ∂k q̂0 + ∂kF̂2 ,

∂kQ̂1 = ∂k q̂1 − ∂kF̂1

are obtained from (2.18) and (2.19). Since q̂0 and q̂1 are convolution products (see
(2.20) and (2.21)), and noting that û and v̂ are continuous bounded functions on
R, that ω̂ is continuous on R and differentiable on R \ {0}, and that ∂kω̂ is abso-
lutely integrable, we conclude (see [5, Proposition 8.8, page 241]) that q̂0 and q̂1 are
continuously differentiable functions and that

∂k q̂0 = û ∗ ∂kω̂ ,(3.23)

∂k q̂1 = v̂ ∗ ∂kω̂ .(3.24)

This means that it is sufficient to add (3.11) to the ones for ω̂, η̂, ϕ̂, and ψ̂ in order
to get a set of integrals equations determining also ∂kω̂.
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Remark 3.1. The products Ǩnf̌n,m are equal to Knfn,m as defined in [14], and
we have Ǩn=1,2 = Kn=1,2, Ǩ3 = ik

κ K3, f̌n=1,2;m = fn=1,2;m, and f̌3,m = κ
ikf3,m. We

chose to rewrite the equations in the new form for convenience later on.

4. Functional framework. We recall the definition of the function spaces in-
troduced in [14] and extend it to include functions with a certain type of singular
behavior. Let α, r ≥ 0, k ∈ R, t ≥ 1, and let

(4.1) μα,r(k, t) =
1

1 + (|k|tr)α .

Let furthermore

μ̄α = μα,1(k, t) ,

μ̃α = μα,2(k, t) .

We also define

(4.2) κ =
√
k2 − ik

and

(4.3) Λ− = −Re(κ) = −1

2

√
2
√
k2 + k4 + 2k2 .

Throughout this paper we use the inequalities

(4.4) |κ| = (k2 + k4)1/4 ≤ |k|1/2 + |k| ≤ 23/4|κ| ≤ 23/4(1 + |k|) .
We have in particular that

(4.5) |k| 12 ≤ const. |κ|
and that

(4.6) eΛ−σ ≤ e−|k|σ ,

which will play a crucial role for small and large values of k, respectively.
Definition 4.1. We define, for fixed α ≥ 0, and n, p, q ≥ 0, Bn

α,p,q to be

the Banach space of functions f̂ : R \ {0} × [1,∞) → C for which f̂n = κn · f̂ ∈
C(R \ {0} × [1,∞),C) and for which the norm

∥∥∥f̂ ;Bn
α,p,q

∥∥∥ = sup
t≥1

sup
k∈R\{0}

|f̂n(k, t)|
1
tp μ̄α(k, t) +

1
tq μ̃α(k, t)

is finite. We use the shorthand Bα,p,q for B0
α,p,q. Furthermore we set, for α > 2,

D1
α−1,p,q = B1

α,p,q × B1
α− 1

2 ,p+
1
2 ,q+

1
2
× B1

α−1,p+ 1
2 ,q+1 ,

Vα = Bα, 52 ,1
× Bα, 12 ,0

× Bα, 12 ,1
.

Remark 4.2. We present two elementary properties of the spaces Bn
α,p,q, which

will be routinely used without mention. Let α, α′ ≥ 0 and p, p′, q, q′ ≥ 0; then

Bn
α,p,q ∩ Bn

α′,p′,q′ ⊂ Bn
min{α′,α,},min{p′,p},min{q′,q} .
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In addition we have

Bn
α,p,q ⊂ Bn

α,min{p,q},∞ ,

where the space with q = ∞ is to be understood to contain functions for which the
norm ∥∥∥f̂ ;Bn

α,p,∞
∥∥∥ = sup

t≥1
sup

k∈R\{0}

|f̂n(k, t)|
1
tp μ̄α(k, t)

is finite.

5. Existence of solutions. In [14] it was shown that one can rewrite the integral
equations as a fixed point problem, and that, for F sufficiently small, there exist
functions ω̂, û, and v̂, which are solutions to (2.1)–(2.3), satisfying the boundary
conditions (1.3) and (1.4). More precisely, we have, for α > 3,

ω̂ ∈ Bα, 52 ,1
,(5.1)

û ∈ Bα, 12 ,0
,(5.2)

v̂ ∈ Bα, 12 ,1
,(5.3)

and, for i = 0, 1,

(5.4) Q̂i ∈ Bα, 72 ,
5
2
.

We now show that using this solution as a starting point, we may define a linear
fixed point problem with a unique solution for ∂kω̂. The structure of (3.11) is rather
complicated, and it turns out to be necessary to decompose the sum into three parts
which are analyzed independently. Let d̂ = (d̂1, d̂2, d̂3), where

d̂l =

1∑
m=0

3∑
n=1

∂kω̂l,n,m;

then ∂kω̂ =
∑3

l=1 d̂l. The function d̂3 depends on ∂kω̂, but d̂1 and d̂2 do not.

Proposition 5.1. The functions d̂1 and d̂2 are in D1
α−1, 32 ,0

.

Proof. See sections 7.1 and 7.2.
We now define the fixed point problem.
Lemma 5.2. Let α > 3, and let û and v̂ be as in (5.2) and (5.3), respectively.

Then

L1 : D1
α−1, 32 ,0

→ Bα, 32 ,1
× Bα, 32 ,2

d̂ �−→
(
û ∗ d̂
v̂ ∗ d̂

)
defines a continuous linear map.

Proof. The map L1 is linear by definition of the convolution operation. Using
Corollary 6.3 we get that the map L1 is bounded, since

(5.5)
∥∥∥û ∗ d̂;Bα, 32 ,1

∥∥∥ ≤ const.
∥∥∥û;Bα, 12 ,0

∥∥∥ · ∥∥∥d;D1
α−1, 32 ,0

∥∥∥
and

(5.6)
∥∥∥v̂ ∗ d̂;Bα, 32 ,2

∥∥∥ ≤ const.
∥∥∥v̂;Bα, 12 ,1

∥∥∥ · ∥∥∥d;D1
α−1, 32 ,0

∥∥∥ .
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Lemma 5.3. Let α > 3, d̂3 =
∑1

m=0

∑3
n=1 ∂kω̂3,n,m, and let ∂kω̂3,n,m be given

by (3.14). Then we have

L2 : Bα, 32 ,1
× Bα, 32 ,2

→ D1
α−1, 32 ,0(

∂kQ̂0

∂kQ̂1

)
�−→ d̂3 ,

which defines a continuous linear map.

