
Positive Borders or Negative Borders: How to Make Lossless Generator-based

Representations Concise

Guimei Liu1,2 Jinyan Li1 Limsoon Wong2 Wynne Hsu2

1Institute for Infocomm Research, Singapore
2School of Computing, National Univeristy of Singapore, Singapore

Abstract

A complete set of frequent itemsets can get undesirably

large due to redundancy. Several representations have been

proposed to eliminate the redundancy. Existing generator

based representations rely on a negative border to make

the representation lossless. However, negative borders of

generators are often very large. The number of itemsets on

a negative border sometimes even exceeds the total number

of frequent itemsets. In this paper, we propose to use a

positive border together with frequent generators to form a

lossless representation. A set of frequent generators plus its

positive border is always no larger than the corresponding

complete set of frequent itemsets, thus it is a true concise

representation. The generalized form of this representation

is also proposed. We develop an efficient algorithm, called

GrGrowth, to mine generators and positive borders as well

as their generalizations.

1 Introduction

Frequent itemset mining is an important problem in the
data mining area. It was first introduced by Agrawal et
al.[1] in the context of transactional databases. The
number of frequent itemsets can be undesirably large,
especially on dense datasets where long patterns are
prolific. Many frequent itemsets are redundant because
their support can be inferred from other frequent item-
sets. Generating too many frequent itemsets not only
requires extensive mining cost but also defeats the pri-
mary purpose of data mining in the first place.

Several concepts have been proposed to eliminate
the redundancy from a complete set of frequent item-
sets, including frequent closed itemsets [12], generators
[2] and generalizations of generators [4, 10]. In some ap-
plications, generators are more preferable than closed
itemsets. For example, generators are more appropri-
ate for classification than closed itemsets because closed
itemsets contain some redundant items that are not
useful for classification, which also violates the mini-
mum description length principle. The redundant items
sometimes have a negative impact on classification ac-

curacies because they can prevent a new instance from
matching a frequent itemset.

A representation is lossless if we can decide for any
itemset whether it is frequent and we can determine the
support of the itemset if it is frequent, using only infor-
mation of the representation without accessing the orig-
inal database. Generators alone are not adequate for
representing a complete set of frequent itemsets. Exist-
ing generator based representations [4, 9, 10] use a neg-
ative border together with frequent generators to form a
lossless representation. We have observed that negative
borders are often very large, sometimes, the negative
border alone is larger than the corresponding complete
set of frequent itemsets. For example, the total num-
ber of frequent itemsets is 122450 in dataset BMS-POS
with minimum support of 0.1%, while the number of
itemsets on the negative border is 236912. To solve this
problem, we propose a new concise representation of
frequent itemsets, which uses a positive border together
with generators to form a lossless representation.

The main contributions of the paper are summa-
rized as follows: (1) We propose a new concise represen-
tation of frequent itemsets, which uses a positive border
instead of a negative border together with frequent gen-
erators to represent a complete set of frequent itemsets.
The size of the new representation is guaranteed to be no
larger than the total number of frequent itemsets, thus it
is a true concise representation. Our experiment results
show that a positive border is usually orders of magni-
tude smaller than its corresponding negative border. (2)
The completeness of the new representation is proved,
and an algorithm is given to derive the support of an
itemset from the new representation. (3) We develop
an efficient algorithm GrGrowth to mine frequent gen-
erators and positive borders. The GrGrowth algorithm
and the concept of positive borders can be both applied
to generalizations of generators, such as disjunction-free
sets and generalized disjunction-free sets.

The rest of the paper is organized as follows.
Section 2 presents related work. The formal definitions

of positive border based representations are given in
Section 3. Section 4 describes the mining algorithm.
The experiment results are shown in Section 5.

2 Related Work

The problem of removing redundancy while preserving
semantics has drawn much attention in the data mining
area. Several concepts have been proposed to remove
redundancy from a complete set of frequent itemsets,
including frequent closed itemsets [12], generators [2]
and generalizations of generators [4, 10, 5, 6, 3].

