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DECAY ESTIMATES FOR STEADY SOLUTIONS OF THE
NAVIER-STOKES EQUATIONS IN TWO DIMENSIONS IN THE
PRESENCE OF A WALL*

CHRISTOPH BOECKLE! AND PETER WITTWERF

Abstract. Let w be the vorticity of a stationary solution of the two-dimensional Navier—Stokes
equations with a drift term parallel to the boundary in the half-plane Q4 = {(z,y) € R? | y > 1},
with zero Dirichlet boundary conditions at y = 1 and at infinity, and with a small force term of
compact support. Then |zyw(z,y)| is uniformly bounded in Q4. The proof is given in a specially
adapted functional framework, and the result is a key ingredient for obtaining information on the
asymptotic behavior of the velocity at infinity.
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1. Introduction. In this paper we consider the steady Navier—Stokes equations
in a half-plane Q4 = {(z,y) € R? | y > 1} with a drift term parallel to the boundary,
a small driving force of compact support, with zero Dirichlet boundary conditions
at the boundary of the half-plane and at infinity. See [14] and [15] for a detailed
motivation of this problem. Existence of a strong solution for this system was proved
in [14] together with a basic bound on the decay at infinity, and the existence of weak
solutions was shown in [15]. By elliptic regularity weak solutions are smooth, and their
only possible shortcoming is the behavior at infinity, since the boundary condition may
not be satisfied there in a pointwise sense. In [15] it was also shown that for small
forces there is only one weak solution. This unique weak solution therefore coincides
with the strong solution and as a consequence satisfies the boundary condition at
infinity in a pointwise sense.

The aim of this paper is to provide additional information concerning the behavior
of this solution at infinity by analyzing the solution obtained in [14] in a more stringent
functional setting. More precisely, we obtain more information on the decay behavior
of the vorticity of the flow. Bounds on vorticity as a step towards bounds on the
velocity are a classical procedure in asymptotic analysis of fluid flows (see the seminal
papers [7], [8], and [1]). In [14] and the current work, the equation for the vorticity
is Fourier-transformed with respect to the coordinate = parallel to the wall, and then
rewritten as a dynamical system with the coordinate y perpendicular to the wall
playing the role of time. In this setting information on the behavior of the vorticity
at infinity is studied by analyzing the Fourier transform at k = 0, with k& the Fourier
conjugate variable of x. In the present work, we also control the derivative of the
Fourier transform of the vorticity, which yields more precise decay estimates for the
vorticity and the velocity field in direct space than the ones found in [14]. Our proof
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is then based on a new linear fixed point problem involving the solution obtained in
[14] and the derivative of the vorticity with respect to k.

Since the original equation is elliptic, the dynamical system under consideration
contains stable and unstable modes and no spectral gap, so that standard versions of
the center manifold theorem are not sufficient to prove existence of solutions. Func-
tional techniques that allow one to deal with such a situation go back to [6] and were
adapted to the case of the Navier-Stokes equations in [16] and in [17], [18]. For a
general review, see [11]. The linearized version of the current problem was studied in
[13]. A related problem in three dimensions was discussed in [9].

The results of the present paper are the basis for the work described in [2], where
we extract several orders of an asymptotic expansion of the vorticity and the velocity
field at infinity. The asymptotic velocity field obtained this way is divergence-free
and may be used to define artificial boundary conditions of Dirichlet type when the
system of equations is restricted to a finite subdomain to be solved numerically. The
use of asymptotic terms as artificial boundary conditions was pioneered in [3], [4] for
the related problem of an exterior flow in the whole space in two dimensions, and in
[10] for the case in three dimensions.

Let x = (z,y), and let Q, = {(z,y) € R? | y > 1}. The model under con-
sideration is given by the Navier—Stokes equations with a drift term parallel to the
boundary,

(1.1) —0u+Au =F+u-Vu+ Vp,
V-u=0,

subject to the boundary conditions

(1.3) u(z,1) =0, reR,
(1.4) xILH;o u(x)=0.

The following theorem is our main result.

THEOREM 1.1. For all F € C°(Q4) with F sufficiently small in a sense to be
defined below, there exist a unique vector field u = (u,v) and a function p satisfying the
Navier—Stokes equations (1.1), (1.2) in Q4 subject to the boundary conditions (1.3) and
(1.4). Moreover, there exists a constant C > 0, such that |y>/?u(z,y)|+ |y >v(z, y)|+
[yPw(z,y)| + |ryw(z,y)| < C for all (z,y) € Q.

This theorem is a consequence of Theorem 5.4, which is proved in section 5. The
crucial improvement with respect to [14] is the bound on the function zyw(z, y).

Remark 1.2. The smallness condition for the force F' is necessary because of
the techniques used in the proofs of the current theorem as well as in the existence
theorem of [14], and in the uniqueness theorem proved in [15]. To our knowledge,
for forces F' that are large nothing is known concerning the decay at infinity beyond
what follows from the existence theorem of weak solutions in [12], i.e., that the L?
average of the velocity on circles of radius R is absolutely continuous and converges to
zero as R goes to infinity. Moreover, for large forces, one does not expect uniqueness
of solutions. In any case, stationary solutions are expected to become unstable, and
physically relevant solutions will be time dependent.

The paper is organized as follows. In section 2 we rewrite (1.1) and (1.2) as a
dynamical system with y playing the role of time, and Fourier-transform the equations
with respect to the variable . Then, in section 3, we recall the integral equations for
the vorticity discussed in [14] and complement them by the ones for the derivative
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with respect to k. We then introduce in section 4 certain well-adapted Banach spaces
which encode the information concerning the decay of the functions at infinity. Finally,
in section 5, we reformulate the problem of showing the existence of the derivative
of vorticity with respect to k as the fixed point of a continuous map, based on the
existence of solutions proved in [14]. We present in sections 6 and 7 the proofs of
the lemmas used in section 5. In the appendix, we recall results from [14] which are
needed here.