Proof. The map L2 is linear by definition of d̂3 and is proved to be bounded in
section 7.3.

5.1. Proof of Theorem 1.1. Theorem 1.1 is a consequence of the following
theorem.

Theorem 5.4 (existence). Let α > 3, F = (F1, F2) ∈ C∞
c (Ω+), and let F̂ =

(F̂1, F̂2) be the Fourier transform of F . If ‖(F̂2,−F̂1);Bα, 72 ,
5
2
×Bα, 72 ,

5
2
‖ is sufficiently

small, then there exists a unique solution (ω̂, û, v̂, d̂) in Vα ×D1
α−1, 32 ,0

.

Proof. We have the existence and uniqueness of (ω̂, û, v̂) ∈ Vα thanks to [14] and
[15]. Since α > 3, we have by Lemmas 5.2 and 5.3 that the map C : D1

α−1, 32 ,0
→

D1
α−1, 32 ,0

, x �→ C[x] = L2[L1[d̂1 + d̂2 + x] + (∂kF̂2,−∂kF̂1)] is continuous. Since from

[14] we have that
∥∥(ω̂, û, v̂);Vα

∥∥ ≤ const.
∥∥(F̂2,−F̂1);Bα, 72 ,

5
2
× Bα, 72 ,

5
2

∥∥, we find with

(5.5) and (5.6) that the image of L1 is arbitrarily small. We then have by linearity
of L2 that C has a fixed point since

∥∥(∂kF̂2,−∂kF̂1);Bα, 32 ,1
× Bα, 32 ,2

∥∥ < ∞. This
completes the proof of Theorem 5.4.

Theorem 1.1 now follows by inverse Fourier transform, and the decay properties
are a direct consequence of the spaces of which û, v̂, ω̂, and ∂kω̂ are elements. Indeed,
for a function f̂ ∈ Bn

α,p,q with α > 3, n = 0, 1, and p, q ≥ 0, we have from the
definition of the Fourier transform that

(5.7) sup
x∈R

|f(x, y)| ≤ 1

2π

∫
R

∣∣∣f̂(k, y)∣∣∣ dk
and from the definition of the function spaces that∫

R

∣∣∣f̂(k, t)∣∣∣ dk ≤
∥∥∥f̂n;Bn

α,p,q

∥∥∥ ∫
R

1

κn

(
1

tp
μ̄α(k, t) +

1

tq
μ̃α(k, t)

)
dk

≤ const.
∥∥∥f̂n;Bn

α,p,q

∥∥∥( 1

tp+(1−n)
+

1

tq+2(1−n)

)
≤ const.

tmin{p+(1−n),q+2(1−n))

∥∥∥f̂n;Bn
α,p,q

∥∥∥ .(5.8)

Combining (5.7) and (5.8) we have

sup
x∈R

|f(x, y)| ≤ const.

ymin{p+(1−n),q+2(1−n))

∥∥∥f̂n;Bn
α,p,q

∥∥∥ .

Finally, we have, using that (ω̂, û, v̂, d̂) ∈ Vα ×D1
α−1, 32 ,0

and

|xω(x, y)| ≤ 1

2π

∫
R

|∂kω(k, y)|dk ,
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that

|y3/2u(x, y)| ≤ C1 , |y3/2v(x, y)| ≤ C2 ,

|y3ω(x, y)| ≤ C3 , |yxω(x, y)| ≤ C4 ,

with Ci ∈ R for i = 1, . . . , 4, which proves the bound in Theorem 1.1.

6. Convolution with singularities. We first recall the convolution result from
[14].

Proposition 6.1 (convolution). Let α, β > 1, and r, s ≥ 0, and let a, b be
continuous functions from R0 × [1,∞) to C satisfying the bounds

|a(k, t)| ≤ μα,r(k, t) ,

|b(k, t)| ≤ μβ,s(k, t) .

Then the convolution a∗ b is a continuous function from R× [1,∞) to C, and we have
the bound

|(a ∗ b) (k, t)| ≤ const.

(
1

tr
μβ,s(k, t) +

1

ts
μα,r(k, t)

)
,

uniformly in t ≥ 1, k ∈ R.

Since ∂kω̂ diverges like |κ|−1 at k = 0 we need to strengthen this result.

Proposition 6.2 (convolution with |κ|−1
singularity). Let α, β̃ > 1 and r, s̃ ≥ 0,

let a be as in Proposition 6.1, and let b̃ be a continuous function from R0 × [1,∞) to
C, satisfying the bound ∣∣∣b̃(k, t)∣∣∣ ≤ |κ(k)|−1

μβ̃,s̃ (k, t) .

Then the convolution a∗ b̃ is a continuous function from R× [1,∞) → C and we have
the bounds∣∣∣(a ∗ b̃)(k, t)∣∣∣ ≤ const.

(
max

{
1

t
s̃
2

,
1

t
s̃+r−s̃′

2

}
μβ̃,s′ (k, t) +

1

t
s̃
2

μα,r (k, t)

)
,(6.1)

∣∣∣(a ∗ b̃)(k, t)∣∣∣ ≤ const.

(
max

{
1

t
s̃
2

,
1

tr−cs̃′

}
μβ̃+c,s̃′ (k, t) +

1

t
s̃
2

μα,r (k, t)

)
(6.2)

for s̃′ ≤ s̃ and c ∈ {1
2 , 1
}
.

Proof. We drop the ˜ to unburden the notation. Continuity is elementary. Since
the functions μα,r are even in k, we only consider k ≥ 0. The proof is in two parts,

one for 0 ≤ k ≤ t−s′ and the other for t−s′ < k. The first part is valid for both (6.1)
and (6.2). For 0 ≤ k ≤ t−s′ and α′ ≥ 0, we have

|(a ∗ b)(k, t)| ≤
∫
R

μα,r(k
′, t)|κ(k − k′)|−1μβ,s(k − k′, t)dk′

≤ sup
k′∈R

(μα,r(k
′, t))

∫
R

t
s
2

|k̃| 12 μβ,s(k̃, 1)
dk̃

ts

≤ const.

t
s
2

≤ const.

t
s
2

μα′,s′(k, t) ,
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where we have used the change of variables k− k′ = k̃/ts. For k > t−s′ and s′ ≤ s we
have

|(a ∗ b)(k, t)| ≤
∫
R

μα,r(k
′, t)

μβ,s(k − k′, t)
|κ(k − k′)| dk′

≤
∫ k/2

−∞
μα,r(k

′, t)
μβ,s(k − k′, t)
|κ(k − k′)| dk′︸ ︷︷ ︸

:=I1

+

∫ ∞

k/2

μα,r(k
′, t)

μβ,s(k − k′, t)
|κ(k − k′)| dk′︸ ︷︷ ︸

:=I2

.