The concept of generators is first introduced by
Bastide et al. [2]. Bykowski et al. [4] propose an-
other concept—disjunction-free generator to further re-
duce result size. Generators or disjunction-free gener-
ators alone are not adequate to represent a complete
set of frequent itemsets. Bykowski et al. use a nega-
tive border together with disjunction-free generators to
form a lossless representation. Kryszkiewicz et al. [10]
generalize the concept of disjunction-free generator and
propose to mine generalized disjunction-free generators.
Boulicaut et al. [3] generalize the generator representa-
tion from another direction and propose the δ-free-sets
representation. Itemset l is δ-free if the support differ-
ence between l and l’s subsets is less than δ. Boulicaut
et al. also use a negative border together with δ-free-
sets to form a concise representation. The δ-free-sets
representation is not lossless unless δ=0.

Mannila et al. [11] first propose the notion of con-
densed representation based on the inclusion-exclusion
principle. Calders et al. [5] propose a similar concept—
non-derivable frequent itemsets. An itemset is non-
derivable if its support cannot be inferred from its sub-
sets based on the inclusion-exclusion principle. Calders
et al. develop a level-wise algorithm NDI [5] and a
depth-first algorithm dfNDI [7] to mine non-derivable
frequent itemsets. The dfNDI algorithm is shown to be
much more efficient than the NDI algorithm. Calders et
al. [6] also propose the concept of k-free sets and several
types of borders to form lossless representations. How-
ever, the computation cost for inferring support from
non-derivable itemsets and k-free sets is very high.

3 Positive Border Based Representations

In this section, we first give the formal definitions
of generators and positive borders, and then give an
algorithm to infer the support of an itemset from
positive border based representations.

3.1 Definitions

Let I = {a1, a2, · · · , an} be a set of items and
D = {t1, t2, · · · , tN} be a transaction database, where
ti (i ∈ [1, N]) is a transaction and ti ⊆ I. Each subset

of I is called an itemset. The support of an itemset l in
D is defined as support(l)=|{t|t ∈ D and l ⊆ t}|/|D| or
support(l)=|{t|t ∈ D and l ⊆ t}| .

Definition 3.1. (Generator) Itemset l is a gener-
ator if there does not exist l′ such that l′ ⊂ l and
support(l′) = support(l).

According to the definition, the empty set φ is a
generator in any database. If an itemset is a generator
in a database and its support is no less than a given
minimum support threshold, we call the itemset a
frequent generator. Generators also have the anti-
monotone property.

Property 3.1. (anti-monotone property) If l is
not a generator, then ∀ l′ ⊃ l, l′ is not a generator.

Tid Transactions

1 a, b, c, d, e, g

2 a, b, d, e, f

3 b, c, d, e, h, i

4 a, d, e, m

5 c, d, e, h, n

6 b, e, i, o

Frequent itemsets

φ:6, e:6, d:5, b:4, a:3, c:3, h:2
i:2, ed:5, be:4, bd:3, bde:3, ae:3
ad:3, ade:3 ab:2, abe:2, abd:2
abde:2, ce:3, cd:3, cde:3, cb:2
cbe:2, cbd:2, cbde:2, he:2, hc:2
hce:2, hd:2, hde:2, hcd:2
hcde:2, ie:2, ib:2, ibe:2

(a) (b)

Frequent Generators

φ:6, d:5, b:4, a:3, c:3, h:2
i:2, bd:3, ab:2, bc:2

Positive Border

〈φ, e〉:6, 〈a, d〉:3, 〈c, d〉:3
〈h, c〉:2, 〈h, d〉:2, 〈i, b〉 : 2

(c) (d)

Table 1: An example (min sup=2)

Example. Table 1(a) shows an example transaction
database containing 6 transactions. With minimum
support of 2, the set of frequent itemsets are shown
in Table 1(b) and the set of frequent generators are
shown in Table 1(c). For brevity, a frequent item-
set {a1, a2, · · · , am} with support s is represented as
a1a2 · · · am : s. Many frequent itemsets are not gen-
erators. For example, itemset e is not a generator be-
cause it has the same support as φ. Consequently, all
the supersets of e are not generators.