2. Reduction to an evolution equation. We recall the procedure used in [14]
to frame the Navier—Stokes equations for the studied case as a dynamical system. Let
u = (u,v) and F = (Fy, Fy). Then (1.1) and (1.2) are equivalent to

(2.1) w=—=0yu+ 0zv ,
(2.2) —Opw+Aw = O (uw) + Oy (vw) + Oz Fo — 0y F1
(2.3) Opu~+0yv =0 .

The function w is the vorticity of the fluid. Once (2.1)—(2.3) are solved, the pressure
p can be obtained by solving the equation

Ap= -V (F+u-Vu)
in 4, subject to the Neumann boundary condition

Oyp(z,1) = 851)(3:, 1).

Let
(2.4) qo = uw ,
(2.5) g1 =W,

and furthermore let

(2.6) Qo=q0+Fz,

(2.7) Qi=q — F1.

We then rewrite the second order differential equation (2.2) as a first order system
(2.8) Oyw = Ozn + Q1

(2.9) Oyn = —0gw +w+ Qo .

Note that, unlike the right-hand side of (2.2), the expressions for Qp and @1 do not
contain derivatives. This is due to the fact that, in contrast to standard practice, we
did not set, say, dyw = 1, but we chose with (2.8) a more sophisticated definition.
The fact that the nonlinear terms in (2.8), (2.9) do not contain derivatives simplifies
the analysis of the equations considerably. An additional trick allows one to reduce
complexity even further. Namely, we can replace (2.3) and (2.1) with the equations

(2.11) Iy = 09 + Qo
if we use the decomposition

(2.12) u=-n+¢,
(2.13) v=wHY.
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The point is that in contrast to u and v the functions 1) and ¢ decouple on the linear
level from w and 7. Since on the linear level we have Ay = 0 and At = 0, it will turn
out that ¢ and v have a dominant asymptotic behavior which is harmonic when Qg
and Q1 are small.

Equations (2.8)—(2.11) are a dynamical system with y playing the role of time.
We now take the Fourier transform in the z-direction.

DEFINITION 2.1. Letf be a complex valued function on Q4. Then we define the
inverse Fourier transform f = fﬁl[f] by the equation

fa) = FAws) = 52 [ e F
andﬁ:f*g by
7 N 1 P / ~r1d /
M&y%=U*thy%=Ziéf%—k,mmkwﬁ%

whenever the integrals make sense. We note that for a function f which is smooth
and of compact support in Q. we have f = F~L[f], where

fWMme%w=AWW@mM,

and that fg = F[f = g].
With these definitions we have in Fourier space, instead of (2.8)—(2.11), the equa-
tions

(2.14) By = —iki+ Q1
(2.15) Ay = (ik + )& + Qo ,
(2.16) Oyth = ik¢ — Q1
(2.17) dyp = —ik + Qo .
From (2.6) and (2.7) we get

(2.18) Qo =do+ Fy
(2.19) Qi=aq—F,

from (2.4) and (2.5) we get

>

(2.20)
(2.21)

&>

*

>

(=)

)

1SN

*

[N
>

1=

)

and instead of (2.12) and (2.13) we have the equations

= - +¢7
).

>

(2.22)
(2.23)

>
Il
[N
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3. Integral equations. We now reformulate the problem of finding a solution
to (2.14)—(2.17) which satisfies the boundary conditions (1.3) and (1.4) in terms of
a system of integral equations. The equations for &, A, ¢, and v are as in [14]. In
particular we recall that

1

3
g Wn,m

(3.1) &=
m=0n=1

where, for n =1,2,3, m =0,1,
(3.2) (ks t) = Ko (st — 1)/ (ks s — 1)Qum(k, 5)ds |
In

where, for k € R\ {0} and o, 7 > 0,

(3:3) Kok, 7) = %e*” forn=1,2,

(3.4) Ka(k,7) = %(em— ey

and

(3.5) frolk,o) = %e"“’ _ (R : K)2€_KU + 2 (k| + k) e IFlo |
(3.6) Foolk,0) = 2 (k + |k|) (e—l’flf’ - e—m) ,

(37 Jsolko)= e

(3.8) frak,o) = e + We _ 2%6*‘““ 7
(3.9) foi(k,0) =2 <W - 1> ero _ QWe*IkIU ’

(310) fvg)l(k,O') = —€7HU 5

and where Iy = [1,¢] and I, = I3 = [t, c0).
We introduce the integral equation for dxw, noting that @ is continuous at k =0
(see [14]). From (3.2) we get that

1 3 3
(3.11) o= 3> Okrnm

m=0n=1[=1

where, forn =1,2,3, m=0,1,

(3.12) O nm (ko t) = Op K (K, t — 1)/ Fom(kys = 1)Qum(k, s)ds |
I,

(3.13) Mo nm(k,t) = Kp(kyt = 1) [ Ok frm(k,s — 1)Qm(k, s)ds
In

(3.14) Oz nm(k,t) = Kp(kyt = 1) [ fom(k,s — 1)0xQum(k, s)ds
In
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where, for k € R\ {0} and o, 7 > 0,
12k —1

(3.15) Kk, 7) = i e " forn=1,2,
. 12k —1
(3.16) O Ks(k,7) = 1 kn Z(e’” +e "),

where f, m is as above, where

af (k )—L( Ko 7&0_27\/’@\0)_%( Ko 7,;(7)
kf1o0(k,0) = (e e e 5,3 (¢
2 k2 + |k|K ko o k2 4 K2 o e
+;7k (e —e )+ 52 (" —e Yo
2 2 2 2
(317) + k "'k|k|"<;/]€ —'_2/45 e—/»go'o__2]€ —2|k|ﬁe_|kloo-7
K
- k- 2
Ok f2,0(k,0) = %(6_"“‘” —e7"9)
2 2
(318) 2 (et = B )
F k., K*+r:
(3.19) 3kf3,0(k70)=ﬁ6 —ig g0,
. k 2 k2 2
akal(k,O') = im#(elklg _ 67'%0-) + 2+kﬁ7 (ena_ 4 efna')o-
k K
2 2 2
(320) + 2Zk _]';2|k|/€ (k 2_;'% e ro |k|eka> o,
f. , k+/€2 — KO —|k|o . k2+/€2 ko
3kf271(k70’)22(|LT|)(e — eIk )+ i(lk] + 5)— 5
(3.21) — 2 (k| + x) e Flog |
k% + K2

— KO

ek C 0

(3:22) 3kf3,1(k70') =
and where the functions
OxQo = Okdo + O Ly
Q1 = Oy — OBy
are obtained from (2.18) and (2.19). Since ¢o and §; are convolution products (see
(2.20) and (2.21)), and noting that @ and ¢ are continuous bounded functions on
R, that & is continuous on R and differentiable on R \ {0}, and that dyw is abso-

lutely integrable, we conclude (see [5, Proposition 8.8, page 241]) that ¢y and §; are
continuously differentiable functions and that

(3.23) Oko = 1 x O
(3.24) 51411 =0 8;@ .