The integral I2 is the same for (6.1) and (6.2),

I2 =

∫ ∞

k/2

μα,r(k
′, t)

1

|κ(k − k′)|μβ,s(k − k′, t)dk′

≤ const. μα,r(k/2, t)

∫
R

t
s
2

|k̃| 12 μβ,s(k̃, 1)
dk̃

ts

≤ const.
1

ts/2
μα,r(k, t) ,

where again we have used the change of variables k − k′ = k̃/ts. To compute the
integral I1 we use that

μα,s (k, t) ≤ μα,s′ (k, t) ,

μα,s (k, t) · μβ,s (k, t) ≤ const. μα+β,s (k, t) ,

and, for k > t−s′ ,

1

t
s′
2

1

|κ(k)| ≤
const.

t
s′
2 |k|1/2

≤ const.

2t
s′
2 |k|1/2

≤ const.

1 + (ts′ |k|) 1
2

≤ μ 1
2 ,s

′ (k, t) ,

1

ts′
1

|κ(k)| ≤
const.

ts′
(|k|1/2 + |k|) ≤ const.

ts′/2 + |k|ts′ ≤ const.

1 + |k|ts′ ≤ μ1,s′ (k, t) .

To prove (6.1), we note that

I
(6.1)
1 ≤

∫ k/2

−∞

μα,r(k
′, t)

|k′| 12
|k′| 12

|k − k′| 12 μβ,s(k − k′, t)dk′

≤
∫ k/2

−∞

μα,r(k
′, t)

|k′| 12
|k| 12

|k − k′| 12 μβ,s(k − k′, t)dk′

+

∫ k/2

−∞

μα,r(k
′, t)

|k′| 12
|k − k′| 12
|k − k′| 12 μβ,s(k − k′, t)dk′

≤ |k| 12
|k/2| 12 μβ,s(k/2, t)

∫ k/2

−∞

μα,r(k
′, t)

|k′| 12 dk′

+

∫ k/2

−∞

μα,r(k
′, t)

|k′| 12
1

|k − k′| 12
const.

ts/2
μβ− 1

2 ,s
(k − k′, t)dk′

≤ const.

|k| 12
1

ts/2
μβ− 1

2 ,s
(k, t)

∫ k/2

−∞

μα,r(k
′, t)

|k′| 12 dk′

≤ const.
t
s′
2

t
s
2

1

t
s′
2 |k| 12

μβ− 1
2 ,s

(k, t)
1

t
r
2

≤ const.
t
s′
2

t
s
2
μ 1

2 ,s
′ (k, t)μβ− 1

2 ,s
(k, t)

1

t
r
2
≤ const.

t
s+r−s′

2

μβ,s′(k, t) ,
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where we have used the family of inequalities

(6.3) |k|ρμα,r (k, t) ≤ const.
1

tρr
μα−p,r (k, t) for all ρ > 0 .

Finally, to prove (6.2), we note that

I
(6.2)
1 ≤

∫ k/2

−∞
μα,r(k

′, t)
1

|κ(k − k′)|μβ,s(k − k′, t)dk′

≤ tcs
′

tcs′
1

|κ(k/2)|μβ,s(k/2, t)

∫
R

μα,r(k
′, t)dk′

≤ const. tcs
′
μc,s′(k, tμβ,s(k, t)

∫
R

μα,r(k
′, t)dk′

≤ const.
1

tr−cs′ μβ+c,s′(k, t) .

Collecting the bounds on the integrals I
(6.1)
1 , I

(6.2)
1 , and I2 proves the claim in Propo-

sition 6.2.
Corollary 6.3. Let α > 2 and, for i = 1, 2, pi, qi ≥ 0. Let f ∈ Bα,p1,q1 and

g ∈ D1
α−1,p2,q2 . Let

p = min

{
p1 + p2 +

1

2
, p1 + q2 + 1, q1 + p2 +

1

2

}
,

q = min

{
q1 + q2 + 1, q1 + p2 +

1

2

}
.

Then f ∗ g ∈ Bα,p,q, and there exists a constant C, depending only on α, such that

‖f ∗ g;Bα,p,q‖ ≤ C ‖f ;Bα,p1,q1‖ · ‖g;D1
α−1,p2,q2‖ .

Proof. We consider the three cases c ∈ {0, 12 , 1}. Let g̃ be a function in B1
α̃,p̃,q̃,

with α̃ = α− c, p̃, q̃ ≥ 0. The convolution product f ∗ g̃ is in each case bounded by a
function in B1

α,p,q with p and q given by the following:

• if c = 0, p = min{p1+p̃+ 1
2 , p1+q̃+1, q1+p̃+

1
2} , q = min{q1+q̃+1, q1+p̃+

1
2} ;

• if c = 1
2 , p = min{p1+p̃+ 1

2 , p1+q̃+
1
2 , q1+p̃+

1
2} , q = min{q1+q̃+1, q1+p̃+

1
2} ;

• if c = 1, p = min{p1+p̃+0, p1+q̃+0, q1+p̃+
1
2} , q = min{q1+q̃+0, q1+p̃+

1
2} .

These are consequences of Proposition 6.2. Using (6.1) for the first case and (6.2)
for the following two cases, and choosing s′ = 1 to bound the term 1

tp1 μ̄α ∗ 1
tq̃ μ̃α̃,

it is now clear that for a function in D1
α−1,p2,q2 , the terms that yield the lowest p

and q are covered by the c = 0 case above, because what is lost in the bounds on
convolution due to lower α̃ is gained through higher values of p̃ and q̃ by definition of
the space D1

α−1,p2,q2 . This corollary allows us to streamline the notation and shorten
calculations throughout the paper.

7. Bounds on d̂. We present some elementary inequalities and expressions used
throughout this section. Throughout the calculations we will use without further
mention that for all z ∈ C with Re(z) ≤ 0 and N ∈ N0,∣∣∣∣∣e

z −∑N
n=0

1
n!z

n

zN+1

∣∣∣∣∣ ≤ const. ,
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and for all z ∈ C with Re(z) > 0∣∣∣∣∣e
z −∑N

n=0
1
n!z

n

zN+1

∣∣∣∣∣ ≤ const. eRe(z) .