Definition 3.2. (The positive border of FG)
Let FG be the set of frequent generators in a database
with respect to a minimum support threshold. The
positive border of FG is defined as PBd(FG) =
{l | l is frequent ∧ l /∈ FG ∧ (∀l′ ⊂ l, l′ ∈ FG)}.

Example. Table 1(d) shows the positive border of fre-
quent generators with minimum support of 2 in the
database shown in Table 1(a). We represent an item-
set l on a positive border as a pair 〈l′, x〉, where x is
an item, l′=l − {x} and support(l′) = support(l). For

example, itemset e is on the positive border and it has
the same support as φ, hence it is represented as 〈φ, e〉.
The second pair 〈a, d〉 represents itemset ad.

Note that for any non-generator itemset l, there
must exist itemset l′ and item x such that l′ = l − {x}
and support(l′) = support(l) according to the definition
of generators. The itemsets on positive borders are not
generators, therefore any itemset l on a positive border
can be represented as a pair 〈l′, x〉 such that l′ = l−{x}
and support(l′) = support(l). For itemset l on a positive
border, there are possibly more than one pairs of l′ and x
satisfying that l′ = l−{x} and support(l′) = support(l).
Any pair can be chosen to represent l.

Proposition 3.1. Let FI and FG be the complete set
of frequent itemsets and the set of frequent generators
in a database respectively. We have FG

⋂
PBd(FG)=φ

and FG
⋃

PBd(FG) ⊆ FI, thus |FG| + |PBd(FG)| ≤
|FI|.

This is true by the definition of frequent generators and
positive borders. Proposition 3.1 states that a set of
frequent generators plus its positive border is always a
subset of the complete set of frequent itemsets, thus it
is a true concise representation. Next we prove that this
representation is lossless.

Lemma 3.1. ∀ frequent itemset l, if l /∈ FG and l /∈
PBd(FG), then ∃ l′ ∈ PBd(FG) such that l′ ⊂ l.

Proof. We prove the lemma using induction on the
length of the itemsets. It is easy to prove that the lemma
is true when |l| ≤ 2.
Assume that when |l| ≤ k (k ≥ 0), the lemma is true.
Let |l| = k + 1. The fact that l /∈ FG and l /∈
PBd(FG) means that ∃l′ ⊂ l such that l′ /∈ FG. If
l′ ∈ PBd(FG), then the lemma is true. Otherwise by
using the assumption, there must exist l′′ ⊂ l′ such that
l′′ ∈ PBd(FG). Hence the lemma is also true because
l′′ ⊂ l′ ⊂ l.

Lemma 3.2. ∀ itemset l and item a, if support(l)=
support(l

⋃
{a}), then ∀ l′ ⊃ l, support(l′)=

support(l′
⋃
{a}).

Theorem 3.1. Given FG and PBd(FG) with support
information, ∀ l, we can determine: (1) whether l is
frequent, and (2) the support of l if l is frequent.

Proof. If l ∈ FG or l ∈ PBd(FG), we can obtain the
support of l directly.
Otherwise if there exists itemset l′ such that l′ ⊂ l
and l′ ∈ PBd(FG), let l′′ be the itemset such that
l′′ = l′ −{a}, support(l′′)=support(l′) and l′′ ∈ FG, we

have support(l′′)=support(l′′
⋃
{a}) and l′′=l′ − {a} ⊂

l − {a}. According to Lemma 3.2, we have support(l −
{a})=support(l). We remove item a from l. This
process is repeated until there does not exist l′ such
that l′ ∈ PBd(FG) and l′ ⊂ l. The resultant itemset
is denoted as l̄, and l̄ can be in two cases: (1) l̄ ∈
FG or l̄ ∈ PBd(FG), then l must be frequent and
support(l)=support(l̄) according to Lemma 3.2; and (2)
l̄ /∈ FG and l̄ /∈ PBd(FG), then l must be infrequent
because otherwise it conflicts with Lemma 3.1.

It directly follows from Theorem 3.1 that the set of
frequent generators in a database and its positive border
form a concise lossless representation of the complete set
of frequent itemsets.