This means that it is sufficient to add (3.11) to the ones for @, 1), ¢, and 1& in order
to get a set of integrals equations determining also Jpw.
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Remark 3.1. The products annm are equal to Ky fn, as defined in [14], and
we have K,—12 = Ky—12, K3 = %K& fa=12;m = fa=1,2;m, and f3,, = 7 f3,m. We
chose to rewrite the equations in the new form for convenience later on.

4. Functional framework. We recall the definition of the function spaces in-
troduced in [14] and extend it to include functions with a certain type of singular
behavior. Let o, 7 > 0, k € R, ¢t > 1, and let

1

(4.1) fra,r(kyt) = TF (k)

Let furthermore

,[La - ,ua,l(kat) )
fo = Ma,2(k7t) .
We also define
(4.2) k=Vk?—ik

and

(4.3) A_ = —Re(k) = —%\/2\//€2+k4+2k2 :

Throughout this paper we use the inequalities

(4.4) k] = (K2 4+ kDY < |k]M2 + k] < 2374k < 23741 + |K]) .

We have in particular that

(4.5) k|2 < const. |x|
and that
(4.6) eh-7 < eIkl

which will play a crucial role for small and large values of k, respectively.

DEFINITION 4.1. We define, for fited o > 0, and n, p, ¢ > 0, By, , to be

the Banach space of functions f: R\ {0} x [1,00) = C for which f, = k" - f €
C(R\ {0} x [1,00),C) and for which the norm

|

is finite. We use the shorthand Be ;4 for B2 Furthermore we set, for a > 2,

[iB

s sup [, 1)
>1 ker\{0} = Ha(k,t) + & fia(k, t)

n
a,p,q

@.p.q-
1 _nl 1 1
DOZ*LP#Z - Ba,p,q X Ba—%,p+%,q+% X Boz—17p+%,q+1 ’
Vo = Ba,%l X Ba7%70 X Ba,%,l .
Remark 4.2. We present two elementary properties of the spaces By, ,, ., which

will be routinely used without mention. Let «, o/ >0 and p, p’, q, ¢ > 0; then

By o N By o C By

a,p,q a’,p’q min{a/,a,},min{p’,p},min{q’,q} -
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In addition we have

B ,, C B

a,p,q a,min{p,q},00 >
where the space with ¢ = 0o is to be understood to contain functions for which the
norm
|fn(k 8l
=sup sup ————
1>1 ker\{0} 15 fa(k,t)

is finite.

5. Existence of solutions. In [14] it was shown that one can rewrite the integral
equations as a fixed point problem, and that, for F sufficiently small, there exist
functions @, @, and ¥, which are solutions to (2.1)—(2.3), satisfying the boundary
conditions (1.3) and (1.4). More precisely, we have, for o > 3,

(5.1) D €Bysy,
(5.2) i €By1,
(5.3) v€B, 1,

and, for i = 0,1,
(5.4) Qi€B, 1

[N

We now show that using this solution as a starting point, we may define a linear
fixed point problem with a unique solution for dyw. The structure of (3.11) is rather
complicated, and it turns out to be necessary to decompose the sum into three parts
which are analyzed independently. Let d = (dy, da, ds), where

1 3
Z Z akajl,mm;
m=0n=1
then 0,0 = Zl 1 di- The function d3 depends on Jrw, but d1 and dg do not.
PROPOSITION 5.1. The functions d1 and dg are in D!
Proof. See sections 7.1 and 7.2. O
We now define the fixed point problem.

LEMMA 5.2. Let o > 3, and let 4 and © be as in (5.2) and (5.3), respectively.
Then

3 -
a—1,5,0

. 1
St Dl

- @32
d —
defines a continuous linear map.
Proof. The map £; is linear by definition of the convolution operation. Using
Corollary 6.3 we get that the map £ is bounded, since

(5.5) Hzl* d;Ba%JH < const. Ha;BO"%ﬁH ‘ 1.8 OH
and
(5.6) |6 d: Bo g o| < comst. |63 8oy |- | DL 15| - T
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LEMMA 5.3. Let a > 3, 623 = Z}nzo Zi:l Ok@3,n,m, and let O3 n.m be given
by (3.14). Then we have

. 1
Lo B%%J XBQ7%72 — D

Qo P
<8kc?1) - %

which defines a continuous linear map.
Proof. The map £9 is linear by definition of ds and is proved to be bounded in
section 7.3. d

5.1. Proof of Theorem 1.1. Theorem 1.1 is a consequence of the following
theorem.

THEOREM 5.4 (existence). Let a > 3, F = (Fy, Fy) € C(Q4), and let F =
(Ey, Ey) be the Fourier transform of F. If ||(Fy, —F)); B, 7 5 x B,z sl is sufficiently

X352
small, then there exists a unique solution (@, 4,0, d) in Va X Diil 3 o
.5,

Proof. We have the existence and uniqueness of (&, @, ) € V, thanks to [14] and
[15]. Since a > 3, we have by Lemmas 5.2 and 5.3 that the map € : Dy_; 3 —
Di_l’%’o, x> Clx] = L9[L4 [dl +ds + x] + (akﬁz, —akﬁl)] is continuous. Since from
[14] we have that ||(©, @, ); V|| < const. H(Fg, —13'1);8&7%7% X By 13 ||, we find with
(5.5) and (5.6) that the image of £, is arbitrarily small. We then have by linearity
of £9 that € has a fixed point since H(akFQ,—akFl);Ba7%7l X BO‘)%QH < oo. This
completes the proof of Theorem 5.4. d