We also have that

∂kκ =
2k − i

2κ
.

By definition of the norm on D1
α,p,q we must bound κ∂kω̂. We thus bound all the

terms κ∂kω̂l,n,m, with l = 1, 2, 3, n = 1, 2, 3, and m = 0, 1 (see definitions (3.11),
(3.12)–(3.14), and (3.5)–(3.22)). This requires a good deal of book-keeping to track
what happens to α, p, and q. Some of it may be spared when one realizes that
all losses in α occur when applying (6.3) where there are explicit factors |k|c with
c = { 1

2 , 1}, which automatically brings forth a structure satisfying the conditions of
Corollary 6.3. This allows us to show that each component ∂kω̂l,n,m is an element of
a D1

α−1,p,q.
From (5.4) we obtain, for i = 0, 1,∣∣∣Q̂i (k, s)

∣∣∣ ≤ ∥∥∥Q̂i;Bα, 72 ,
5
2

∥∥∥( 1

s
7
2

μ̄α +
1

s
5
2

μ̃α

)
,

which we will use throughout without further mention. We also make use of (4.5) and
(6.3) without explicit mention throughout these proofs.

The bounds for the terms n = 2 take advantage of the fact that, for 1 ≤ t < 2,

μ̄α(k, t) ≤ const. μ̃α(k, t) ≤ const.

and, for t ≥ 2 and α′ > 0,

eΛ−(t−1)μα,r(k, t) ≤ const. eΛ−(t−1) ≤ const. μ̃α′(k, t) ,

so that the inequality

(7.1) eΛ−(t−1)μα,r(k, t) ≤ const. μ̃α(k, t)

holds for all t and α > 0.

7.1. Bounds on d̂1. To show that d̂1 =
∑1

m=0

∑3
n=1 ∂kω̂1,n,m is in D1

α−1, 32 ,0
,

which constitutes the first part of Proposition 5.1, we first need to recall a proposition
proved in [14].

Proposition 7.1. Let fn,m be as given in section 3. Then we have the bounds

|f1,0(k, σ)| ≤ const. e|Λ−|σ min{|Λ−|, |Λ−|3σ2} ,(7.2)

|f2,0(k, σ)| ≤ const. (|k|+ |k|1/2)e−|k|σ ,(7.3)

|f3,0(k, σ)| ≤ const. eΛ−σ min{1, |Λ−|2} ,(7.4)

|f1,1(k, σ)| ≤ const. (1 + |Λ−|)e|Λ−|σ min{1, |Λ−|σ} ,(7.5)

|f2,1(k, σ)| ≤ const. (1 + |k|) e−|k|σ ,(7.6)

|f3,1(k, σ)| ≤ const. eΛ−σ min{1, |Λ−|}(7.7)

uniformly in σ ≥ 0 and k ∈ R0.
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We then note that

∣∣κ∂kǨn(k, τ)
∣∣ = ∣∣∣∣12τκ2k − i

2κ
e−κτ

∣∣∣∣ ≤ const. τ(1 + |k|)eΛ−τ for n = 1, 2 ,

∣∣κ∂kǨ3(k, τ)
∣∣ = ∣∣∣∣12τκ2k − i

2κ
(eκτ + e−κτ )

∣∣∣∣ ≤ const. τ(1 + |k|)(e|Λ−|τ + eΛ−τ ) .

The bound on the function κ∂kω̂1,1,0 uses (7.2) and Propositions A.1 and A.2, leading
to

|κ∂kω̂1,1,0| =
∣∣∣∣κ12∂ke−κτ

∫ t

1

f̌1,0 (k, σ) Q̂0 (k, s)ds

∣∣∣∣
≤ const. τ(1 + |k|)eΛ−τ

∫ t

1

e|Λ−|σ min{|Λ−|, |Λ−|3σ2}
(

1

s
7
2

μ̄α +
1

s
5
2

μ̃α

)
ds

≤ const. τ(1 + |k|)eΛ−τ

∫ t+1
2

1

e|Λ−|σ|Λ−|3σ2

(
1

s
7
2

μ̄α +
1

s
5
2

μ̃α

)
ds

+ const. τ(1 + |k|)eΛ−τ

∫ t

t+1
2

e|Λ−|σ|Λ−|
(

1

s
7
2

μ̄α +
1

s
5
2

μ̃α

)
ds

≤ const. (1 + |k|)
(

1

t
5
2

μ̄α +
1

t
3
2

μ̃α

)
,

which shows that κ∂kω̂1,1,0 ∈ D1
α−1, 52 ,

3
2

.

The bound on the function κ∂kω̂1,2,0 uses (7.3), Proposition A.4, and (7.1), leading
to

|κ∂kω̂1,2,0| =
∣∣∣∣κ12∂ke−κτ

∫ ∞

t

f̌2,0(k, s− 1)Q̂0(k, s)ds

∣∣∣∣
≤ const. τ(1 + |k|)eΛ−τe|k|τ

∫ ∞

t

(|k| 12 + |k|)e−|k|σ
(

1

s
7
2

μ̄α +
1

s
5
2

μ̃α

)
ds

≤ const. (1 + |k|)eΛ−τ

(
1

t2
μ̄α +

1

t1
μ̃α

)
≤ const. (1 + |k|) 1

t1
μ̃α ,

which shows that κ∂kω̂1,2,0 ∈ D1
α−1,∞,1.

The bound on the function κ∂kω̂1,3,0 uses (7.4) and Proposition A.3, leading to

|κ∂kω̂1,3,0| =
∣∣∣∣12κ∂k(eκτ − e−κτ )

∫ ∞

t

f̌3,0(k, s− 1)Q̂0(k, s)ds

∣∣∣∣
≤ const. τ(1 + |k|)(e|Λ−|τ + eΛ−τ )

×
∫ ∞

t

min{1, |Λ−|}eΛ−σ

(
1

s
7
2

μ̄α +
1

s
5
2

μ̃α

)
ds

≤ const. τe|Λ−|τ
∫ ∞

t

(1 + |Λ−|)min{1, |Λ−|}eΛ−σ

(
1

s
7
2

μ̄α +
1

s
5
2

μ̃α

)
ds

≤ const.