3.2 Inferring support

From the proof of Theorem 3.1, we can get an algo-
rithm for inferring the support of an itemset from posi-
tive border based concise representations. Intuitively, if
an itemset is not a generator, then the itemset must con-
tain some redundant items. Removing these redundant
items does not change the support of the itemset. Item-
sets on positive borders are the minimal itemsets that
contain one redundant item. We represent an itemset
l on a positive border as 〈l′, a〉, where l′=l − {a} and
support(l′)=support(l), so the redundant items can be
easily identified. When inferring the support of an item-
set, we first use positive borders to remove redundant
items from this itemset. If the resultant itemset is a
generator, then the original itemset is frequent and its
support equals to the resultant itemset, otherwise the
itemset is infrequent.

Example. To check whether itemset bcde is frequent and
obtain its support if it is frequent, we first search in
Table 1(d) for the subsets of bcde. We find 〈φ, e〉, so
item e is removed. Then we continue the search and
find 〈c, d〉. Item d is removed and the resultant itemset
is bc. We find bc in Table 1(c). Therefore, itemset bcde
is frequent and its support is 2.
To check whether itemset acdh is frequent and obtain
its support if it is frequent, we first search for its subsets
in Table 1(d). We find 〈c, d〉, so item d is removed. We
continue the search and find 〈h, c〉 is a subset of ach, so
item c is removed. There is no subset of ah in Table
1(d). Itemset ah does not appear in Table 1(c) either,
so itemset acdh is not frequent.

3.3 Generalizations

We can also define positive borders for generalized
forms of generators.

Definition 3.3. (k-disjunction-free set) Itemset l is
a k-disjunction-free set if there does not exist itemset

l′ such that l′ ⊂ l, |l| − |l′| ≤ k and support(l) =∑
l′⊆l′′⊂l

(−1)|l|−|l′′|−1 · support(l′′).

According to Definition 3.3, if an itemset is a k-
disjunction-free set, it must be a (k-1)-disjunction-
free set. Generators are 1-disjunction-free sets. The
disjunction-free sets proposed by Bykowski et al [4]
are 2-disjunction-free set. The generalized disjunction-
free sets proposed by Kryszkiewicz et al. [10] are ∞-
disjunction-free sets.

Example. In the example shown in Table 1, itemset bd is
a generator, but it is not a 2-disjunction-free set because
support(bd)=−support(φ)+support(b)+support(d).

Definition 3.4. (The positive border of FGk)
Let FGk be the set of frequent k-disjunction-free sets in
a database with respect to a minimum support threshold.
The positive border of FGk is defined as PBd(FGk) =
{l|l is frequent ∧ l /∈ FGk ∧ (∀l′ ⊂ l, l′ ∈ FGk)}.

The set of frequent k-disjunction-free sets (k > 1) in
a database and its positive border also form a lossless
concise representation of the complete set of frequent
itemsets. The proof is similar to the proof of Theorem
3.1. We omit it here.

4 The GrGrowth algorithm

The GrGrowth algorithm adopts the pattern growth ap-
proach to mine frequent generators and positive bor-
ders. It constructs a conditional database for each fre-
quent generator and uses FP-tree to store the condi-
tional databases. The GrGrowth algorithm prunes non-
generators during the mining process to save mining
cost. Generators and itemsets on positive borders are
identified by checking two conditions: (1) whether all
the subsets of a frequent itemset are generators, and (2)
whether all the subsets of the frequent itemset are more
frequent than the itemset. If a frequent itemset satisfies
both conditions, then the itemset is a frequent genera-
tor; if a frequent itemset satisfies only the first condi-
tion, then the itemset is on the positive border; other-
wise, the itemset should be discarded. According to the
anti-monotone property of generators, only the condi-
tional databases of frequent generators should be pro-
cessed. The search space of the frequent itemset mining
problem can be represented by a set-enumeration tree.
The GrGrowth algorithm uses depth-first right-to-left
order to traverse the set-enumeration tree to guarantee
that all the subsets of a frequent itemset are discovered
before that itemset. It uses a hash-table to store all the
generators that have been discovered so far during the
mining process to facilitate subset checking. The Gr-
Growth algorithm can be easily extended to mine gen-
eralizations of the positive border based representations.