Theorem 1.1 now follows by inverse Fourier transform, and the decay properties
are a direct consequence of the spaces of which @, 9, @, and 9@ are elements. Indeed,
for a function f € By ,, with @ >3, n =0,1, and p, ¢ > 0, we have from the
definition of the Fourier transform that

(57) suplfe.)] < o= [ [fi)| i

and from the definition of the function spaces that

/’fkt | dk < || WH/,{n (tpuakt)Jr ok, ))dk

< const. || fn; L !
< cons ‘ fns apq" proay gy + PP gw—
const. n
(58) < tmin{p+(1-n),q¢+2(1-n) ‘ fn’B a,p,q
Combining (5.7) and (5.8) we have
const.

ilé%'f(x’y” mm{er(l n),q+2(1—n) fn, Ocp,qH )

Finally, we have, using that (@, 4, 0, &) €V, X Dihl s, and
.3,

1
()] < 5o [ Owslkyldb
T JR
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that

ly*Pu(z,y)| < C1, [y* Pu(@,y)| < Ca
|y30.)($,y)| < C'3 ) |yCE(U(!E,y)| < C4 )

with C; € R for ¢ = 1,...,4, which proves the bound in Theorem 1.1.

6. Convolution with singularities. We first recall the convolution result from
[14].

PROPOSITION 6.1 (convolution). Let «, 8 > 1, and v, s > 0, and let a, b be
continuous functions from Rg x [1,00) to C satisfying the bounds

la(k, t)| < par(k,t) ,
|b(k7t)| < ;1,375(/6,15) :

Then the convolution ax*b is a continuous function from R x [1,00) to C, and we have
the bound

1 1
[(a*b) (k,t)| < const. (t_rﬂ&S(kvt) + t—suam(k,t)) ,

uniformly int > 1, k € R.
Since 9y diverges like |k|~! at & = 0 we need to strengthen this result.
PROPOSITION 6.2 (convolution with |KJ|_1 singularity). Let a,B>1andr,§>0,
let a be as in Proposition 6.1, and let b be a continuous function from Ry x [1,00) to
C, satisfying the bound

50k, < [6(R) " g5 (k).

Then the convolution axb is a continuous function from R x [1,00) = C and we have
the bounds

- 1 1 1

(61) ‘(a * b)(k,t)‘ < const. <max {t—g, ﬁﬁ} ,UJB)S/ (k, t) + t_%,ua,r (k, t)) y
- 1 1 1

(6.2) }(a * b)(k, t)‘ < const. <max {t—g, pr—c } Hipes (ki) + t—%,uam (k, t))

for § <5 andce {3,1}.

Proof. We drop the ~ to unburden the notation. Continuity is elementary. Since
the functions jio . are even in k, we only consider £ > 0. The proof is in two parts,
one for 0 <k < +=%" and the other for t—% < k. The first part is valid for both (6.1)
and (6.2). For 0 < k < t=" and o/ > 0, we have

(@ s D)D) < [ son ) = Kl = K )
R
t3 - dk
< sup (,Uom’(k/a t)) ~—1:UB,S(k7 1)_3
k' €R R |k|2 t
conﬁst. < conﬁst.Ma/ . (k,t) 7
t2 t2 ’
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where we have used the change of variables k — k' = k/t*. For k>t~ and s’ < s we
have

, ,UB,s(k — k/a t) /
|(a % b)(k,1)] S/Ruw(k,t)md’“

k/2 / 0 ’
Mﬂ,s(k_kvt) / / / M,@,s(k_k;t) ’
< Mo, klat dk’ + Ha,r k ,t 0 ~dk’ .
[ a0 e e =]

2211 2212

— 00

The integral I is the same for (6.1) and (6.2),

o0 1
12 = / /La,r(k/v t)i,uﬁ,s(k - k/a t)dk/
k

B nlo— )
< const o (/2.0) [ oo (b))
& [/ 2

1
S const. ts?,ua,r(kvt) )

where again we have used the change of variables k — k’ = k/t5. To compute the
integral I; we use that

,ch,s (k,t) S ,ucx,s’ (ka t) )
Ha,s (ka t) T M8, (k,t) < const. fa48,s (k,t) )

and, for k > t‘sl,

1 1 const. const. const.
s/ = T < s/ < 1 < Y (kat) )
t7 [R(B)] T e kY2 T 2T kY2 T 1y k)T
1 1 const. const. const.
— < < < < H1,s (k,t) .

S

l(B)] = ¢ (|k[V/2 +|k|) = 572 + |kjts" = 14 |k[ts
To prove (6.1), we note that
k}/2 / e
6.1 Ma,r(k 7t) |k |2
1o < [ s K
o [ ettt LE
T WP k=K
k/2 / ni
fa,r(K' 1) |k — K|
+/ k|2 |k—k/|é“ﬁ’8(k_k/’t)dk/
|k|% /k/2 fa,r (K1)
< s(k/2,t —————=dk
7|k/2%/%3,(/ ) . |/€/|%
/]’C/2 e (K, 1) 1 const.
1
I TV RV SR

const. 1 K12 (K 1)
< —— k.t L
= |/€|% ts/2'u:3*%x5( ’ )[m |]€/|%

,uﬁ,s(k - k/a t)dk/

(k— k', t)dk'

T 1
< const. — — 1 (kb t)—=
A 5ok
t%, 1 const.
< const. PN (k,t) Uﬁféﬁ(kvt)t_% < T;Slﬂﬁ,s'(ki) ;
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where we have used the family of inequalities
1
(6.3) |k|° o, (K, t) < const. o Ha—par (k,t) for all p>0.