(
1

t
5
2

μ̄α +
1

t
3
2

μ̃α

)
,

which shows that κ∂kω̂1,3,0 ∈ D1
α−1, 52 ,

3
2

.
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The bound on the function κ∂kω̂1,1,1 uses (7.5) and Propositions A.1 and A.2,
leading to

|κ∂kω̂1,1,1| =
∣∣∣∣κ12∂ke−κτ

∫ t

1

f̌1,1(k, s− 1)Q̂1(k, s)ds

∣∣∣∣
≤ const. τ(1 + |k|)eΛ−τ

×
∫ t

1

(1 + |Λ−|)e|Λ−|σ min{1, |Λ−|σ}
(

1

s
7
2

μ̄α +
1

s
5
2

μ̃α

)
ds

≤ const. τ(1 + |k|)eΛ−τ

(∫ t+1
2

1

e|Λ−|σ|Λ−|σ
(

1

s
7
2

μ̄α +
1

s
5
2

μ̃α

)
ds

+

∫ t

t+1
2

|Λ−|e|Λ−|σ min{1, |Λ−|σ}
(

1

s
7
2

μ̄α +
1

s
5
2

μ̃α

)
ds

)

≤ const. (1 + |k|)
(
μ̃α +

1

t
3
2

μ̄α +
1

t
1
2

μ̃α

)
,

which shows that κ∂kω̂1,1,1 ∈ D1
α−1, 32 ,0

.

The bound on the function κ∂kω̂1,2,1 uses (7.6), Proposition A.4, and (7.1), leading
to

|κ∂kω̂1,2,1| =
∣∣∣∣12κ∂ke−κτ

∫ ∞

t

f̌2,1(k, s− 1)Q̂1(k, s)ds

∣∣∣∣
≤ const. (1 + |k|)τeΛ−τ

∫ ∞

t

(1 + |k|)e−|k|σ
(

1

s
7
2

μ̄α +
1

s
5
2

μ̃α

)
ds

≤ const. (1 + |k|)eΛ−τ

(
1

t
3
2

μ̄α +
1

t
1
2

μ̃α

)
≤ const. (1 + |k|) 1

t
1
2

μ̃α ,

which shows that κ∂kω̂1,2,1 ∈ D1
α−1,∞, 12

.

The bound on the function κ∂kω̂1,3,1 uses (7.7) and Proposition A.3, leading to

|κ∂kω̂1,3,1| =
∣∣∣∣κ12∂k(eκτ − e−κτ )

∫ ∞

t

f̌3,1Q̂1(k, s)ds

∣∣∣∣
≤ const. τ(1 + |k|)(e|Λ−|τ + eΛ−τ )

∫ ∞

t

eΛ−σ

(
1

s
7
2

μ̄α +
1

s
5
2

μ̃α

)
ds

≤ const. τ(e|Λ−|τ + eΛ−τ )

∫ ∞

t

(1 + |Λ−|)eΛ−σ

(
1

s
7
2

μ̄α +
1

s
5
2

μ̃α

)
ds

≤ const.

(
1

t
3
2

μ̄α(k, t) +
1

t
1
2

μ̃α(k, t)

)
,

which shows that κ∂kω̂1,3,0 ∈ D1
α−1, 32 ,

1
2

.

Collecting the bounds, we find that d̂1 ∈ D1
α−1, 32 ,0

, which completes the first part

of the proof of Proposition 5.1.

7.2. Bounds on d̂2. To show that d̂2 =
∑1

m=0

∑3
n=1 ∂kω̂2,n,m is in D1

α−1, 32 ,0
,

which constitutes the second part of the proof of Proposition 5.1, we first need to
show bounds on the functions ∂kf̌n,m.

D
ow

nl
oa

de
d 

10
/1

2/
12

 to
 1

29
.1

94
.8

.7
3.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TWO-DIMENSIONAL NAVIER–STOKES DECAY ESTIMATES 3361

Proposition 7.2. Let ∂kf̌n,m be as given in section 3. Then we have the bounds∣∣κ∂kf̌1,0(k, σ)∣∣ ≤ const. min{(1 + |Λ−|σ), (s+ |Λ−|)|Λ−|2σ}e|Λ−|σ ,(7.8) ∣∣κ∂kf̌2,0(k, σ)∣∣ ≤ const. (|k| 12 + |k|2)σe−|k|σ ,(7.9) ∣∣κ∂kf̌3,0(k, σ)∣∣ ≤ const. (1 + |Λ−|σ)eΛ−σ ,(7.10) ∣∣κ∂kf̌1,1(k, σ)∣∣ ≤ const. (1 + |Λ−|2)σe|Λ−|σ ,(7.11) ∣∣κ∂kf̌2,1(k, σ)∣∣ ≤ const. (1 + |k|2)σe−|k|σ ,(7.12) ∣∣κ∂kf̌3,1(k, σ)∣∣ ≤ const. (1 + |Λ−|)σeΛ−σ(7.13)

uniformly in σ ≥ 0 and k ∈ R0.
Proof. We multiply (3.17)–(3.22) by κ and bound the products. The function

κ∂kf̌1,0 is bounded in two ways. We have a straightforward bound∣∣κ∂kf̌1,0(k, σ)∣∣ ≤ const. (1 + |Λ−|σ)e|Λ−|σ .

Since leading terms cancel, we get∣∣κ∂kf̌1,0(k, σ)∣∣ ≤ ∣∣∣∣ i2
(
eκσ + e−κσ − 2e−|k|σ

)
− ik2

2κ2
(
eκσ − e−κσ

)∣∣∣∣
+

∣∣∣∣2k2 + |k|κ
k

(e−|k|σ − e−κσ) + i
k2 + κ2

2κ

(
eκσ − e−κσ

)
σ

∣∣∣∣
+

∣∣∣∣k2 + |k|κ
k

k2 + κ2

κ
e−κσσ − 2κ

k2 + |k|κ
k

e−|k|σσ
∣∣∣∣

≤ const. |(eκσ − 1− κσ) + (e−κσ − 1 + κσ)− 2(e−|k|σ − 1)|

+ const.

∣∣∣∣k2κ2 ((eκσ − 1)− (e−κσ − 1)
)∣∣∣∣

+ const. |Λ−||(e−|k|σ − 1)− (e−κσ − 1)|

+ const.

∣∣∣∣k2 + κ2

2κ

(
(eκσ − 1)− (e−κσ − 1)

)
σ

∣∣∣∣
+ const.

∣∣∣∣k2 + |k|κ
k

k2 + κ2

κ
e−κσσ

∣∣∣∣+ const.