Datasets Size #Trans #Items MaxTL AvgTL

accidents 34.68MB 340,183 468 52 33.81

BMS-POS 11.62MB 51,5597 1,657 165 6.53

BMS-WebView-1 0.99MB 59,602 497 268 2.51

BMS-WebView-2 2.34MB 77,512 3,340 162 4.62

chess 0.34MB 3,196 75 37 37.00
connect-4 9.11MB 67,557 129 43 43.00

mushroom 0.56M 8,124 119 23 23.00

pumsb 16.30MB 49,046 2,113 74 74.00

pumsb star 11.03MB 49,046 2,088 63 50.48
retail 4.07MB 88,162 16,470 77 10.31

T10I4D100k 3.93MB 100,000 870 30 10.10

T40I10D100k 15.12MB 100,000 942 78 39.61

Table 2: Datasets

5 A Performance Study

The experiments were conducted on a 3.00Ghz Pentium
IV with 2GB memory running Microsoft Windows XP
professional. All implementations were complied using
Microsoft Visual C++ 6.0. Table 2 shows the datasets
used in our performance study and some statistical
information of these datasets. All these datasets are
available at http://fimi.cs.helsinki.fi/data/.

5.1 Border size comparison

The first experiment is to compare the size of
positive borders with that of negative borders. Table 3
shows the total number of frequent itemsets (“FI”), the
number of frequent closed itemsets (“FCI”), the number
of frequent generators (“FG”), the size of the negative
border of FG (“NBd(FG)”), the size of the positive
border of FG (“PBd(FG)”), the number of frequent
∞-disjunction-free generators (“FG∞”), the size of the
negative border of FG∞ (“NBd(FG∞)”) and the size
of the positive border of FG∞ (“PBd(FG∞)”) on each
dataset. The minimum support thresholds are shown in
the second column.

The numbers in Table 3 indicates that negative bor-
ders are often significantly larger than the corresponding
complete sets of frequent itemsets on sparse datasets.
For example, in dataset retail with minimum support of
0.005%, the number of itemsets on the negative border
of FG is 64914318, which is about 43 times larger than
the total number of frequent itemsets and about 585
times larger than the number of itemsets on the posi-
tive border of FG. The negative borders shrink little
with the increase of k on sparse datasets. Even with
k = ∞, it is still often the case that negative borders
are much larger than the corresponding complete sets of
frequent itemsets on sparse datasets. This is unaccept-
able for a concise representation. On the contrary, the
positive border based representations are always smaller
than the corresponding complete sets of frequent item-
sets, thus are true concise representations.

Datasets min sup FI FCI FG NBd(FG) PBd(FG) FG∞ NBd(FG∞) PBd(FG∞)

accidents 10% 10691550 9958684 9958684 134282 851 532458 77227 142391

accidents 30% 149546 149530 149530 5096 1 24650 4596 5415

BMS-POS 0.03% 1939308 1761608 1761611 1711467 57404 1466347 1690535 160690

BMS-POS 0.1% 122450 122370 122370 236912* 68 117520 236743* 906

BMS-WebView-1 0.05% 485490182335 127132 485327 315526 460523 284640 282031 549252
BMS-WebView-1 0.1% 3992 3975 3979 66629* 12 3971 66629* 19

BMS-WebView-2 0.005% 60193074 1196296 1929791 8305673 599909 1071556 8201293 813152