Finally, to prove (6.2), we note that
7(6:2) k2 / 1 Y /

1 < /700 e (K ’t)7|/€(k—k/)|uﬂ)8(k k' t)dk

1

=t |k(k/2)|

< const. tcs/ucysz(k,tug,s(k,t)/umr(k',t)dk’
R

is.a(k/2.1) / o (K £) K
R

1
S const. ﬁ,uﬂ—‘rc,s/(kat) .

Collecting the bounds on the integrals Il(ﬁ'l), 11(6'2), and I, proves the claim in Propo-

sition 6.2. d
COROLLARY 6.3. Let o > 2 and, fori = 1,2, p;,q; > 0. Let f € Bap,,q, and

g€ Di_l,?%‘h' Let

. 1 1
p=mm{P1 +P2+§,p1+(J2+17q1 +p2+§} )

. 1
q=m1n{Q1+Q2+1vql+p2+§} .

Then f % g € Bap,q, and there ezists a constant C, depending only on «, such that

IL.f * 95 Bapall < C1f; Bapranll - ||Q§Dé71,p2,q2” .

Proof. We consider the three cases ¢ € {0, %, 1}. Let g be a function in Béjﬁ,
with @ = a — ¢, p,¢§ > 0. The convolution product f * g is in each case bounded by a

function in B!, , . with p and ¢ given by the following:

o ifc=0,p=min{p1+p+35, p1+3+1L q1+p+3}, ¢ = min{q1+G+1, a+p+3} ;

o ifc =3, p=min{p1+p+3,p1+i+3, a+p+3}, ¢ = min{q+G+1, +p+3};

e ifc=1,p=min{p1+p+0,p1+¢+0, 1 +p+3} , ¢ = min{q1 +G+0, g1 +p+3} .

These are consequences of Proposition 6.2. Using (6.1) for the first case and (6.2)

for the following two cases, and choosing s = 1 to bound the term - jia * i,

it is now clear that for a function in D} _; , . . the terms that yield the lowest p

and ¢ are covered by the ¢ = 0 case above, because what is lost in the bounds on

convolution due to lower & is gained through higher values of p and ¢ by definition of

the space Dé—l,p% ¢~ This corollary allows us to streamline the notation and shorten
calculations throughout the paper. d

7. Bounds on d. We present some elementary inequalities and expressions used
throughout this section. Throughout the calculations we will use without further
mention that for all z € C with Re(z) < 0 and N € Ny,

N
z n
€ - Zn:O mz

N1 < const. ,
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and for all z € C with Re(z) > 0

N 1
z n
€” — Zn:() mZ

Re(z)
N1 < const. e .

We also have that

2k —1i

Opri = 2K

By definition of the norm on D}, , . we must bound k0yw. We thus bound all the
terms KORWinm, with I = 1,2,3, n = 1,2,3, and m = 0,1 (see definitions (3.11),
(3.12)—(3.14), and (3.5)—(3.22)). This requires a good deal of book-keeping to track
what happens to a, p, and ¢q. Some of it may be spared when one realizes that
all losses in « occur when applying (6.3) where there are explicit factors |k|° with
c= {%, 1}, which automatically brings forth a structure satisfying the conditions of
Corollary 6.3. This allows us to show that each component Oy, is an element of

a D}
1 _ 1 .
_z,u/a+ é,u’a )
SzZ S2

which we will use throughout without further mention. We also make use of (4.5) and
(6.3) without explicit mention throughout these proofs.
The bounds for the terms n = 2 take advantage of the fact that, for 1 <t < 2,

a—1,p,q°
From (5.4) we obtain, for ¢ =0, 1,

Qi (kvs)‘ < HQ&B%%,%

fia(k,t) < const. fin(k,t) < const.
and, for ¢ > 2 and o > 0,
eA*(tfl)ua,r(k,t) < const. e =1 < const. b (kyt)
so that the inequality
(7.1) eV g (ko t) < const. fig (k,t)

holds for all ¢t and « > 0.
7.1. Bounds on d;. To show that d; = Zm ozn 1 OkW1,,m s in Dl 13

5,
which constitutes the first part of Proposition 5.1, we first need to recall a proposition

proved in [14].
PROPOSITION 7.1. Let fn.m be as given in section 3. Then we have the bounds

(7.2) |f1.0(k,0)| < const. =17 min{|]A_|,|[A_[*c?} ,
(7.3) |foo(k, o)| < const. (k| + |k|"/?)e Ikl

(7.4) |f3.0(k,0)| < const. e~ min{1, |A_|*} ,

(7.5) |f1.1(k,0)| < const. (1 + [A_|)el*=1" min{1,|A_|o} ,
(7.6) |fo1(k,0)| < const. (1+ |k|)e”*lo

(7.7) |f3.1(k, )| < const. e*~ min{1, |A_|}

uniformly in 0 > 0 and k € Ry.
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We then note that

e*K/T

- 1
|kOR K (k,7)| = 5 < const. 7(1 + |k|)e*-T for n = 1,2,

B (BKT—FB_KT)

5 < const. 7(1 + |k|)(eA17 +er-7) .
K

‘m@kf(g(k,T)‘ = ‘%TKJ

The bound on the function k01 1,0 uses (7.2) and Propositions A.1 and A.2, leading
to

|KOk1 1,0l =

1 ¢y A
ﬁgﬁke*’”/ fio(k,0) Qo (k,s)ds

7; I

1 1
< const. T(1+|k|)6AJ/ A=lemin{|A_|, |A_[20?} <s_g +—gﬂa> ds
1
t+1

Tz 1 1
< const. 7(1 4+ |k|)eA*T/ elA-17IA_ 302 ( = fla + —ﬂa) ds
1 52

t
1
+ const. 7(1 + |k|)er-7 " elA-lo|A_| (—7ua +

2 §2 §

1 1
< const. (1+ |k|) ( ot —§ > ,
2

which shows that kOwi,1,0 € Dl

oo

a—1,3,5

The bound on the function n@kwm,o uses (7.3), Proposition A.4, and (7.1), leading

i

to

|KOkw1 2,0 =

1 R A
/ig(?ke_'”/ foo(k,s —1)Qo(k, s)ds
¢

> 1 1
< const. 7(1 + |k|)eA*Te‘k‘T/ (|I€|% + |k|)e~Ikle <—7u + —ﬂa> ds
t 2

1 1
< const. (14 [k[)e?-T" (t—Q,ua + t—l,&a> < const. (1+ |l€|) Thia

which shows that kOx@1 20 € DL, 1,001
The bound on the function m@kwm,o uses (7.4) and Proposition A.3, leading to

|KOk1 30| =

1 B N

5R0u(E =) [ faolks = DQo(ks9)ds
t

< const. 7(1 4 |k|) (/=17 4+ eA-T)

i 1 1
X / min{1, |[A_|}er-° (—7,ua + = [La) ds
t 52

S

o

< const. TelA—“/ (1+ |A_|)min{1,|A_|}eA—"<
t

i)
which shows that kOx@1 30 € D!