∣∣∣∣κk2 + |k|κ
k

e−|k|σσ
∣∣∣∣

≤ const. (|Λ−|2σ2 + |k|σ)e|Λ−|σ + const. |Λ−|3σe|Λ−|σ

+ const. |Λ−|2σe|Λ−|σ + const. |Λ−|2σ2e|Λ−|σ

+ const. |Λ−|2σe|Λ−|σ + const. |Λ−|2σe|Λ−|σ

≤ const. (s+ |Λ−|)|Λ−|2σe|Λ−|σ .

Then we have∣∣κ∂kf̌1,0(k, σ)∣∣ ≤ const. min{(1 + |Λ−|σ), (s+ |Λ−|)|Λ−|2σ}e|Λ−|σ ,

which proves (7.8).
To bound κ∂kf̌2,0(k, σ) we use that, since |k| ≤ Re(κ) for all k,∣∣∣e−|k|σ − e−κσ

∣∣∣ ≤ const. e−|k|σ
∣∣∣1− e(|k|−κ)σ

∣∣∣
≤ const. e−|k|σ ||k| − κ|σ
≤ const. (|k| 12 + |k|)σe−|k|σ ,(7.14)
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such that∣∣κ∂kf̌2,0(k, σ)∣∣
≤
∣∣∣∣ (|k|+ κ)2

k

(
e−|k|σ − e−κσ

)
− 2

κ+ |k|
k

(
|k|κe−|k|σ − k2 + κ2

2
e−κσ

)
σ

∣∣∣∣
≤ const. (1 + |k|)(|k| 12 + |k|)e−|k|σσ + const. (|k|+ |k|2)e−|k|σσ

+ const. (|k| 12 + |k|2)e−|k|σσ

≤ const. (|k| 12 + |k|2)σe−|k|σ ,

which gives (7.9).

To bound κ∂kf̌3,0 (k, σ) we have the straightforward bound

∣∣κ∂kf̌3,0 (k, σ)∣∣ ≤ ∣∣∣∣κ k

2κ3
e−κσ

∣∣∣∣+
∣∣∣∣κk2 + κ2

2κ2
σe−κσ

∣∣∣∣
≤ const. (1 + |Λ−|)σeΛ−σ ,

which yields (7.10).

To bound κ∂kf̌1,1 (k, σ) we have

∣∣κ∂kf̌1,1(k, σ)∣∣ ≤
∣∣∣∣∣i (|k|+ κ)

2

|k| (e−|k|σ − e−κσ)

∣∣∣∣∣ +
∣∣∣∣k2 + κ2

2k

(
eκσ + e−κσ

)
σ

∣∣∣∣
+

∣∣∣∣2ik2 + |k|κ
k2

(
k2 + κ2

2
e−κσ − |k|κe−|k|σ

)
σ

∣∣∣∣
≤ const. (1 + |k|)(|k|+ |Λ−|)σ + const. (1 + |k|)σe|Λ−|σ

+ const. |Λ−|((1 + |k|) + |Λ−|)σ ≤ const. (1 + |Λ−|2)σe|Λ−|σ ,

and thus we have (7.11).

To bound κ∂kf̌2,1 (k, σ) we use (7.14) to bound

∣∣κ∂kf̌2,1 (k, σ)∣∣ ≤
∣∣∣∣∣i (|k|+ κ)2

|k| (e−κσ − e−|k|σ)

∣∣∣∣∣+
∣∣∣∣i(|k|+ κ)κ

k2 + κ2

k2
e−κσσ

∣∣∣∣
+ |2iκ (|k|+ κ) e−|k|σσ|
≤ const. (1 + |k|)(|k| 12 + |k|)σe−|k|σ

+ const. (|k|+ |k|2)(1 + |k|−1)e−|k|σσ

+ const. (|k|+ |k|2)e−|k|σσ ≤ const. (1 + |k|2)σe−|k|σ ,

which leads to (7.12).

Finally, to bound κ∂kf̌3,1 (k, σ) we have the straightforward bound

∣∣κ∂kf̌3,1 (k, σ)∣∣ ≤ ∣∣∣∣k2 + κ2

2k
e−κσσ

∣∣∣∣ ≤ const. (1 + |Λ−|)σeΛ−σ ,

and therefore we have (7.13). This completes the proof of Proposition 7.2.
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We may now bound d̂2. The bound on the function κ∂kω̂2,1,0 uses (7.8) and
Propositions A.1 and A.2, leading to

|κ∂kω̂2,1,0|

=

∣∣∣∣12e−κτ

∫ t

1

κ∂kf̌1,0 (k, σ) Q̂0 (k, s) ds

∣∣∣∣
≤ const. eΛ−τ

∫ t

1

min{(1 + |Λ−|σ), (s+ |Λ−|)|Λ−|2σ}e|Λ−|σ
(

1

s
7
2

μ̄α +
1

s
5
2

μ̃α

)
ds

≤ const. eΛ−τ

∫ t+1
2

1

(s+ |Λ−|)|Λ−|2σe|Λ−|σ
(

1

s
7
2

μ̄α +
1

s
5
2

μ̃α

)
ds

+ const. eΛ−τ

∫ t

t+1
2

(1 + |Λ−|σ)e|Λ−|σ
(

1

s
7
2

μ̄α +
1

s
5
2

μ̃α

)
ds

≤ const. (1 + |Λ−|) 1
t
3
2

μ̃α + const.

(
1

t
5
2

μ̄α +
1

t
3
2

μ̃α

)
,

which shows that κ∂kω̂2,1,0 ∈ D1
α−1, 52 ,

3
2

.

The bound on the function κ∂kω̂2,2,0 uses (7.9), Proposition A.4, and (7.1), leading
to

|κ∂kω̂2,2,0| =
∣∣∣∣12e−κτ

∫ ∞

t

κ∂kf̌2,0(k, s− 1)Q̂0(k, s)ds

∣∣∣∣
≤ const. eΛ−τe|k|τ

∫ ∞

t

(|k| 12 + |k|2)σe−|k|σ
(

1

s
7
2

μ̄α +
1

s
5
2

μ̃α

)
ds

≤ const. (1 + |k|)eΛ−τ

(
1

t2
μ̄α +

1

t1
μ̃α

)
≤ const. (1 + |k|) 1

t1
μ̃α ,

which shows that κ∂kω̂2,2,0 ∈ D1
α−1,∞,1.