BMS-WebView-2 0.05% 114217 77530 79345 1743508* 1887 39314 1740476* 7646

chess 20% 289154814 22808625 25031186 705394 838 24769 6749 12517
chess 45% 2832778 705111 716948 27396 88 3347 1275 1882

connect-4 10% 58062343952 8035412 8035412 175990 146 19494 8388 9676

connect-4 35% 667235248 328345 328345 11073 95 1137 645 1388
mushroom 0.1% 1727758092 147905 323432 78437 20035 118475 42354 30400

mushroom 1% 90751402 51640 103377 40063 10690 35007 22251 15926

pumsb 50% 165903541 7121265 22402412 1052671 45 29670 6556 20396

pumsb 75% 672391 101048 248299 24937 20 3410 2739 2332

pumsb star 5% 4067591731305 9370737 29557940 567690 52947 1686082 247841 558253
pumsb star 20% 7122280454 122202 253107 14638 1625 39051 12327 13316

retail 0.005% 1506776 504143 532343 64914318* 110918 500814 64909090* 133658

retail 0.01% 240853 189078 191266 40565727* 13877 184965 40564812* 18557

T10I4D100k 0.005% 1923260 769778 994903 24669957* 374562 978510 24669812* 384667

T10I4D100k 0.05% 52623 46315 46751 678244* 1257 38566 678180* 5093
T40I10D100k 1% 65237 65237 65237 521359* 0 33883 510861* 7372

Bold: The lossless representation is not really concise, for example, ‖FG ∪ NBd(FG)‖ > ‖FI‖ or ‖FG∞ ∪ NBd(FG∞)‖ > ‖FI‖
* : ‖NBd(FG)‖ > ‖FI‖.

Table 3: Size comparison between different representations

5.2 Mining time

The second experiment is to study the efficiency of
the GrGrowth algorithm. We compare the GrGrowth
algorithm with two algorithms. One is the FPClose al-
gorithm [8], which is one of the state-of-the-art frequent
closed itemset mining algorithms. The other is a level-
wise algorithm for mining frequent generators and pos-
itive borders, which is implemented based on Christian
Borgelt’s implementation of the Apriori algorithm. The
GrGrowth algorithm outperforms the other two algo-
rithms consistently. In particular, it is usually one or
two orders of magnitude faster than the level-wise algo-
rithm for the same task of mining frequent generators
and positive borders.

References

[1] R. Agrawal, T. Imielinski, and A. N. Swami. Min-
ing association rules between sets of items in large
databases. In Proc. of the 1993 ACM SIGMOD Con-

ference, pages 207–216, 1993.
[2] Y. Bastide, N. Pasquier, R. Taouil, G. Stumme, and

L. Lakhal. Mining minimal non-redundant association
rules using frequent closed itemsets. In Proc. of

Computational Logic Conference, pages 972–986, 2000.
[3] J.-F. Boulicaut, A. Bykowski, and C. Rigotti. Free-

sets: A condensed representation of boolean data for
the approximation of frequency queries. Data Mining

and Knowledge Discovery Journal, 7(1):5–22, 2003.

[4] A. Bykowski and C. Rigotti. A condensed represen-
tation to find frequent patterns. In Proc. of the 20th

PODS Symposium, 2001.
[5] T. Calders and B. Goethals. Mining all non-derivable

frequent itemsets. In Proc. of the 6th PKDD Confer-

ence, pages 74–85, 2002.
[6] T. Calders and B. Goethals. Minimal k -free represen-

tations of frequent sets. In Proc. of the 7th PKDD

Conference, pages 71–82, 2003.
[7] T. Calders and B. Goethals. Depth-first non-derivable

itemset mining. In Proc. of the 2005 SIAM Interna-

tional Data Mining Conference, 2005.
[8] G. Grahne and J. Zhu. Efficiently using prefix-trees

in mining frequent itemsets. In Proc. of the ICDM

2003 Workshop on Frequent Itemset Mining Implemen-

tations, 2003.
[9] M. Kryszkiewicz. Concise representation of frequent

patterns based on disjunction-free generators. In Proc.

of the 2001 ICDM Conference, pages 305–312, 2001.
[10] M. Kryszkiewicz and M. Gajek. Concise representation

of frequent patterns based on generalized disjunction-
free generators. In Proc. of the 6th PAKDD Confer-

ence, pages 159–171, 2002.
[11] H. Mannila and H. Toivonen. Multiple uses of frequent

sets and condensed representations. In Proc. of the 2nd

ACM SIGKDD Conference, pages 189–194, 1996.
[12] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal.

Discovering frequent closed itemsets for association
rules. In Proc. of the 7th ICDT Conference, pages 398–
416, 1999.