5 3-
a=1,3.3

mlw| L

1
< const. (—5ua +
t2
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The bound on the function k0ywi 11 uses (7.5) and Propositions A.1 and A.2,
leading to

|KOkw1,1.1| =

¢
n%(’?ke"’"/ fia(k,s —1)Q1(k, s)ds
1

< const. 7(1 + |k|)er-"

1
/(1+|A DelA=17 min{1, [A_|o} (—l + éga) ds
1 2 S2
= 1
< const. 7(1 + |k|)e? (/ e =17 |A_|o ( =i —éﬂa> ds
1

1

7 M 5 [La) d5>
2 S2

~ 1 1
< const. (1 + |k|) (ua + t—§ﬂa + —ua> ,
2

+/ |A_|e™=17 min{1, |A_ |a}(

which shows that xkOkwi,1,1 € D 130
.3,

The bound on the function ﬁ@kwl,m uses (7.6), Proposition A.4, and (7.1), leading
to

~ 1 — KT <z A
|KOkw1,21] = ‘iﬂﬁke / fo1(k,s —1)Q1(k, s)ds
t

< const. (1+ |k|)reA—T/ (1 + |K|)e¥le (

~+
wl
lolc

)ds
L

Ol ’

| —

< const. (1 + |k|)e*-T ( fo, —|—

m|>—-| =

fio, > < const. (1+ |k|)

e

t t3

which shows that kOx@1 2,1 € D! 1

a—1,00, '3
The bound on the function n&kw1,371 uses (7.7) and Proposition A.3, leading to

|KOkw1 31| =

1 ® .
kp0h(e” =) [ Qi s)ds
t

o 1 1
< const. 7(1 4 |k|) (=17 4+ )/ et <—7ua + —sﬂa> ds
t S§2 S§2
|A=|T A_T 1 1
< const. 7(e +et7) (1+|A e — o + —fla | ds
t S§2 S§2

1 1
< const. (—3 fo(k,t) + _tl /la(k,t)> ,
2

t2

which shows that k01 3,0 € D ~1,3.1

Collecting the bounds, we find that dy € Dclx
of the proof of Proposition 5.1.

7.2. Bounds on ds. To show that dy = Zm ozn 1 Ok pm is in Dl 13,0
which constitutes the second part of the proof of Proposition 5.1, we first need to
show bounds on the functions O fr, .

_1 3 o » Which completes the first part
3.
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PROPOSITION 7.2. Let 3kfn,m be as given in section 3. Then we have the bounds

uniformly in o > 0 and k € Ry.

(7.8) ‘n@kfl o(k, )‘ < const.
(7.9) }n@kfg o(k,0)| < const.
(7.10) |0k f3,0(k, )| < const.
(7.11) ‘n@kfl 1(k,0)| < const.
(7.12) }nakﬁ 1(k, )} < const.
(7.13) ‘Iiakf:; 1(k, o ‘ )| < counst.

min{(1 + |A_|o), (s + [A_)|A_[Po}el=17 |
([ + [k|*)oe Ikl

(1+|A_fo)er,

(14 |A-P)oelr-lo

(1 + |k|*)oe Mo

(14 |A_)oer-°

Proof. We multiply (3.17)-(3.22) by x and bound the products. The function
KOk f1,0 is bounded in two ways. We have a straightforward bound

|k f1o0(k, 0)| < const. (14 |A_[o)el-17 .

Since leading terms cancel, we get
|/€akfvl70(k7 0)| < ‘ 9
k% + |k|k

2
+

1 (eﬁo 4ero _ 2ef|k|o) _
(e—|k|0' _ e—no)

k? + |k|k k? + K2

2K2 ( KO __ efmr)

k2+/€ RO — KO
T (e ) o

T

< const. |(e"7
k2

+ const. |— ((e”

K2

+ const. |[A_]|(e

-+ const.
. 2K

k? + |k|k k? + k2

k2 + |k
e "o — 2&%6_“‘"’0

—1—ko)+ (€777 —1+ ko) —2(e”1Flo — 1)

P 1) (1)

“lKle — 1) — (e — 1)
k% + K2

(" —=1)= (e —1))o

o| 4+ const. |k

-+ const.

k

2
k +k|k|/fe—\k\aa

K

< const. (JA_|20? + |k|o)e™~17 + const. [A_|3oelA-17

-+ const.
-+ const.

< const.

Then we have

|A_2oelA-17 4 const. |A_|2o2elA-1o
|A_2oel®=17 4+ const. |A_[2oelA-17

(s + [A-DIA-[Poel*-17.

|0k f1,0(k,0)| < const. min{(1+ |A_|o), (s + IA_D)|A_|2o}elA-le

which proves (7.8).

To bound k0% f2,0(k, o) we use that, since |k| < Re(x) for all &,

‘ef\k\o—

(7.14)

_ e*h}G’

< const. e ¥I7||k| — k| o

< const. (k|2 + |k|)oe ¥

Ikl |1 _ (kl=r)o
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such that

|/€8kf270(/€,0)‘
2 2 2
< ‘(|k|_l:’i) (e—|k|o'_e—l-€0') _2K_;|k| (|/€|/€€_|klo— k*+ K e—no) o

2

< const. (14 |k))(|k|2 + [k))e ™75 + const. (|k| + |k|2)e¥lo
+ const. (|k|2 + [k[>)e” Mg

< const. (|k|% + |k[*)oe Ikl

which gives (7.9).