The bound on the function κ∂kω̂2,3,0 uses (7.10) and Proposition A.3, leading to

|κ∂kω̂2,3,0| =
∣∣∣∣12(eκτ − e−κτ)

∫ ∞

t

κ∂kf̌3,0(k, s− 1)Q̂0(k, s)ds

∣∣∣∣
≤ const. e|Λ−|τ

∫ ∞

t

(1 + |Λ−|σ)eΛ−σ

(
1

s
7
2

μ̄α +
1

s
5
2

μ̃α

)
ds

≤ const. e|Λ−|τ
∫ ∞

t

eΛ−σ

(
1

s
7
2

μ̄α +
1

s
5
2

μ̃α

)
ds

+ const. e|Λ−|τ
∫ ∞

t

|Λ−|eΛ−σ

(
1

s
5
2

μ̄α +
1

s
3
2

μ̃α

)
ds

≤ const.

(
1

t
5
2

μ̄α +
1

t
3
2

μ̃α

)
,

which shows that κ∂kω̂2,3,0 ∈ D1
α−1, 52 ,

3
2

.

The bound on the function κ∂kω̂2,1,1 uses (7.11) and Propositions A.1 and A.2,
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leading to

|κ∂kω̂2,1,1| =
∣∣∣∣12e−κτ

∫ t

1

κ∂kf̌1,1(k, s− 1)Q̂1(k, s)ds

∣∣∣∣
≤ const. eΛ−τ

∫ t

1

(1 + |Λ−|2)σe|Λ−|σ
(

1

s
7
2

μ̄α +
1

s
5
2

μ̃α

)
ds

≤ const.

(
μ̃α +

1

t
3
2

μ̄α +
1

t
1
2

μ̃α

)

+ const.
1

t1
μ̃α + const. |Λ−|

(
1

t
5
2

μ̄α +
1

t
3
2

μ̃α

)
,

which shows that κ∂kω̂2,1,1 ∈ D1
α−1, 32 ,0

.

The bound on the function κ∂kω̂2,2,1 uses (7.12), Proposition A.4, and (7.1),
leading to

|κ∂kω̂2,2,1| =
∣∣∣∣12e−κτ

∫ ∞

t

κ∂kf̌2,1(k, s− 1)Q̂1(k, s)ds

∣∣∣∣
≤ const. eΛ−τe|k|τ

∫ ∞

t

(1 + |k|2)σe−|k|σ
(

1

s
7
2

μ̄α +
1

s
5
2

μ̃α

)
ds

≤ const. (1 + |k|)eΛ−τ

(
1

t
3
2

μ̄α +
1

t
1
2

μ̃α

)
≤ const. (1 + |k|) 1

t
1
2

μ̃α ,

which shows that κ∂kω̂2,2,1 ∈ D1
α−1,∞, 12

.

The bound on the function κ∂kω̂2,3,1 uses (7.13) and Proposition A.3, leading to

|κ∂kω̂2,3,1| =
∣∣∣∣12(eκτ − e−κτ )

∫ ∞

t

κ∂kf̌3,1Q̂1(k, s)ds

∣∣∣∣
≤ const. (e|Λ−|τ + eΛ−τ )

∫ ∞

t

(1 + |Λ−|)σeΛ−σ

(
1

s
7
2

μ̄α +
1

s
5
2

μ̃α

)
ds

≤ const.

(
1

t
3
2

μ̄α +
1

t
1
2

μ̃α

)
,

which shows that κ∂kω̂2,3,1 ∈ D1
α−1, 32 ,

1
2

.

Collecting the bounds we have that d̂2 ∈ D1
α−1, 32 ,0

, which completes the second

part of the proof of Proposition 5.1.

7.3. Bounds on d̂3. We prove the bounds on d̂3 needed to complete the proof
of Lemma 5.3. For compatibility with the maps L1 and L2 we will bound κd̂3 instead
of d̂3. Throughout this proof we will use without further mention the bounds

∣∣∣∂kQ̂0 (k, s)
∣∣∣ ≤ ∥∥∥∂kQ̂0

∥∥∥( 1

s
3
2

μ̄α +
1

s1
μ̃α

)
,

∣∣∣∂kQ̂1 (k, s)
∣∣∣ ≤ ∥∥∥∂kQ̂1

∥∥∥( 1

s
3
2

μ̄α +
1

s2
μ̃α

)
.
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The bound on the function κ∂kω̂3,1,0 uses (7.2) and Propositions A.1 and A.2, leading
to

|κ∂kω̂3,1,0| =
∣∣∣∣12e−κτ

∫ t

1

f̌1,0 (k, σ)κ∂kQ̂0 (k, s)ds

∣∣∣∣
≤ const. |Λ−|eΛ−τ

∫ t

1

e|Λ−|σ min{|Λ−|, |Λ−|3σ2}
(

1

s
3
2

μ̄α +
1

s
μ̃α

)
ds

≤ const. |Λ−|eΛ−τ

∫ t+1
2

1

e|Λ−|σ|Λ−|3σ2

(
1

s
3
2

μ̄α +
1

s
μ̃α

)
ds

+ const. |Λ−|eΛ−τ

∫ t

t+1
2

e|Λ−|σ|Λ−|
(

1

s
3
2

μ̄α +
1

s
μ̃α

)
ds

≤ const. |Λ−|
(

1

t3
μ̃α +

1

t
3
2

μ̄α +
1

t1
μ̃α

)
,

which shows that κ∂kω̂3,1,0 ∈ D1
α−1, 32 ,1

.

The bound on the function κ∂kω̂3,2,0 uses (7.3), (7.1), and Proposition A.4, which,
to be applicable, requires first the use of (6.3) to trade a |k| for an s−1 multiplying
μ̄α and μ̃α. We then have

|κ∂kω̂3,2,0| =
∣∣∣∣12e−κτ

∫ ∞

t

f̌2,0(k, s− 1)κ∂kQ̂0(k, s)ds

∣∣∣∣
≤ const. eΛ−τ

∫ ∞

t

(|k|+ |k| 12 )(|k| 12 + |k|)e−|k|σ
(

1

s
3
2

μ̄α +
1

s
μ̃α

)
ds

≤ const. eΛ−τe|k|τ
∫ ∞

t

|k|e−|k|σ
(

1

s
3
2

μ̄α +
1

s
5
2

μ̄α−1

)
ds

+ const. eΛ−τe|k|τ
∫ ∞

t

(1 + |k|) e−|k|σ 1

s3
μ̃α−1ds

≤ const. eΛ−τ

(
1

t
3
2

μ̄α +
1

t
5
2

μ̄α−1 +
1

t2
μ̃α−1

)

≤ const.

(
1

t
3
2

μ̃α +
1

t2
μ̃α−1

)
,

which shows that κ∂kω̂3,2,0 ∈ D1
α−1,∞, 32

.

The bound on the function κ∂kω̂3,3,0 uses (7.4) and Proposition A.3, which, to
be applicable, requires first the use of (6.3) to trade a |Λ−| for an s−1/2 multiplying
μ̃α. We then have

|κ∂kω̂3,3,0| =
∣∣∣∣12(eκτ − e−κτ )

∫ ∞

t

f̌3,0(k, s− 1)κ∂kQ̂0(k, s)ds

∣∣∣∣
≤ const. e|Λ−|τ

∫ ∞

t

min{1, |Λ−|}eΛ−σ|Λ−|
(

1

s
3
2

μ̄α +
1

s
μ̃α

)
ds

≤ const. e|Λ−|τ
∫ ∞

t

|Λ−|eΛ−σ

(
1

s
3
2

μ̄α +
1

s2
μ̃α− 1

2
+

1

s3
μ̃α−1

)
ds

≤ const.

(
1

t
3
2

μ̄α +
1

t2
μ̃α− 1

2
+

1

t3
μ̃α−1

)
,

which shows that κ∂kω̂3,3,0 ∈ D1
α−1, 32 ,

3
2

.
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The bound on the function κ∂kω̂3,1,1 uses (7.5) and Propositions A.1 and A.2,
leading to

|κ∂kω̂3,1,1| =
∣∣∣∣12e−κτ

∫ t

1

f̌1,1(k, s− 1)κ∂kQ̂1(k, s)ds

∣∣∣∣
≤ const. eΛ−τ

∫ t

1

(1 + |Λ−|)e|Λ−|σ min{1, |Λ−|σ}|Λ−|
(

1

s
3
2

μ̄α +
1

s2
μ̃α

)
ds

≤ const. (1 + |Λ−|)eΛ−τ

∫ t+1
2

1

|Λ−|e|Λ−|σ|Λ−|σ
(

1

s
3
2

μ̄α +
1

s2
μ̃α

)
ds

+ const. (1 + |Λ−|)eΛ−τ

∫ t

t+1
2

|Λ−|e|Λ−|σ
(

1

s
3
2

μ̄α +
1

s2
μ̃α

)
ds

≤ const. (1 + |Λ−|)
(

1

t
3
2

μ̃α +
1

t
3
2

μ̄α +
1

t2
μ̃α

)
,

which shows that κ∂kω̂3,1,1 ∈ D1
α−1, 32 ,

3
2

.

The bound on the function κ∂kω̂3,2,1 uses (7.6), Proposition A.4, and (7.1), leading
to

|κ∂kω̂3,2,1| =
∣∣∣∣12e−κτ

∫ ∞

t

f̌2,1(k, s− 1)κ∂kQ̂1(k, s)ds

∣∣∣∣
≤ const. eΛ−τ

∫ ∞

t

(1 + |k|)|Λ−|e−|k|σ
(

1

s
3
2

μ̄α +
1

s2
μ̃α

)
ds

≤ const. (1 + |k|)eΛ−τe|k|τ
∫ ∞

t

(|k| 12 + |k|)e−|k|σ
(

1

s
3
2

μ̄α +
1

s2
μ̃α

)
ds

≤ const. (1 + |k|)eΛ−τ

(
1

t1
μ̄α +

1

t
3
2

μ̃α

)
≤ const. (1 + |k|) 1

t1
μ̃α ,

which shows that κ∂kω̂3,2,1 ∈ D1
α−1,∞,1.

The bound on the function κ∂kω̂3,3,1 uses (7.7) and Proposition A.3, leading to

|κ∂kω̂3,3,1| =
∣∣∣∣12(eκτ − e−κτ )

∫ ∞

t

f̌3,1κ∂kQ̂1(k, s)ds

∣∣∣∣
≤ const. (e|Λ−|τ + eΛ−τ )

∫ ∞

t

eΛ−σ |Λ |
(

1

s
3
2

μ̄α +
1

s2
μ̃α

)
ds

≤ const.

(
1

t
3
2

μ̄α +
1

t2
μ̃α

)
,

which shows that κ∂kω̂3,3,1 ∈ D1
α−1, 32 ,2

.

Collecting the bounds we have that d̂3 ∈ D1
α−1, 32 ,1

⊂ D1
α−1, 32 ,0

, which proves

Lemma 5.3.

Appendix. Convolution with the semigroups eΛ−t and e−|k|t. To make
this paper self-contained, we recall the following results proved in [14]. In order to
bound the integrals over the interval [1, t] we systematically split them into integrals
over [1, t+1

2 ] and integrals over [ t+1
2 , t] and bound the resulting terms separately. For

the semigroup eΛ−t we have the following.
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Proposition A.1. Let α ≥ 0, r ≥ 0, δ ≥ 0, and γ + 1 ≥ β ≥ 0. Then

eΛ−(t−1)

∫ t+1
2

1

e|Λ−|(s−1)|Λ−|β (s− 1)γ

sδ
μα,r(k, s) ds

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

const.
1

tβ
μ̃α(k, t) if δ > γ + 1,

const.
log(1 + t)

tβ
μ̃α(k, t) if δ = γ + 1,

const.
tγ+1−δ

tβ
μ̃α(k, t) if δ < γ + 1

uniformly in t ≥ 1 and k ∈ R.
Proposition A.2. Let α ≥ 0, r ≥ 0, δ ∈ R, and β ∈ {0, 1}. Then

eΛ−(t−1)

∫ t

t+1
2

e|Λ−|(s−1)|Λ−|β 1

sδ
μα,r(k, s) ds ≤ const.

tδ−1+β
μα,r(k, t)

uniformly in t ≥ 1 and k ∈ R.
For the integral over the interval [t,∞) we need only one of the bounds in [14].
Proposition A.3. Let α ≥ 0, r ≥ 0, δ > 1, and β ∈ {0, 1}. Then

e|Λ−|(t−1)

∫ ∞

t

eΛ−(s−1)|Λ−|β 1

sδ
μα,r(k, s) ds ≤ const.

tδ−1+β
μα,r(k, t)

uniformly in t ≥ 1 and k ∈ R.
For the semigroup e−|k|t we have the following.
Proposition A.4. Let α ≥ 0, r ≥ 0, δ > 1, and β ∈ [0, 1] Then

e|k|(t−1)

∫ ∞

t

e−|k|(s−1)|k|β 1

sδ
μα,r(k, s) ds ≤ const.

tδ−1+β
μα,r(k, t)

uniformly in t ≥ 1 and k ∈ R.
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