To bound xdy, f3,0 (k, ) we have the straightforward bound
LI B e
Ko 3¢ K=y —0e

< const. (14 |A_)oeP=7,

— KO

KOk f3,0 (k,0)] <

which yields (7.10).
To bound xdy, f1.1 (k, ) we have

< k 2 k2 2
|0k f1,1(k, 0)| < 17“ [+ %) (e~ IFlo —e=roy| 4 th (" +e ") o
|| 2k
2 2,2
+ 2ik _]:ka <k 42—,{ e " — |k|/$e_k‘7) o

< const. (1+ [k|)(|k| + |[A_|)o 4 const. (1 + |k|)oelr-l
+ const. |A_|((1+ |k|) + [A_|)o < const. (1 +[A_|*)oe®-17,

and thus we have (7.11).
To bound xdy, f2.1 (k, o) we use (7.14) to bound

k% 4+ K2
2

— KO

e

(R R o

‘Kakfg)l (k,cr)| <7 7

—eflklg) + li(|k| + x)k

+ [2ik (k] + k) e~ Fl7g|

< const. (1+ |k))(|k|? + |k|)oe Kl

+ const. (|k| + [E[2)(1 + |k|V)e *log

+ const. (|k| + |k|?)e™¥I70 < const. (1 4 |k|?)ge~FI7

which leads to (7.12).
Finally, to bound k0 fs 1 (k, ) we have the straightforward bound

k% 4+ K2
2k

7/10'0_

|f<:8kf3,1 (k,o)| < e < const. (14 [A_|)oe™-7,

and therefore we have (7.13). This completes the proof of Proposition 7.2. O
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We may now bound ds. The bound on the function KORWwa,1,0 uses (7.8) and
Propositions A.1 and A.2, leading to

|KOkwa.1 0]

1 ¢ , .
= ‘56'”/ KOk f1,0 (k,0) Qo (K, 5)ds
1

¢ 1 1

< const. eA‘T/ min{(1 +|A_|o), (s + |A_|)|A_[*o}elr- 17 (—ua + rga) ds
1
141

2
< const. eA—T/ (s 4 |[A_|)|A_|?oelr-1o <
1

t
1 1
+ const. eA—T/ (14 |A_|o)elA-1e (—7Ma + — [La> ds

t4+1

< const. (1+ |A,|)t3
2

which shows that xkOkw2 1,0 € Dt

3-
a=1,3,3

The bound on the function k0;ws 2,0 uses (7.9), Proposition A.4, and (7.1), leading
to

~ 1 —KT > 3 A
|KOkwa, 20| = ‘56 / KOk fa,0(k, s —1)Qo(k, s)ds
t

o

e 1 1
< const. eA*TeIkIT/ (k|7 + |k[>)oe ko <—7Ma + —/la) ds
t s2 s

1 1 1
< const. (1 + |k|)e*-T <t—2ua + t—lﬂa> < const. (1+ |I€|)t—1ﬂa ,

which shows that kOkw2 2,0 € D!

a—1,00,1°

The bound on the function kOkws 3,0 uses (7.10) and Proposition A.3, leading to

o 1 KT —KT > F A
|kOKW2 30| = ‘5(6 —e )/ KOk fa0(k,s —1)Qo(k, s)ds
t
IA_|T > A_o 1 1
< const. e (1+]A_Jo)e —flo + <5 fla ) ds
S2 S2

/ i
t
° 1 1
< const. e‘A—‘T/ eh-o <— o+ —ﬂa> ds
t

i
o 1 1
+ const. elA-I7 |A_|er-7 <—ua + —/la) ds

IA
o
@]
=]
w0
o
7N
m\u‘| L
=
Q
+
| —
=
Q
~~_

which shows that xkOkw2 3,0 € Dihl 5 3-
5.3

The bound on the function kK0kw2 1,1 uses (7.11) and Propositions A.1 and A.2,
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leading to

~ 1 —KT ‘ i A
|KOkw211] = ‘56 / KOefi11(k, s —1)Q1(k,s)ds
1

t
< const. eA*T/ (14 |A_[})oelA-le <

1

- 1 _ 1 _

< const. | flo + 5 fla + T o

t2 t2

1 1 1

+ const. 1,qu—conbt IA_| | = fta + <fla |

which shows that xkOkw21.1 € Da 12,0

The bound on the function n@kwm,l uses (7.12), Proposition A.4, and (7.1),
leading to

~ 1 — KT > 3 A
|KOkW2,2.1| = ‘58 / KOk fa1(k, s —1)Q1(k, s)ds
t

o 1 1
< const. eA‘Te|k|T/ (14 |k|?)oe ko (—zua + — ﬂa> ds
t 2

1
;
t2

| —

o +

e

< const. (1 + |k|)e*-T (t

1
flo, > < const. (1 + |I€|)—l
2

which shows that kOx@a 21 € D! 1

a—1,00,5"

The bound on the function kO,ws, 3,1 uses (7.13) and Proposition A.3, leading to

~ 1 KT —KT > FA
|kOkW2 31| = ‘5(6 —e )/ KOk f3,1Q1(k, s)ds
t

jd 5
S2 S2

& 1 1
< const. (e‘A“T + eA‘T)/ (1+|A_|)oer-7 <—ua + —ﬂa) ds
t
1_ 1.
<const. | wfia + la |
t3 t3

which shows that xkOkw2 31 € Dihl 3 1.

151G
Collecting the bounds we have that do € D!
part of the proof of Proposition 5.1.

130 which completes the second
.3,

7.3. Bounds on ds. We prove the bounds on ds needed to complete the proof
of Lemma 5.3. For compatibility with the maps £; and £, we will bound rd3 instead
of d3. Throughout this proof we will use without further mention the bounds

‘8kQO (k,s)‘ < HaonH (S%ua + Silﬂa) )

’@Ql (k,s)‘ < H@c@lH (Si%lta + iﬂa) -

52
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The bound on the function kOxw3 1,0 uses (7.2) and Propositions A.1 and A.2, leading
to

|/€8}d,d310| ‘ / fl() /€ CT m@on (k S)

1 1
< const. |A_|eA—T/ A-lo min{|A_|,|A_|?0?} (— a+§ga) ds
1
t+1

=z 1
< const. [A_|e?- T/ e -l7|A_Po 2< —5 Ha + ua> ds
s

t
1
+ const. |A_|eA—T/ el=lo|A_| ( —5 Ha + ,ua) ds
t+1

2

< £ A 1. n 1 _ " 1
const. |[A_| | =fta + = fla + —fia |
= e T gl Tk
which shows that ﬁ&kwgloeDa Lan

The bound on the function H@kwg,m uses (7.3), (7.1), and Proposition A.4, which,
to be applicable, requires first the use of (6.3) to trade a |k| for an s~ multiplying
o and fi,. We then have

|I€(9kLU3 2 0| ‘ / f2 0 k S — 1)m8kQ0(k S)

1 1
< comst. 7 [ (-4 (8 + ke (S + T ) s
t S2
ar ke [T ke (L L
< const. e*~Te |kle — fla + —fla—1 | ds
t 52
o0
+ const. eA‘Te‘k‘T/ (1+ k) _|k|"—,&a 1ds
t
B A1 1 1
< const. e t—%ua + t—%ua_l + t—Qua_l
1. 1.
< const. t—%,ua+t—2ua_1 ,

which shows that kOpws3 2,0 € Dl 3.

a—1,00,5
The bound on the function kKOxws 3,0 uses (7.4) and Proposition A.3, which, to
be applicable, requires first the use of (6.3) to trade a |[A_| for an s~/ multiplying

[le,- We then have
~ 1 KT —KT * A
|KOKWs,3,0] = ‘5(6 —e )/ f3.0(k,s = 1)k0xQo(k, s)ds
t

e 1 1
< const. e‘A*‘T/ min{1, [A_|}er-|A_| (—3ua + g/la> ds
t S2
e 1 1 1
4 el A= Ao 5 iy iy
< const. e T/t [A_]e?-° (Sg fo + 52%‘_% + 53’%‘_1) ds
‘ 1 _ 1. 1_
< const. t—%ua + t—zua,% + t_Bch—l )

which shows that k0kws 3,0 € Di

3 3-
—L3.3
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The bound on the function k0yws 11 uses (7.5) and Propositions A.1 and A.2,
leading to

|KOkws,11] =

t
%6_"”/ fra(k,s — 1)k0pQu (K, s)ds
1

1 1
< const. eA—T/l (14 |A_])e!*=1" min{1,|A_|o}|A_ |<— +—2ga) ds

S S
= 1 1
< const. (1 + |A_|)eA‘T/ |A_le-17|A_|o (—su + —Zﬂa> ds
1 S2 S
A_T ¢ [A_|o 1 _ 1 ~
+ const. (14 [A_|)e™- A_[e®17 | —fia + 5 fla | ds
5 s 5

3
2
1 1 _ 1.
< const. (1+[A_|) t—§,ua+t_§ua+_ua ’
2 2

which shows that k0,311 € Diil 55
2,2

The bound on the function kOkws 2,1 uses (7.6), Proposition A.4, and (7.1), leading
to

~ 1 —KT > g A
|KOpws 21| = ‘56’ / f21(k,s = 1)k0pQ1(k, 5)ds
t

< const. eA*T/ (1 + |k|)|A_ eIkl < 3
t
e 1
< const. (1 + |k|)eA*Te|k|T/ (|k|2 + |k|)eIF7 (—3ua + 2[“1) ds
t S2 S
A_T 1 — 1 ~ .
< const. (1 + |k|)e sl + —fia | < const. (

which shows that kOpW3 2.1 € D} 1 o0 1
The bound on the function Iiako.)373)1 uses (7.7) and Proposition A.3, leading to

o0
|kOkWs 3,1 = ‘5(6'” - 67“)/ f3160KQ1(k, s)ds
t
[A_|T A_T A o 1 L
< const. (e +etT) A —fa + —fia | ds
t S2 S
1_ 1.
< comnst. t—%,ua + t—2ua ,
which shows that xkOkws 31 € Da 13 o
.3,
Collecting the bounds we have that ds € Dikl 3, C Diil 3 o» Which proves
.3, .3,
Lemma 5.3.
A_t — k|t

Appendix. Convolution with the semigroups e and e . To make
this paper self-contained, we recall the following results proved in [14]. In order to
bound the integrals over the interval [1,¢] we systematically split them into integrals
over [1, 1] and integrals over [£51,¢] and bound the resulting terms separately. For

the semigroup e*~* we have the following.
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ProrosiTION A.1. Let «>0,r>0,5 >0, andy+ 1> >0. Then

t+1

A /T e|A4<sf1>|A_|6(S;7§1)Vua,r(k,s) ds
1

1
const. t—ﬂﬂa(k,t) if 6 >~v+1,

log(1+¢
B D ) 5 =41,

IN

const.

t’y-‘rl—é
const. t—Bﬂa(k,t) if 6 <vy+1

uniformly int > 1 and k € R.

PROPOSITION A.2. Let « > 0,7 >0, € R, and § € {0,1}. Then

t
1 const.
A_(t-1) [A—|(s—1) B~ el
e /tgl e |A_] p tor(kys) ds < Py e Po,r (K, T)

uniformly int > 1 and k € R.

For the integral over the interval [t, 00) we need only one of the bounds in [14].
PROPOSITION A.3. Let a>0,r>0,6>1, and 8 € {0,1}. Then

_ ° . 1 const.
el A=t 1)/t oA ( 1)|A,|ﬁguw(k,s) ds < mua7r(k,t)

uniformly int > 1 and k € R.

For the semigroup e~ !*I* we have the following.

PROPOSITION A.4. Let a>0,r>0,6 > 1, and B € [0,1] Then

const.

P Sl 1
SRl 1>/t o IHIC 1>|k|ﬁ§,m,r(k,s) ds < Trpg b (k1)

uniformly int > 1 and k € R.
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